Panels	Sl. No.	Fluorochrome	Markers	Clone	Company	Cat. #
Тғн	1	BV421	PD-1 (CD279)	EH12.2H7	Biolegend	329920
	2	BV510	ICOS	C398.4A	Biolegend	313525
	3	BV570	CD4	RPA-T4	Biolegend	317445
	4	BV605	CXCR5	J252D4	Biolegend	356930
	5	BV711	CD25	M-A251	Biolegend	356137
	6	BV785	CCR6	G034E3	Biolegend	353421
	7	FITC	CD69	FN50	Biolegend	310904
	8	PE	BCL6	K112-91	BD Pharmigen	561522
	9	PE-Dazzle 594	CD3	UCHT1	Biolegend	300450
	10	PE-Cy5	CD40L	24-31	Biolegend	310808
	11	PerCP-Cy5.5	OX40/CD134	Ber-ACT35	Biolegend	350009
	12	PE-Cy7	CXCR3	G025H7	Biolegend	353719
	13	eFluor 660	IL-21	eBio3A3-N2	Invirogen	50-7219-42
	14	AF700	CD8	HIT8a	Biolegend	300919
	15	APC-Cy7	Zombie NIR		Biolegend	423105
B cells	1	BV570	IgM	MHM-88	Biolegend	314516
	2	BV785	CD27	O323	Biolegend	302831
	3	PE	CD19	SJ25C1	Biolegend	363003
	4	PerCP-Cy5.5	CD38	HB-7	Biolegend	356613
	5	PE-Cy7	CD21	Bu32	Biolegend	354911
	6	APC	IgG	M1310G05	Biolegend	410711
	7	AF700	CD138	MI15	Biolegend	356511
	8	APC-Cy7	Zombie NIR		Biolegend	423104

Supplementary Table 1. Panels of flow cytometry antibodies

AIM assay	1	BV421	CD45RA	HI100	Biolegend	304129
	2	BV510	PD-1 (CD279)	EH12.2H7	Biolegend	329931
	3	BV570	CD4	RPA-T4	Biolegend	317445
	4	BV605	CXCR5	J252D4	Biolegend	356930
	5	BV711	CD25	M-A251	Biolegend	356137
	6	FITC	CD69	FN50	Biolegend	310904
	7	PE	PD-L1 (CD274)	29E.2A3	Biolegend	329705
	8	PE-Dazzle 594	CD3	UCHT1	Biolegend	300450
	9	PE-Cy5	CD40L	24-31	Biolegend	310808
	10	PerCP-Cy5.5	OX40/CD134	Ber-ACT35	Biolegend	350009
	11	PE-Cy7	CXCR3	G025H7	Biolegend	353719
	12	AF700	CD8	HIT8a	Biolegend	300919
	13	APC-Cy7	Zombie NIR		Biolegend	423105
Cytokines	1	BV421	TGF-β1 (LAP)	TW4-2F8	Biolegend	349613
	2	BV510	TNF-α	MAb11	Biolegend	502949
	3	BV570	HLA-DR	L243	Biolegend	307637
	4	BV785	CD14	63D3	Biolegend	367141
	5	FITC	IL-1β	JK1B-1	Biolegend	508206
	6	PE	IL-23p19	727753	Invitrogen	MA5-23644
	7	PE-Dazzle 594	IL-6	MQ2-13A5	Biolegend	501121
	8	PerCP-Cy5.5	IL-12p40	C11.5	Biolegend	501821
	9	PE-Cy7	IL-27p28	MM27-7B1	Biolegend	516910
	10	APC	TLR8 (CD288)	S16018A	Biolegend	395506
	11	AF700	IL-18	74801	R&D Systems	IC646N-
						100UG
	12	APC-Cy7	Zombie NIR		Biolegend	423105

Supplementary Legends

Supplementary Figure 1. *In vitro* TLR8 stimulation augments proinflammatory cytokines in monocytes. Representative flow plots show (A) sequential gating strategy for detecting cytokine positive monocytes. The bar graphs indicate (B) frequencies of $CD14^+HLA-DR^+$ monocytes in response to various treatments, (C) TLR8 expression in response to various treatments and frequencies of $CD14^+HLA-DR^+$ monocytes producing (D) TGF- β 1 and (E) IL-27p28. Error bar on the graph represents the standard error of mean calculated from 6 individual CHB patient PBMCs. Differences between stimulations were calculated by one-way analysis of variance (ANOVA) or Kruskal-Wallis test for multiple comparisons. P values of $\leq 0.05^*$ was considered statistically significant.

Supplementary Figure 2. TLR8-specific agonism upregulated HBV-specific GC-like T_{FH} development factors and their subsets. Flow cytometry plots show (A) gating strategy for T_{FH} panel and (B) CXCR3/CCR6 cT_{FH} subsets compared between untreated (UT/control), TLR8 stimulations ssRNA40, TL8-506, PMA/Ion, ssRNA40 stim and TL8-506 stim. "Stim" means subtraction of PMA/Ion from the respective values of TLR8 + PMA/Ion re-stimulations. Frequencies of circulating follicular helper T (cT_{FH}) cells and their subsets are shown in (C) CXCR5⁺CD4⁺ cT_{FH} cells gated on CD3⁺ T lymphocytes, (D) cT_{FH}1 (CXCR3⁺CCR6⁻), (E) cT_{FH}2 (CXCR3⁻CCR6⁻), (F) cT_{FH}17 (CXCR3⁻CCR6⁺) and (G) cT_{FH}1/17 (CXCR3⁺CCR6⁺) gated on CXCR5⁺CD4⁺ cT_{FH} cells. Each symbol in the graph shows 6 individual donors and horizontal bar in the graph represents median range values. Numbers presented inside the box indicate percentages. Square quadrants diagram illustrate circulating T_{FH} subsets.

between stimulations were evaluated by one-way ANOVA or Kruskal-Wallis test for multiple comparisons. P values of $\leq 0.05^*$, 0.01^{**} , 0.001^{***} indicate significance.

Supplementary Figure 3. Selgantolimod treatment enhanced T_{FH} differentiation factors in CHB clinical samples. Selective-TLR8 agonist Selgantolimod was orally administered to patients infected with CHB and PBMCs (n=8-10) were tested from baseline (BL, pre) and TLR8 (8h post-Selgantolimod). PBMCs were left untreated (UT) or treated with combination of HBsAg/HBV Pep for 5 days followed by re-stimulation with PMA/Ion. (A-F, H) represents flow plots and frequencies of co-expression of IL-21⁺BCL-6⁺, ICOS⁺BCL-6⁺, ICOS⁺CD40L⁺ and PD-1⁺CXCR3⁻ cells, gated on CXCR5⁺CD4⁺ cT_{FH} cells (G) upregulated with TLR8 agonist (8h post-single oral dose). Numbers inside boxes indicate percentage of double positive cells. A two-tailed paired, non-parametric or the Wilcoxon signed-rank Student's t test were conducted to evaluate the differences between BL and 8h post-TLR8 treated samples. P values of $\leq 0.05^*$ indicates statistical significance. CHB, chronic hepatitis B; HBV Pep, HBsAg/HBV peptides pool; PMA, phorbol-12-myristat-13-acetate; Ion, ionomycin; ns, no significance.

Supplementary Figure 4. Selgantolimod rescued the defective HBV-specific activation induced markers (AIM) of GC-like T_{FH} cells in Phase 1B clinical subjects. FACS analysis was performed using AIM assay panel antibodies (Supplementary Table 1). Flow plot represents (A) gating strategy for AIM assay panel. Frequencies of (B) cT_{FH} cells (CXCR5⁺CD4⁺ gated on CD3⁺ T lymphocytes) and (C) GC-like T_{FH} (PD-1⁺CXCR3⁻ cells gated on CXCR5⁺CD4⁺ cT_{FH} cells) cells are compared between HBV vaccinated HC, BL and TLR8 (8h post-Selgantolimod) after *in vitro* stimulations with HBV pep or SEB. Each symbol in the graph shows individual donor and horizontal bar in the graph represents median range values. A two-tailed unpaired or paired, non-parametric or the Wilcoxon signed-rank Student's t tests were conducted. P values of $\leq 0.05^*$, 0.01^{**} , 0.001^{***} indicate significance.

Supplementary Figure 5. TLR8 signaling increased memory B, plasma B and modulated B cell subsets. Flow plots indicating (A) sequential gating strategy of B cell panel and (B) $CD19^+$ B lymphocytes. Frequencies of (C) B cells ($CD19^+$) (D) PCs ($CD19^-CD138^+$) and (E) PBs ($CD38^+CD138^-$ cells gated on $CD19^+CD27^{++}$ B lymphocytes) are shown. Dotted line distinguishes the data between TLR8 without or with HBV Pep treatments. Statistical significances were performed by two-tailed, non-parametric or the Wilcoxon signed-rank Student's t test for comparison between stimulations. P values of $\leq 0.05^*$, 0.01^{**} were statistically significance. ns, no significance; PCs, plasma cells; PBs, plasmablasts.

Supplementary Figure 6. TLR8 signaling promotes IL-12 dependent GC-like T_{FH} cell differentiation and improved IL-21 production. Autologous naïve CD4⁺ T cells were isolated from PBMCs of HC (n=2) and CHB patients (n=2) and co-cultured with CD14⁺ enriched monocytes (as APCs, 2:1 ratio) previously stimulated with medium (UT, negative control), TLR8-specific ligands ssRNA40 or TL8-506 along with isotype control IgG, anti-IL-12 or anti-IL-18 neutralizing (blocking) Ab and cultured for 6 days in the presence of SEB followed by restimulation with PMA/Ion to activate T_{FH} cells. Flow cytometry evaluation with T_{FH} panel markers using manufacturer protocol as stated in Figure 2 shows (A) intracellular expression of IL-21, gated on (E) cT_{FH} (CD3⁺CD4⁺CXCR5⁺ T) cells. Co-expression of GC-like T_{FH} differentiation markers (B) IL-21⁺ICOS⁺ and (C) ICOS⁺PD-1+ on CD3⁺CD4⁺CXCR5⁺ T cells

(**D**). (**F**) Intracellular expression of IL-21 producing CXCR5+ cells, generated from naïve CD4⁺ T cells (without monocytes as APCs) cultured with medium (UT), rhIL-12 or rhIL-18 for 6 days followed by re-stimulation with PMA/Ion. Numbers inside the quadrants represents percentage of events. rhIL-12 and rhIL-18, recombinant human protein IL-12 and IL-18; Cont. IgG, isotype control IgG.

Supplementary Figure 7. Flow plots (**A**) represent the co-expression of IL-21⁺CXCR5⁺, IL-21⁺BCL-6⁺ and ICOS⁺BCL-6⁺ markers, gated on CXCR5⁺CD4⁺ cT_{FH} cells after stimulation of CpG-ODN (non-TLR8 agonist) and PMA/Ion for 5 days. Representative flow plots also show comparative co-expression of (**B**) OX40⁺CD25⁺, (**C**) PD-L1⁺CD25⁺ and (**D**) CD69⁺CD40L⁺ cells gated on CXCR5⁻CD4⁺ T cells in HC and CHB (BL and TLR8) samples. Numbers shown inside the flow box indicate percentage of events.

Supplementary Figure 8. PBMCs from CHB patients (n=3) were left untreated (UT) or treated with TLR8 agonists ssRNA40 or TL8-506 for 5 days. ssRNA40 stim and TL8-506 stim indicates subtraction of overnight PMA/Ion stimulations from the respective values of TLR8 + PMA/Ion re-stimulations. Illustrative flow plots show (**A**) intracellular expression of IFN γ and TNF α , gated on cT_{FH} (CXCR5⁺CD4⁺CD3⁺ T lymphocytes) cells. (**B**) Represents FMO controls on the expression of IL-21, ICOS and BCL-6 cells, gated on CXCR5⁺CD4⁺ cT_{FH} cells after 5 days culture of PBMCs from CHB patients (n=3) with ssRNA40 stim.

С

D

10² 10³ 10⁴ 10⁵ 10⁶ Comp-BV605-A :: CXCR5