iScience, Volume 24

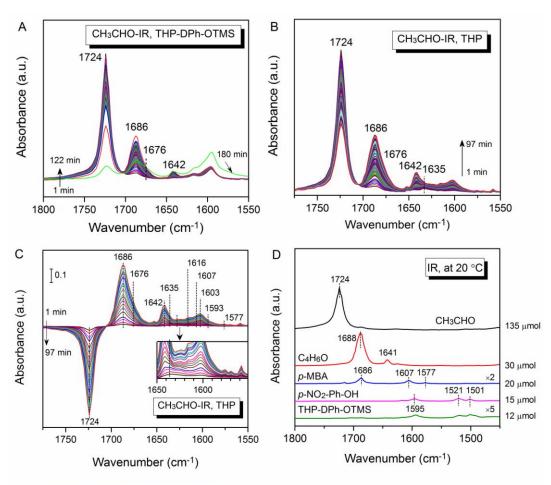
Supplemental information

Direct synthesis of *p*-methyl benzaldehyde from

acetaldehyde via an organic amine-catalyzed

dehydrogenation mechanism

Qing-Nan Wang, Xianghui Liu, Kai Wang, Yan Liu, Sheng-Mei Lu, and Can Li


Figure S1. IR Spectra and *in situ* cell, related to Figure 2.

(A and B) CH₃CHO-IR spectra with THP-DPh-OTMS and THP as catalysts (conditions: 45 μ mol CH₃CHO, $n_{(CH3CHO)}/n_{(THP-Ph-DOTMS)}/n_{(p-NO2-Ph-OH)} = 45:0.5:1.2$, at 20 °C).


(C) IR difference spectra using THP as catalysts.

(D) Standard IR spectra of reactants, products, and catalysts.

(E) The liquid reaction cell used.

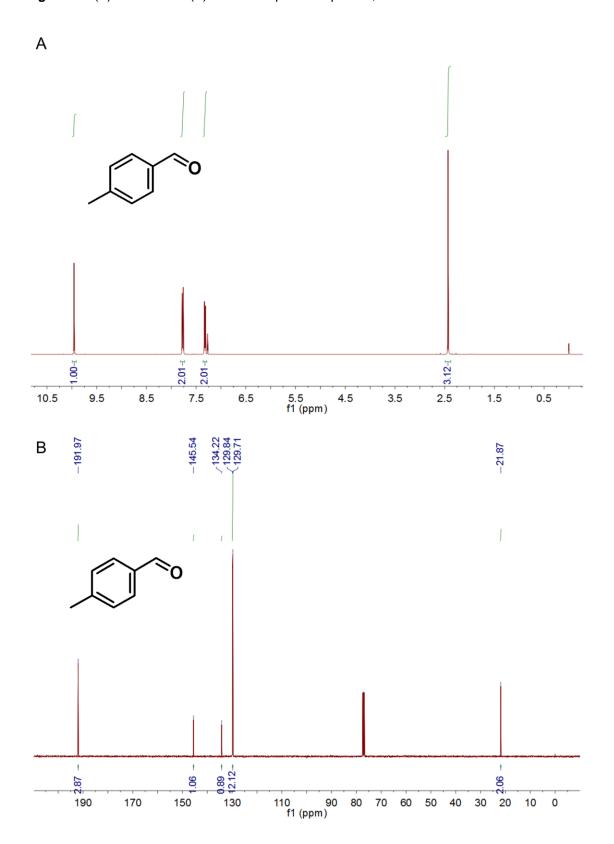
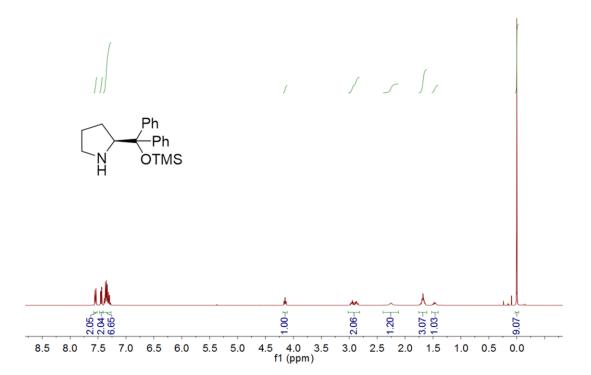
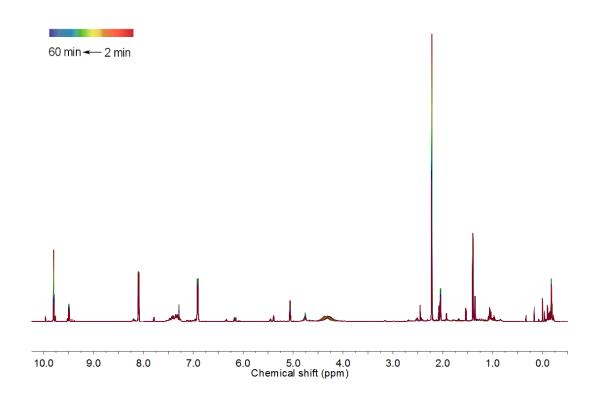
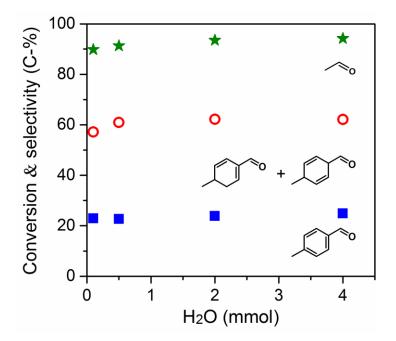




Figure S2. (A) H-NMR and (B) ¹³C-NMR spectra of *p*-MBA, related to the STAR Methods.

Figure S3. A H-NMR spectrum of THP-DPh-OTMS, related to the STAR Methods.


Figure S4. In situ H-NMR spectra using CH₃CHO as reactants at 20 °C, related to the STAR Methods (condition: 400 μ mol CH₃CHO, 22 μ mol THP-DPh-OTMS, and 45 μ mol *p*-NO₂-Ph-OH in CDCl₃).

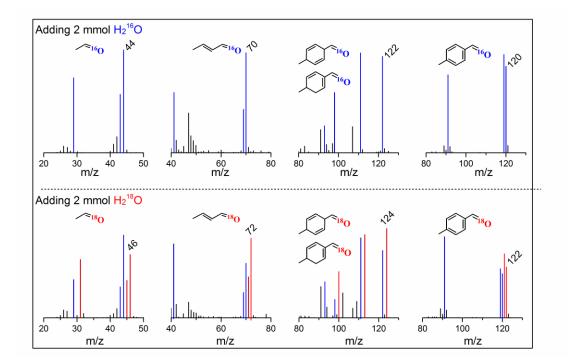

А 60 min ← 2 min 9.50 9.495 9.490 9 chemical shift (ppm) 9.500 9.485 9.480 0 C н \cap Ĥ 6.20 6.15 Chemical shift (ppm) 9.80 9.65 9.50 6.25 2.25 2.20 2.15 2.05 2.00 В 60 min 🖛 2 min 7.79 7.78 0 7.785 chemical shift (ppm) 7.795 7.775 0 7.79 7.77 chemical shift (ppm) 9.97 7.75 9.95 7.83 2.37 2.46

Figure S5. (A and B) Detailed *In situ* H-NMR spectra obtained from Figure S4, related to the STAR Methods. Panels inserted in A and B were the enlarged details.

Figure S6. Effect of water amounts on product distributions with THP-DPh-OTMS, related to the STAR Methods (conditions: the amounts of water were varied in the range of 0~4 mmol).

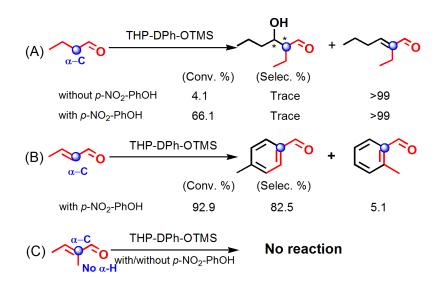


Figure S7. Detected fragment ions of ¹⁶O- and ¹⁸O-incorporated aldehydes marked in blue and red, respectively, related to the Scheme 2.

Figure S8. Aldehyde condensation (and aromatization) catalyzed by THP-DPh-OTMS, related to Scheme 3.

- (A) *n*-butyraldehyde.
- (B) tran-2-butenal.
- (C) 2-methyl-tran-2-butenal.

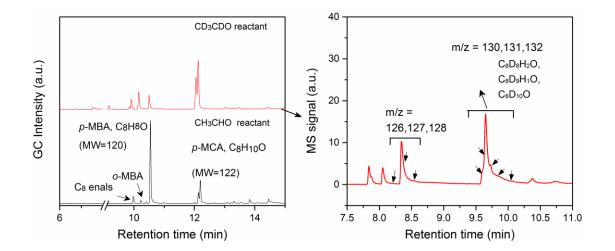


Figure S9. D-substituted experiments using CD_3CDO (chemical purity, Aladdin) as reactant, related to STAR Methods.

Figure S10. Mechanistic investigation, related to Scheme 5.

Reaction conditions: 1 mmol CH₃CHO, 3 mL CHCl₃, 0.1 mmol THP-DPh-OTMS, 0.3 mmol p-NO₂-PhOH, 20 °C for 1.5 h, Ar atmosphere. In the controlled experiment, 3 mmol (3 equiv) 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) was added prior to the reaction.

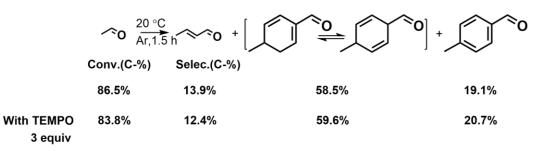
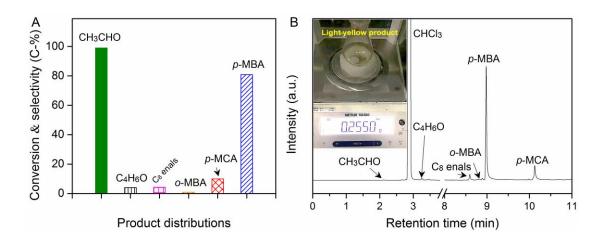



Figure S11. Scale-up experiments, related to STAR Methods.

(A) Product distributions.

(B) GC profile.

The insert panel in (B) is an optical photograph of the collected product (including 206.5 mg p-MBA calculated on basis of the molar percent). CHCl₃ shown in (B) was used as solvent to dilute the collected product for injecting into the GC inlet.

Entry	Catalysts	Organic acid	Solvents	Conversion (C-%)	Selectivity (C-%)						
					<i>p</i> -MBA	<i>p</i> -MCA	o-MBA	C_8 enals	C ₆ enals	C ₄ enals	Others
1	THP	<i>p</i> -NO ₂ -PhOH	CHCl ₃	>99	26.5	24.3	2.9	43.8	Trace	Trace	2.5
2	THP-OH	<i>p</i> -NO ₂ -PhOH	CHCI ₃	>99	19.8	36.6	7.8	35.5	0.1	0.2	-
3	THP-COOH	<i>p</i> -NO ₂ -PhOH	CHCI ₃	>99	0.7	7.6	5.7	2.8	Trace	83.0	0.2
4	THP-Ph	p-NO ₂ -PhOH	CHCI ₃	>99	13.3	49.3	8.7	28.7	Trace	Trace	-
5	THP-DPh-OTMS	<i>p</i> -NO ₂ -PhOH	CHCI ₃	88.6	25.3	57.2	5.3	2.6	1.4	8.1	-
6 ^[b]	THP-DPh-OTMS	<i>p</i> -NO₂-PhOH	CHCI ₃	99.8	90.0	4.9	2.4	2.4	Trace	0.3	-
7	THP-DPh-OTMS	<i>p</i> -NO ₂ -PhCOOH	CHCl ₃	50.5	2.6	1.8	1.0	0.6	7.6	86.4	-
8	THP-DPh-OTMS	PhOH	CHCI ₃	86.9	4.9	28.8	1.1	4.8	3.1	57.4	-
9	THP-DPh-OTMS	<i>p</i> -CH₃-PhOH	CHCI ₃	77.4	8.5	14.7	0.4	2.7	1.7	72.0	-
10	THP-DPh-OTMS	<i>p</i> -COOH-PhOH	CHCI ₃	82.3	3.2	30.1	2.9	4.1	6.3	53.5	-
11	THP-DPh-OTMS	<i>p</i> -NO ₂ -PhOH	CH₃CN	66.3	8.1	13.4	8.0	8.8	0.9	61.1	-
12	THP-DPh-OTMS	<i>p</i> -NO ₂ -PhOH	C_2H_5OH	27.6	14.1	16.7	7.7	26.8	1.5	33.1	-
13	THP-DPh-OTMS	<i>p</i> -NO ₂ -PhOH	DMF	3.6	Trace	Trace	Trace	42.9	30.4	26.8	-
14	THP-DPh-OTMS	<i>p</i> -NO ₂ -PhOH	DMSO	Trace	-	-	-	-	-	-	-

Table S1. Product distributions of acetaldehyde condensation and aromatization,^[a] related to Figure 1.

[a] Reaction conditions: acetaldehyde (1 mmol), solvent (3 mL), catalyst (0.1 mmol), organic acid (0.3 mmol). The reaction mixture was stirred at 20 °C for 2 h under Ar atmosphere in a vial.

[b] Reaction mixture was added 0.1 mmol THP-DPh-OTMS and stirred for another 2 h at 60 °C.

Reaction atmosphere	Air			Ar			Ar ^[b]		
Reaction time	Conversion (C-%)	Selectivity (C-%)		Conversion (C-%)	Selectivity (C-%)		Conversion (C-%)	Selectivity (C-%)	
		<i>p</i> -MBA	<i>p</i> -MCA		<i>p</i> -MBA	<i>p</i> -MCA		<i>p</i> -MBA	<i>p</i> -MCA
1	89.6	21.2	55.3	85.1	20.2	54.0	-	-	-
2	86.5	22.8	56.3	88.6	25.3	57.2	93.0	24.0	58.7
4	91.1	24.7	56.3	90.0	26.0	58.0	-	-	-
10	93.8	32.0	57.4	91.0	31.8	57.2	-	-	-
20	93.5	35.9	55.1	97.5	34.9	58.7	-	-	-
30	94.4	39.0	53.1	93.5	38.9	55.1	-	-	-
40	95.4	42.5	51.5	97.5	41.5	54.5	-	-	-
52	98.2	45.2	47.4	98.3	47.4	45.6	-	-	-
60	98.5	49.5	45.4	-	-	-	-	-	-
72	99.1	51.8	41.9	98.7	49.9	41.9	-	-	-
80	99.5	57.8	35.6	99.3	55.7	39.3	-	-	-

Table S2. Products selectivity under Ar and Air atmosphere, ^[a] related to STAR Methods.

[a] Reaction conditions: CH₃CHO (1 mmol), CHCl₃ (3 mL), THP-DPh-OTMS (0.1 mmol), *p*-NO₂-PhOH (0.3 mmol). The reaction mixture was stirred under air or Ar atmosphere at 20 °C. [b] Using further degassed CHCl₃ (see Methods Details).

Entry	Adding Amines	Amount	Т	t	Conversion	Selectivity (C-%)		Carbon balance	
		(mmol)	(°C)	(h)	(C-%)	<i>p</i> -MBA	<i>p</i> -MCA	(C-%)	
1	-	-	20	1	87.4	21.7	60.1	~99	
2	-	-	40	1	84.1	22.6	55.9	-	
3	-	-	60	2	83.4	34.8	45.0	97	
4	-	-	60	5	88.1	37.6	43.8	-	
5	-	-	60	15	98.4	47.7	41.6	-	
6	-	-	60	20	95.3	52.4	35.5	88.8	
7	THP-BPh-OTMS	0.1	60	2	99.8	90.0	4.9	88.0	
8	$NH(C_2H_5)$	0.3	20	1	99.8	28.0	56.4	-	
9	$NH(C_2H_5)$	0.3	40	1	99.8	31.5	49.2	-	
10	$NH(C_2H_5)$	0.3	60	1	99.9	59.3	26.4	90	
11	$NH(C_2H_5)$	0.15	60	1	99.8	51.1	30.7	-	
12	$NH(C_2H_5)$	0.45	60	1	99.8	67.5	17.9	-	
13	$NH(C_2H_5)$	0.15	60	2	99.8	80.6	11.4	85.0	
14	N(C ₃ H ₇)	0.3	60	1	92.5	40.3	48.8	97.5	
15	(NH ₂) ₂ (CH ₂) ₆	0.05	60	1	91.1	47.1	37.7	60.3	
16	-	-	60	3	91.7 ^[b]	62.1	28.8	58.7	

Table S3. Dependence of products selectivity on the type and amounts of samines, ^[a] related to STAR Methods.

[a] Reaction conditions: CH₃CHO (1 mmol), CHCl₃ (3 mL), THP-DPh-OTMS (0.1 mmol), *p*-NO₂-PhOH (0.3 mmol), Ar atmosphere. After reaction for 2 h, organic amines were added and then the mixture was stirred for more time at a certain temperature.

[b] Reaction was directly conducted at 60 °C for 3 h using acetaldehyde as reactant.