Supporting information

for

Synthesis, Characterization and Thermal Study of Divalent Germanium, Tin and Lead Triazenides as Potential Vapor Deposition Precursors

Rouzbeh Samii,^[a] David Zanders,^{[b],[c]} Anton Fransson,^[a] Goran Bačić,^[b] Sean T. Barry,^[b] Lars Ojamäe,^[a] Vadim Kessler,^[d] Henrik Pedersen,^[a] and Nathan J. O'Brien^{*,[a]}

^[a] Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden

^[b] Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S5B6, Canada

^[c] Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany

^[d] Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, 75007 Uppsala, Sweden

*Corresponding author: nathan.o.brien@liu.se

Table of contentsS1-4NMR SpectraS1-4Thermogravimetric AnalysisS5-6Differential Scanning CalorimetryS7EI-MS DataS8X-ray Crystallographic AnalysisS9-11Computational CalculationsS12-13

Figure S1: ¹H NMR (300 MHz) spectrum of (1,3-di-tert-butyltriazenide)lithium(I) in C₆D₆.

Figure S2: ¹³C NMR (75 MHz) spectrum of (1,3-di-tert-butyltriazenide)lithium(I) in C₆D₆.

Figure S3: ¹H NMR (300 MHz) spectrum of 1 in C_6D_6 .

Figure S4: ¹³C NMR (125 MHz) spectrum of 1 in C₆D₆.

Figure S5: ¹H NMR (500 MHz) spectrum of **2** in C₆D₆.

Figure S6: 13 C NMR (125 MHz) spectrum of **2** in C₆D₆.

Figure S7: ¹H NMR (500 MHz) spectrum of **3** in C₆D₆.

Figure S8: ¹³C NMR (125 MHz) spectrum of **3** in C₆D₆.

Thermogravimetric Analysis

Figure S9: TGA of **1** (a) and Clausius-Clapeyron plot of **1** for derived from TGA data using 10 mg sample size (b).

Figure S10: TGA of **2** (a) and Clausius-Clapeyron plot of **1** for derived from TGA data using 10 mg sample size (b).

Figure S11: TGA of **3** (a) and Clausius-Clapeyron plot of **1** for derived from TGA data using 10 mg sample size (b).

Figure S12: Isothermal TGA of **1–3** at 90 °C.

Figure S13: Base line corrected DSC of 1.

Figure S14: Base line corrected DSC of 2.

Figure S15: Base line corrected DSC of **3**.

EI-MS Data

Figure S16: EI-MS of 1.

Figure S17: EI-MS of **2**.

X-ray Crystallographic Analysis

Table S1: Bond lengths (Å) and bond angles (°) for **1** from structure determination by X-ray crystallography and quantum chemical DFT calculations.

	XRD	DFT
Ge1-N1	1.995	2.036
Ge1–N2	2.217	2.276
N1-N3	1.310	1.297
N2-N3	1.301	1.280
N1C1	1.477	1.478
N2-C2	1.479	1.482
N1–Ge1–N1	98.15	96.48
N1–Ge1–N2 inter	98.25	94.77
N1–Ge1–N2 intra	59.64	58.24
N2–Ge1–N2	147.92	141.12
N1-N3-N2	107.35	109.54

Figure S18: Crystal structure of **2**, thermal ellipsoids are depicted at 50% probability level and all hydrogens were removed for clarity.

Table S2: Bond lengths (Å) and bond angles (°) for **2** from structure determination by X-ray crystallography and quantum chemical DFT calculations.

	XRD	DFT
	me	
Sn1–N2	2.207	2.248

Sn1–N3	2.388	2.423
N1-N2	1.295	1.291
N1-N3	1.293	1.280
N2-C2	1.486	1.475
N3-C1	1.471	1.479
N2-Sn1-N2	93.99	92.18
N3–Sn1–N3	133.39	131.31
N2–Sn1–N3_inter	92.05	90.91
N2–Sn1–N3_intra	54.87	54.02
N2-N1-N3	110.27	111.59

Figure S19: Crystal structure of **3**, thermal ellipsoids are depicted at 50% probability level and all hydrogens were removed for clarity.

	XRD	DFT
Pb1–N1	2.503	2.423
Pb1–N3	2.328	2.248
N1-N2	1.292	1.291
N2-N3	1.291	1.280
N1C1	1.476	1.475

Table S3: Bond lengths (Å) and bond angles (°) for **3** from structure determination by X-ray crystallography and quantum chemical DFT calculations.

N3-C3	1.472	1.479
N1–Pb1–N1	129.61	131.31
N3–Pb1–N3	92.13	92.18
N1–Pb1–N3_inter	91.01	90.91
N1–Pb1–N3_intra	52.54	54.02
N1-N2-N3	112.21	111.59

Geometry index, τ'_4 , is defined as:

$$\tau_4' = \frac{\beta - \alpha}{360^\circ - 109.5^\circ} + \frac{180^\circ - \beta}{180^\circ - 109.5^\circ},$$

where α and β are the two widest N–M–N angles and $\beta > \alpha$. For compound 1, the widest angles are 98.25 and 147.92° (Table S1). Substituting α and β for 98.25 and 147.92°, respectively in the equation for calculating τ'_4 gives:

$$\tau_4' = \frac{147.92 - 98.25}{360^\circ - 109.5^\circ} + \frac{180^\circ - 147.92}{180^\circ - 109.5^\circ} \approx \ 0.65.$$

Similar calculations for compound **2** using $\alpha = 93.99^{\circ}$ and $= \beta 133.39^{\circ}$ (Table S2) yields $\tau'_4 = 0.82$, and for compound **3** using $\alpha = 92.13^{\circ}$ and $= \beta 129.61^{\circ}$ (Table S3) yields $\tau'_4 = 0.86$.

Computational Calculations

Figure S20: NBO charges for 1.

Figure S21: NBO charges for 2.

Figure S22: NBO charges for **3**.