Supporting information

for

Synthesis, Characterization and Thermal Study of Divalent Germanium, Tin and Lead Triazenides as Potential Vapor Deposition Precursors

Rouzbeh Samii,[a] David Zanders,[b],[c] Anton Fransson,[a] Goran Bačić,[b] Sean T. Barry,[b] Lars Ojamäe,[a] Vadim Kessler,[d] Henrik Pedersen,[a] and Nathan J. O'Brien*,[a]

[a] Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden

[b] Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S5B6, Canada

[c] Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany

[d] Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, 75007 Uppsala, Sweden

*Corresponding author: nathan.o.brien@liu.se

Table of contents

Figure S1: ¹H NMR (300 MHz) spectrum of (1,3-di-tert-butyltriazenide)lithium(I) in C₆D₆.

Figure S2: 13C NMR (75 MHz) spectrum of (1,3-di-*tert*-butyltriazenide)lithium(I) in C6D6.

Figure S3: ¹H NMR (300 MHz) spectrum of 1 in C_6D_6 .

Figure S4: ¹³C NMR (125 MHz) spectrum of 1 in C_6D_6 .

Figure S5: ¹H NMR (500 MHz) spectrum of 2 in C_6D_6 .

Figure S6: ¹³C NMR (125 MHz) spectrum of **2** in C₆D₆.

Figure S7: ¹H NMR (500 MHz) spectrum of 3 in C₆D₆.

Figure S8: ¹³C NMR (125 MHz) spectrum of 3 in C₆D₆.

Thermogravimetric Analysis

Figure S9: TGA of **1** (a) and Clausius-Clapeyron plot of **1** for derived from TGA data using 10 mg sample size (b).

Figure S10: TGA of **2** (a) and Clausius-Clapeyron plot of **1** for derived from TGA data using 10 mg sample size (b).

Figure S11: TGA of **3** (a) and Clausius-Clapeyron plot of **1** for derived from TGA data using 10 mg sample size (b).

Figure S12: Isothermal TGA of **1**–**3** at 90 °C.

Figure S13: Base line corrected DSC of **1**.

Figure S14: Base line corrected DSC of **2**.

Figure S15: Base line corrected DSC of **3**.

EI-MS Data

Figure S16: EI-MS of **1**.

Figure S17: EI-MS of **2**.

X-ray Crystallographic Analysis

Table S1: Bond lengths (Å) and bond angles (°) for **1** from structure determination by X-ray crystallography and quantum chemical DFT calculations.

Figure S18: Crystal structure of **2**, thermal ellipsoids are depicted at 50% probability level and all hydrogens were removed for clarity.

Table S2: Bond lengths (Å) and bond angles (°) for **2** from structure determination by X-ray crystallography and quantum chemical DFT calculations.

	$X\mathbb{R} \Gamma$	DFT
$Sn1-N2$	2.207	2.248

Figure S19: Crystal structure of **3**, thermal ellipsoids are depicted at 50% probability level and all hydrogens were removed for clarity.

Crystanography and quantum chemical DT T calculations.	XRD	DFT
$Pb1-N1$	2.503	2.423
$Pb1-N3$	2.328	2.248
$N1-N2$	1.292	1.291
$N2-N3$	1.291	1.280
$N1 - C1$	1.476	1.475

Table S3: Bond lengths (Å) and bond angles (°) for **3** from structure determination by X-ray crystallography and quantum chemical DFT calculations.

Geometry index, τ'_4 , is defined as:

$$
\tau_4' = \frac{\beta - \alpha}{360^\circ - 109.5^\circ} + \frac{180^\circ - \beta}{180^\circ - 109.5^\circ}
$$

where α and β are the two widest N–M–N angles and $\beta > \alpha$. For compound 1, the widest angles are 98.25 and 147.92° (Table S1). Substituting α and β for 98.25 and 147.92°, respectively in the equation for calculating τ'_4 gives:

$$
\tau_4' = \frac{147.92 - 98.25}{360^\circ - 109.5^\circ} + \frac{180^\circ - 147.92}{180^\circ - 109.5^\circ} \approx 0.65.
$$

Similar calculations for compound 2 using $\alpha = 93.99^{\circ}$ and = β 133.39° (Table S2) yields τ'_{4} = 0.82, and for compound **3** using $\alpha = 92.13^{\circ}$ and = β 129.61° (Table S3) yields $\tau'_{4} = 0.86$.

Computational Calculations

Figure S20: NBO charges for **1**.

Figure S21: NBO charges for **2**.

Figure S22: NBO charges for **3**.