
sepal : Identifying Transcript Profiles with Spatial Patterns

by Diffusion-based Modeling

Alma Andersson, Joakim Lundeberg

2021-03-07

Contents

S1 Data 2

S2 Methods 2
S2.1 Supported Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

S2.1.1 Hexagonal Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
S2.1.2 Unstructured Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

S2.2 Selection of Top Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
S2.2.1 Sensitivity Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
S2.2.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

S2.3 Hierarchical Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
S2.4 Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

S2.4.1 Image Based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
S2.4.2 Turing Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

S2.5 Pseudocount Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

S3 Seeding Sets 9
S3.1 Seeding Set 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
S3.2 Seeding Set 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

S4 Analysis 9
S4.1 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
S4.2 Diffusion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
S4.3 Melanoma : Pattern Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
S4.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

S5 Results 11
S5.1 Mixed Set 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
S5.2 Mixed Set 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
S5.3 Ablation Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
S5.4 MOB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
S5.5 Mouse Brain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

S5.5.1 Comparison with highly variable genes . . . . . . . . . . . . . . . . . . . . . . . 17
S5.6 Lymph Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
S5.7 Melanoma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

S5.7.1 Top transcription Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
S5.7.2 Representative motifs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
S5.7.3 Pattern Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

S5.8 Mouse Cerebellum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
S5.9 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
S5.10Performance Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1



S1 Data

The five public data sets used in our study were accessed via the following links:

• MOB : https://www.spatialresearch.org/resources-published-datasets/doi-10-1126science-aaf2403/
(Rep11)

• Mouse Brain : https://support.10xgenomics.com/spatial-gene-expression/datasets/1.0.0/V1_

Adult_Mouse_Brain

• Lymph Node : https://support.10xgenomics.com/spatial-gene-expression/datasets/1.0.0/V1_
Human_Lymph_Node

• Melanoma : https://www.spatialresearch.org/resources-published-datasets/doi-10-1158-0008-5472-can-18-0747
(ST mel1 rep1)

• Cerebellum : https://singlecell.broadinstitute.org/single_cell/data/public/SCP354/slide-seq-study
(Cerebellum Puck 180819 11)

The synthetic data sets used to assess the performance of our method are found at the github repos-
itory within the folder “synthetic-data” as well as in Supplementary Data 1.

S2 Methods

We here elaborate more on the types of supported data and how numerical approximations are
performed, the selection of top transcription profiles, the hierarchical clustering and the generation
of synthetic expression profiles.

S2.1 Supported Data

We have implemented support for three different types of data:

1. Capture with rectangular arrays

2. Capture with hexagonal arrays

3. Unstructured capture

The original ST arrays utilize (1), the Visium platform from 10xTM relies on (2) and methods like
Slide-seq (3). We have already described how the numerical approximations are obtained for (1) in
the main text and to avoid redundancy we will here therefore only elaborate on (2) and (3).

S2.1.1 Hexagonal Arrays

We refer to grids where each node have six equidistant first order neighbours arranged with π/3
radians apart, as simply hexagonal grids. See figure 1 for a visual representation of such grids.

Supplementary Figure 1: Example of hexagonal array, numbers indicate node identity, and tuples
coordinates.
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With u being a function defined over the grid, we will let ui denote the value of u at the i : th node,
for example u0 = u(x, y). From the work of Krylov and Kantrovich, we have that:

6∑
i=1

(ui − u0) =

6∑
i=1

ui − 6u0 =
3h2

2
∆u+

9

16
∆∆u+O(h6) (1)

Hence,

2

3h2

[ 6∑
i=1

ui − 6u0

]
(2)

Serves as an approximation of the laplacian for these hexagonal grids, with an error in the magnitude
of h2, we use this seven point stencil in our implementation.

S2.1.2 Unstructured Data

In some techniques (e.g., Slide-seq), capture locations are not arranged in a structured grid, but found
at arbitrary locations which varies between experiments. Even though this design is not optimal for
the type of analysis we perform, we propose a method to transform and cast it into a compatible
format.

We again consider the area covered by our tissue specimen (Ω) as a domain in R2, but where the
discretization is not determined by the capture locations. In contrast to the procedure described
above, for a data set with N capture locations we first construct a regular grid (S) with M = d

√
Ne2

grid points and then map each capture location to one of these. In order to create a injective map
between grid points and capture locations we formulate this as a linear programming (LP) problem
formulated as :

(P )

{
min

∑
i

∑
j cijxij

subj. to
∑
j xij = 1, xij ∈ {0, 1}

(3)

Here, X ∈ RNxM is an assignment matrix where xij = 1 indicates that capture location i has been
assigned to grid point j. C is a cost matrix, meaning that cij represents the cost of moving capture
location i to grid point j. If ri represents the i:th capture location’s coordinates and sj the j:th grid
point, we define the cost matrix as:

C = [cij ], cij = ||ri − sj ||L2 (4)

Solving this problem (P) results in a defined injective map between capture location to grid points.
Subsequently we ”move” each capture location according to this map. Having transformed the un-
structured data to a structured collection of points, we can apply the diffusion approach described
above for data captured using a rectangular grid.

S2.2 Selection of Top Profiles

As described in the main text, we devise a heuristic to automatically select a set number of transcript
profiles with distinct spatial patterns. This is done by identifying the “elbow point” in the curve
formed when treating diffusion values as a function of their rank. For this purpose we use the “Knee-
dle algorithm”, implemented in the python package kneed (https://githubcom/arvkevi/kneed). The
elbow point is taken as a threshold value, meaning that profiles with a rank higher than this point will
be considered as having a strong spatial pattern; we aim to make this procedure fairly conservative,
meaning that exclusion of less pronounced spatial patterns is to prefer over inclusion of profiles with
low or no structure.

More specifically we use the KneeLocator function from kneed, with the parameter values : curve
= “convex” and direction = “decreasing”. As for the sensitivity parameter – which determines the
stringency of the algorithm – we use a default value of 1.5; for more details regarding this choice and
its effect on the number of top profiles, see Supplementary Section S2.2.1.

S2.2.1 Sensitivity Parameter

The sensitivity (hereafter σ) has an impact on the number of selected top profiles; the larger the
value the more profiles will be chosen (as the algorithm becomes more conservative when calling
elbow points). In order to choose a default value, we had two criteria for σ when applied to real data:
(1) small perturbations of σ should only render small or no effects on the number of top profiles (it’s
a stable point), and (2) the profiles obtained from using σ should be members of the top-set where
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distinct differences among the profiles’ diffusion times can be observed. To elaborate some on (2),
this would constitute the profiles in the “upper arm” and “bend” of the elbow-curve, see red region
of Supplementary Figure 2.

Supplementary Figure 2: Illustration of the region (red) to which the top selected genes preferably
should fall within when using the rank threshold value (blue) obtained from a given σ value.

We examined how the number of top selected profiles varied depending on the σ value, and noted
that for values near σ = 1.5, this number remained fairly constant – thus satisfying the first criteria.
Supplementary Figure 3 shows these results, where it is evident that σ = 1.5 resides within a plateau
of the curve.

Supplementary Figure 3: Number of top selected genes as a function of the bandwidth value (σ).
The σ values are separated by 0.1 units. Guides to indicate values for σ = 1.5 are included as blue
dashed lines.

Furthermore, we could see how σ = 1.5 led to a selection of top profiles that made up a subset of the
region specified to satisfy the second criterion (2). The results which we base this statement on are
– for the four real structured data sets – shown in Supplementary Figure 4.
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Supplementary Figure 4: Rank plots for all real data sets. The threshold rank value, with σ = 1.5,
at which the partition of the profiles occur is indicated by a blue dashed line, the region where all
top selected profiles reside is colored by red.

Based on these observations we deemed 1.5 to be a reasonable default value for σ, but do not claim
it to be optimal for all types of data.

S2.2.2 Evaluation

We used the sets W1 (Image Based) and W2 (Turing Based) to evaluate the performance of the
heuristic procedure with the default value derived from the real data. Upon applying the thresholding
cutoff to the synthetic data sets, the set of profiles with “strong spatial patterns”, i.e., above the
threshold, in both cases solely consisted of the 10 expression profiles with true spatial patterns; that
is FPR = 0.0 (False Positive Rate), FNR = 0.0 (False Negative Rate), TPR = 1.0 (True Positive
Rate) and TNR = 1.0 (True Negative Rate). This is illustrated in Supplementary Figure 5.

5



Supplementary Figure 5: Rank plots for W1 (Image Based) and W2 (Turing Based). The threshold
rank value, with σ = 1.5, at which the partition of the profiles occur is indicated by a blue dashed
line, the region where all top selected profiles reside is colored by red. Markers with blue facecolor
indicate profiles with true spatial patterns, black facecolor with random spatial organization.

S2.3 Hierarchical Clustering

To cluster the projections, we used the AgglomerativeClustering class provided by sklearn (version
0.22.1). The number of clusters (n clusters) was equal that of the number of identified eigenpatterns.
Rather than using any of the predefined distance metrics we used the angle between each pair of
projections, meaning that the affinity parameter was set to “precomupted”. Complete linkage was
used (i.e., linkage parameter set to “complete”). All other parameters were set to default values.

S2.4 Synthetic Data

Two approaches to generate synthetic expression data with spatial patterns have been devised, allow-
ing us to generate what we refer to as seeding sets: an image respectively stochastic Turing pattern
based approach. Here we describe these two process in more detail.

S2.4.1 Image Based

Given that I is a n × n px sized black and white image, we let each pixel represent a grid point
in a structured grid. With intensity values of I residing between [0, 255] we threshold the image
accordingly:

Ithrs = bI/127e ∗ 255 (5)

Where all arithmetic operators are applied elementwise. The white areas are indicate elevated ex-
pression (forming a pattern) while black regions serve as a background. npat indicates the number
of pixels (or grid points) belonging to the pattern region, and nbg the same but for the background.
We also define an average expression value for the pattern (µpat) and background (µbg). Finally,
we randomly distribute µpatnpat observations to the grid points included in the pattern region, and
µbgnbg over the background region. The pixel locations are used as the array coordinates and the
assigned value to each of can be interpreted as expression values.

S2.4.2 Turing Patterns

We define a n×n grid, and assign a value u0(xi, yi) ∼ U(0, 1) to the i : th grid point with coordinates
(xi, yi). The exact same procedure is used to generate a second matrix V 0 with a value paired to each
grid point. We consider u0(x, y) and v0(x, y) as our initial values for in a system with the following
dynamics :

∂u

∂t
= u(1− u)− uv

u+α +Du ·∆u

∂v

∂t
= vδ(1− βv

u ) +Dv ·∆v
(6)
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Where we propagate the system in time in a fashion similar to that of the diffusion model:

ut = ut−1 + dt · ∂u
∂t

∣∣∣∣∣
t−1

vt = vt−1 + dt · ∂v
∂t

∣∣∣∣∣
t−1

(7)

We apply Von Neumann boundary conditions, i.e., for f ∈ {u(x, y), v(x, y)} with (x, y) ∈ [0, n]×[0, n]:

∂f(0, y)

∂t
= 0

∂f(n, y)

∂t
= 0 ∀y

∂f(x, 0)

∂t
= 0

∂f(x, n)

∂t
= 0 ∀x

(8)

Having propagated the system for nsteps number of times, the values at each grid point are multiplied
by 100 and taken as expression values.

S2.5 Pseudocount Choice

As described in the main text (Section Normalization), we apply a log-transformation to our data
where a pseudocount (c) is used. This pseudocount is free for the user to choose, even though we
recommend a value larger than 1. This is to dampen the effects of sparse transcript profiles, i.e.,
profiles with few non-zero observations. Sparse genes will introduce artificially large expression gra-
dients, since the few non-zero observations usually are surrounded by zero-values observations. As a
consequence of this, they will take longer time to converge and therefore be given a high rank despite
not having an initial structure of “pattern-like” character, as shown in Supplementary Figure S2.5.
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Supplementary Figure 6: Top 25 highest ranked transcript profiles (by sepal) for the MOB sample
when using pseudocount c = 1 with all other parameters equal to those given in Supplementary Table
2.

sepal also supports filtering of sparse genes, where genes with more than a specified percentage of
observations being zero are removed. This filtering criterion can be beneficial to implement if sparse
profiles occur among the top-ranked profiles; it is also motivated by the fact that very sparse data
is poorly approximated by a smooth function and hence the stencil-based approximations of the
Laplacian are likely inaccurate.
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S3 Seeding Sets

This section describes the exact settings used to generate the synthetic data sets used in our assessment
of the method, based on the two procedures described in section S2.4.

S3.1 Seeding Set 1

The 10 hand drawn black and white images used to generate P1 (seeding set 1) are given in S3.1
together with the synthetic transcription profiles constituting the seeding set. We set the average
expression level for the background (µbg) to 2 and that for the pattern (µpat) to 8.

Supplementary Figure 7: Left : Hand drawn, black and white, images used to generate synthetic
spatial expression profiles according to the procedure described in Supplementary Section S2.4.1.
White regions indicate elevated expression while dark regions represent the background. Right
Visualization of the resulting transcript profiles constituting P1 (Image Based seeding set), generated
from the images shown in the left panel.

S3.2 Seeding Set 2

To generate W2 (seeding set 2) we used the approach described in S2.4.2. The parameter values used
when defining the dynamical system given in Eq. 6 are given in Table 1. The system was propagated

α Du Dv β δ

0.1 0.1 7 0.25 0.2

Supplementary Table 1: Parameter values used to generate P2

in time using 1000 steps and with a stepsize (dt) of 0.01. The 10 generated Turing patterns are
visualized in Supplementary Figure 8.

Supplementary Figure 8: Visualization of the transcription profiles constituting P2 (Turing Based
seeding set).

S4 Analysis

This section provides information regarding the settings used for the model and subsequent analysis
for the results presented within the paper.

S4.1 Filtering

Three different types of filtering were applied throughout the analysis of the samples:

• Min. Occurrence : minimal number of distinct capture locations that a transcript must be
observed at in order to be included in the analysis.
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• Min. Total Expression : minimal total expression values (summed over all capture locations)
for a transcript to be included in the analysis

• Max. Zero Percentage : The maximal percentage (of the total amount of spots) allowed to
have zero values for a given gene. The default value is 1.0 but for data where very sparse genes
might be present or if a pseudocount of 1 is used, we recommend to adjust this value slightly.

• RP/MT filtering : Certain ribosomal and mitochondrial transcripts are removed by matching
the uppercase name against the regular expression “ˆRP|ˆMT” (only effective if gene symbols
are used as names).

Sample
Min.

Occurrence
Min.

Total Expression
Max.

Zero percentage
RP/MT filtering dt

c
(pseudocount)

Type

W1 and W2 1 1 1 No 0.001 2 ST

A1 to A10 1 1 1 No 0.001 2 ST

MOB 5 10 1 Yes 0.001 2 ST

Mouse Brain 10 1 1 Yes 0.01 2 Visium

Lymph Node 10 1 1 Yes 0.01 2 Visium

Melanoma 1 1 1 Yes 0.001 2 ST

Cerebellum 10 10 1 Yes 0.001 2 Slide-seq

Supplementary Table 2: Filtering settings for each sample/set analyzed in this work.

S4.2 Diffusion Model

For the remaining parameters of the diffusion model, we used the same settings for all analyzed data
sets (real as well as synthetic), with the threshold for convergence (ε) set to 10−8 and 10−9 for real
respectively synthetic data, while the diffusion rate (D) was taken as 1.

S4.3 Melanoma : Pattern Families

Upon extracting pattern families for the melanoma sample we used the top 150 genes (T = 150)
w.r.t to their diffusion time and required that the eigenpatterns should explain 85% of the observed
variance (i.e., p = 0.85).

S4.4 Comparison

To compare sepal with SpatialDE and SPARK we followed the examples provided at the GitHub
repository of respective method:

1. SpatialDE : github.com/Teichlab/SpatialDE

2. SPARK : github.com/xzhoulab/SPARK-Analysis

For the SpatialDE sample, we used the results presented by its authors in the GitHub repository
(MOB final results.csv). As for SPARK we used the processed data they provided in their repository
together with the code they present for analysis of this specific sample. The code for comparison is
found in sepal ’s GitHub repository.

The genes included in the subsequent analysis were those found in the intersection of all genes for
which a rank had been assigned to in respective method. The metric used to rank the transcription
profiles were: diffusion time (sepal), q-value (SpatialDE) and combined/adjusted p-value (SPARK).
Next, for each method we computed the Spearman correlation between a gene’s total observed gene
expression (over all spots) and the value of its rank metric. This was done using the spearmanr
function from scipy’s stats module, all parameters set to default.

High values of the diffusion time results in a higher rank by sepal , for SpatialDE and SPARK low
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q/p-values have the same interpretation. This means that for sepal a strong positive Spearman cor-
relation would be indicative of rank being driven by expression levels; in contrast, a strong negative
Spearman correlation would be expected for the other two methods. We therefore speak in terms
magnitude when comparing the correlation values.

S5 Results

Here more elaborate information regarding the results from our analysis of the real and synthetic
data is found. We first present, the results from analyzing the two mixed synthetic data sets, and the
ablation sets. For the real data we visualize the top 20 transcription profiles as ranked by sepal for
each analyzed real sample. In addition to this we have included : a visualization of the expression
profiles along the ranking gradient for the MOB sample, in order to show how these compare between
high, middle and low ranked profiles; the four pattern families of the melanoma sample and iden-
tified enriched processes associated to these; and a comparison between sepal , SpatialDE and SPARK.

The results in their raw format, i.e., the output from sepal , can be accessible at https://github.

com/almaan/sepal/res.

S5.1 Mixed Set 1

Supplementary Figure 9: Members of W1 ranked by their diffusion time. For each transcript profile,
the header gives the diffusion time (td) and the “name” (Gene). Gene names are constructed as
follows: P : Seeding pattern which the offspring is derived from, T : multiple of original expression
level, F : permutation number (for each multiple).
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S5.2 Mixed Set 2

Supplementary Figure 10: Members of W2 ranked by their diffusion time. Members of W1 ranked
by their diffusion time. For each transcript profile, the header gives the diffusion time (td) and the
“name” (Gene). Gene names are constructed as follows: P : Seeding pattern which the offspring is
derived from, T : multiple of original expression level, F : permutation number (for each multiple).
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S5.3 Ablation Sets

Supplementary Figure 11: Members of ablation sets A10-A6 ranked by their diffusion time. For each
transcript profile the header gives the diffusion time (td) and the number of shuffled spots (Shuffled
: N ).
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Supplementary Figure 12: Members of ablation sets A5-A1 ranked by their diffusion time. For each
transcript profile the header gives the diffusion time (td) and the number of shuffled spots (Shuffled
: N ).
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S5.4 MOB

Supplementary Figure 13: Expression profiles along the ranking gradient. Each transcript profile is
given in the format Gene : Rank.
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Supplementary Figure 14: Top 20 transcription profiles as ranked by sepal for the MOB (ST). For
each transcript profile the header gives the diffusion time (td) and the name of the associated gene
(Gene : X).

16



S5.5 Mouse Brain

Supplementary Figure 15: Top 20 transcription profiles as ranked by sepal for the mouse brain sample
(Visium). For each transcript profile the header gives the diffusion time (td) and the name of the
associated gene (Gene : X).

S5.5.1 Comparison with highly variable genes

To assess how our method to identify spatially variable genes compares to standard methods of se-
lecting highly variable genes we computed dispersion values (a variance related metric) for the genes
in the mouse brain data set using state of the art methods. More specifically we first normalized
the data by applying the scanpy.pp.normalize per cell(...,counts per cell after=1e4) func-
tion, followed by a log-transformation using scanpy.pp.log1p(...), finally, dispersion values were
obtained by using scanpy.highly variable genes(...,flavor ="seurat"); scanpy version 1.5.1
was used for this analysis. We used the normalized dispersion values (“dispersions norm”) in our
comparison. As is illustrated in Supplementary Figure 16, several of the, by sepal , top ranked genes
are not found in the set of the 1000 most dispersed genes.

From this analysis it becomes clear how only looking at variance-based metrics, not considering spa-
tial information, can lead to transcript profiles with distinct spatial structures being overlooked. The
spatially variable, but not highly variable, transcript profiles importantly exhibit spatial structure,
i.e., they are not false positives, as can be seen in Supplementary Figure 17 where six of the transcript
profiles found among the top 100 highest ranked transcript profiles, but excluded from the set of the
1000 most highly variable ones, are shown.
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Supplementary Figure 16: For the Mouse Brain data set, diffusion time (td) plotted against normalized
dispersion values (obtained from scanpy.pp.highly variable genes). The red dashed line indicate
the 100th highest diffusion time, while the blue dashed line indicates the 1000th highest normalize
dispersion value. The right pane, with a pink border, is a zoom-in of the marked area in the left pane.

Supplementary Figure 17: For the mouse brain data set, the six transcript profiles with highest
diffusion time found among the top 100 highest ranked profiles, by sepal , but not present in the set
of the 1000 most highly variable ones.

18



S5.6 Lymph Node

Supplementary Figure 18: Top 20 transcription profiles as ranked by sepal for the human lymph node
sample (Visium). For each transcript profile the header gives the diffusion time (td) and the name of
the associated gene (Gene : X).
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S5.7 Melanoma

S5.7.1 Top transcription Profiles

Supplementary Figure 19: Top 20 transcription profiles as ranked by sepal for the human melanoma
sample (ST 1K). For each transcript profile the header gives the diffusion time (td) and the name of
the associated gene (Gene : X).
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S5.7.2 Representative motifs

Supplementary Figure 20: Representative patterns for each pattern family identified upon analysis
of the melanoma sample.
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S5.7.3 Pattern Families

Supplementary Figure 21: All members of pattern family 1 from the melanoma sample. The header
of each transcript profile gives the name of the associated gene (Gene : X).
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Supplementary Figure 22: All members of pattern family 2. The header of each transcript profile
gives the name of the associated gene (Gene : X).

Supplementary Figure 23: All members of pattern family 3. The header of each transcript profile
gives the name of the associated gene (Gene : X).

Supplementary Figure 24: All members of pattern family 4. The header of each transcript profile
gives the name of the associated gene (Gene : X).
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No. family native name p value database intersection size

1 1 GO:0007399 nervous system development 5.877865e-08 GO:BP 40

2 1 GO:0022008 neurogenesis 6.382998e-08 GO:BP 33

3 1 GO:0032502 developmental process 6.629987e-08 GO:BP 69

4 1 GO:0048856 anatomical structure development 2.332163e-07 GO:BP 65

5 1 GO:0048699 generation of neurons 1.409125e-06 GO:BP 30

6 1 GO:0030182 neuron differentiation 2.426676e-06 GO:BP 28

7 1 GO:0048666 neuron development 3.545361e-06 GO:BP 25

8 1 GO:0048731 system development 3.997314e-06 GO:BP 56

9 1 GO:0031175 neuron projection development 9.173766e-06 GO:BP 23

10 1 GO:0007275 multicellular organism development 9.470707e-06 GO:BP 59

11 1 GO:0009653 anatomical structure morphogenesis 1.972741e-05 GO:BP 39

12 1 GO:0048468 cell development 2.046510e-05 GO:BP 34

13 1 GO:0030154 cell differentiation 2.246740e-05 GO:BP 50

14 1 GO:0120036 plasma membrane bounded cell projection organi... 7.306454e-05 GO:BP 27

15 1 GO:0009888 tissue development 9.632626e-05 GO:BP 32

16 1 GO:0048869 cellular developmental process 1.042874e-04 GO:BP 50

17 1 GO:0030030 cell projection organization 1.226272e-04 GO:BP 27

18 1 GO:0016049 cell growth 1.623013e-04 GO:BP 15

19 1 GO:0048812 neuron projection morphogenesis 2.611952e-04 GO:BP 17

20 1 GO:0032501 multicellular organismal process 3.315609e-04 GO:BP 69

21 1 GO:0120039 plasma membrane bounded cell projection morpho... 3.497468e-04 GO:BP 17

22 1 GO:0048858 cell projection morphogenesis 3.796596e-04 GO:BP 17

23 1 GO:0032990 cell part morphogenesis 5.673360e-04 GO:BP 17

24 1 GO:0001558 regulation of cell growth 9.261239e-04 GO:BP 13

25 1 GO:0040007 growth 1.080730e-03 GO:BP 20

26 1 GO:0060560 developmental growth involved in morphogenesis 1.524228e-03 GO:BP 10

27 1 GO:0030308 negative regulation of cell growth 1.694435e-03 GO:BP 9

28 1 GO:1901888 regulation of cell junction assembly 1.751998e-03 GO:BP 7

29 1 GO:0040008 regulation of growth 2.081738e-03 GO:BP 16

30 1 GO:0048667 cell morphogenesis involved in neuron differen... 2.184897e-03 GO:BP 15

31 1 GO:0051893 regulation of focal adhesion assembly 2.225958e-03 GO:BP 6

32 1 GO:0090109 regulation of cell-substrate junction assembly 2.225958e-03 GO:BP 6

33 1 GO:0150116 regulation of cell-substrate junction organiza... 2.225958e-03 GO:BP 6

34 1 GO:0016043 cellular component organization 3.014904e-03 GO:BP 59

35 1 GO:0071840 cellular component organization or biogenesis 3.290805e-03 GO:BP 60

36 1 GO:0006928 movement of cell or subcellular component 4.357310e-03 GO:BP 30

37 1 GO:0007409 axonogenesis 4.808180e-03 GO:BP 13

38 1 GO:0051129 negative regulation of cellular component orga... 5.592873e-03 GO:BP 16

39 1 GO:0000904 cell morphogenesis involved in differentiation 7.961997e-03 GO:BP 16

40 1 GO:0048513 animal organ development 8.528914e-03 GO:BP 40

41 1 GO:0000902 cell morphogenesis 9.010142e-03 GO:BP 19

42 1 GO:0032989 cellular component morphogenesis 9.717041e-03 GO:BP 20

43 1 GO:0042221 response to chemical 1.002560e-02 GO:BP 48

44 1 GO:0048041 focal adhesion assembly 1.131274e-02 GO:BP 6

45 1 GO:0061564 axon development 1.229277e-02 GO:BP 13

46 1 GO:0040011 locomotion 1.416100e-02 GO:BP 27

47 1 GO:0048771 tissue remodeling 1.477759e-02 GO:BP 8

48 1 GO:0014033 neural crest cell differentiation 1.588551e-02 GO:BP 6

49 1 GO:0048843 negative regulation of axon extension involved... 1.753755e-02 GO:BP 4

50 1 GO:0051128 regulation of cellular component organization 1.755100e-02 GO:BP 31

51 1 GO:0048523 negative regulation of cellular process 1.811938e-02 GO:BP 48

52 1 GO:0045926 negative regulation of growth 2.045986e-02 GO:BP 9

53 1 GO:0001755 neural crest cell migration 2.052745e-02 GO:BP 5

54 1 GO:1902668 negative regulation of axon guidance 2.412519e-02 GO:BP 4

55 1 GO:2000026 regulation of multicellular organismal develop... 2.760539e-02 GO:BP 28

56 1 GO:0010771 negative regulation of cell morphogenesis invo... 2.951385e-02 GO:BP 6

57 1 GO:0048585 negative regulation of response to stimulus 3.092712e-02 GO:BP 24
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58 1 GO:0150115 cell-substrate junction organization 3.127869e-02 GO:BP 6

59 1 GO:0007044 cell-substrate junction assembly 3.127869e-02 GO:BP 6

60 1 GO:0016477 cell migration 3.312975e-02 GO:BP 23

61 1 GO:0030334 regulation of cell migration 4.095770e-02 GO:BP 17

62 1 GO:0010721 negative regulation of cell development 4.114857e-02 GO:BP 10

63 1 GO:0048729 tissue morphogenesis 4.142379e-02 GO:BP 14

64 1 GO:0048841 regulation of axon extension involved in axon ... 4.252604e-02 GO:BP 4

65 1 GO:0060485 mesenchyme development 4.293522e-02 GO:BP 9

66 1 GO:0010977 negative regulation of neuron projection devel... 4.368657e-02 GO:BP 7

67 1 GO:0090084 negative regulation of inclusion body assembly 4.516231e-02 GO:BP 3

68 1 GO:0007411 axon guidance 4.799334e-02 GO:BP 9

69 1 GO:0032879 regulation of localization 4.801707e-02 GO:BP 33

70 2 GO:0046649 lymphocyte activation 4.795319e-06 GO:BP 11

71 2 GO:0001775 cell activation 4.256175e-05 GO:BP 13

72 2 GO:0045321 leukocyte activation 1.272893e-04 GO:BP 12

73 2 GO:0002376 immune system process 1.684961e-03 GO:BP 16

74 2 GO:0002682 regulation of immune system process 1.653754e-02 GO:BP 11

75 2 GO:0002694 regulation of leukocyte activation 2.728215e-02 GO:BP 7

76 2 GO:0050865 regulation of cell activation 4.268626e-02 GO:BP 7

77 2 GO:0048872 homeostasis of number of cells 4.504966e-02 GO:BP 5

78 2 GO:0002684 positive regulation of immune system process 4.670279e-02 GO:BP 9

79 3 GO:0030199 collagen fibril organization 1.654811e-03 GO:BP 3

80 3 GO:0030168 platelet activation 4.127980e-02 GO:BP 3

81 4 GO:0002640 regulation of immunoglobulin biosynthetic process 4.986357e-02 GO:BP 1

82 4 GO:0002642 positive regulation of immunoglobulin biosynth... 4.986357e-02 GO:BP 1

Supplementary Table 3: Result from functional enrichment analysis using g:Profiler (database
GP:BP) for each of the identified pattern families. The column ”family” indicate which pattern
family that the pathway was enriched within.
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S5.8 Mouse Cerebellum

We analyzed a subset of the Slide-seq data, randomly selecting 10000 capture locations, and subdued
this subsampled set for analysis using sepal . Since the capture locations are do not follow a grid
pattern (i.e., it is unstructured) we use the procedure described in S2.1 to augment a structured data
set to which our model may be applied. Due to the random character of the capture locations, they
may (and do) overlap to some extent, hence we use a different visualization approach for this data.
We color each marker blue and let the alpha-level represent the (normalized) observed expression
value, rather than using a color gradient. The top 20 genes (w.r.t. diffusion time) are found in Figure
25.

Supplementary Figure 25: Top 20 ranked genes for the mouse cerebellum data set (Slide-seq).
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S5.9 Comparison

We first compared the top-ranked (top 20) profiles of each method, to see how these compared and
what differences/similarities that could be identified, results are shown in Supplementary Figure
26-27.

Supplementary Figure 26: Top expression profiles (1 to 10) of the MOB sample, ranked by sepal ,
SpatialDE and SPARK. For sepal we give the diffusion time, while for the other two methods we
present the the negative logarithm (base 10) of the p-value. A pseudocount of ε = 10−273 is added
to handle rounded p-values (approximated as zero).
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Supplementary Figure 27: Top expression profiles (11 to 20) of the MOB sample, ranked by sepal ,
SpatialDE and SPARK. For sepal we give the diffusion time, while for the other two methods we
present the the negative logarithm (base 10) of the p-value. A pseudocount of ε = 10−273 is added
to handle rounded p-values (approximated as zero).
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Next, we extend our comparison as to provide a slightly more comprehensive overview of the different
type of transcript profiles that each method identified. For each method we extracted the top 100
and 500 highest ranked transcript profiles (using the same ranking system as previously described)
and examined how the three sets related to each other, results are visualized as Venn Diagrams in
Supplementary Figure 28. In both cases, the number of profiles listed by all three methods (17 :
N = 100 and 77 : N = 500) constitute a minority of the profiles. In Supplementary Figures 29-33 we
display the transcript profiles exclusively listed by respective method and those profiles listed by all
methods in the top 100 case. We can clearly observe diversity in the type of results that respective
method present, which emphasizes the value of having multiple different tools to choose from upon any
analysis. Inspecting the set of exclusively listed profile, the trend of SpatialDE and SPARK identifying
“homogeneous” profiles can again be observed in these larger sets (e.g., Kcnj10, Epas1, Rcn2,Gja1,
Olfm1, Igfb2, Trnp1 ), while some of the profiles that sepal present are very fragmented (e.g., Pcgf6,
Gfod1 and Rhcg1 ) and arguably not always constituting a spatially coherent and structured pattern.
The unique patterns from SpatialDE, aside from listing certain homogeneous profiles also has an
abundance of very sparse profiles, where a few spots have very strong signal compared to the others
(e.g., Gna14, Filip1, Olfr635, Taf7l, Ddi2, Csf2rb and Sfrp5 ).

Supplementary Figure 28: Venn diagram of showing the overlap between the top N ranked transcript
profiles from respective method (left : N = 100, right : N = 500).
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Supplementary Figure 29: Transcript profiles exclusively listed by sepal (from N = 100).
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Supplementary Figure 30: Transcript profiles exclusively listed by SPARK (from N = 100).
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Supplementary Figure 31: Transcript profiles exclusively listed by SpatialDE (from N = 100).
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Supplementary Figure 32: Transcript profiles listed by SPARK and SpatialDE (from N = 100).
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Supplementary Figure 33: Transcript profiles listed by all methods (from N = 100).

Finally, we examined how informed by a transcript profile’s expression level that respective method’s
ranking was. This was done using the Spearman correlation, for SpatialDE and SPARK the ranking
is based on the q/p-values. The results are shown in Supplementary Table 4.

sepal SpatialDE SPARK

Spearman (ρ) 1.398595e-01 -1.876725e-01 -2.576362e-01 ( -2.859163e-01 )

p-value 3.561635e-48 6.008244e-86 7.838931e-163 (1.081726e-201)

Supplementary Table 4: Spearman correlation between gene expression level and rank metric (dif-
fusion time and q/p-values respectively) for all three methods included in the comparison; sepal
SpatialDE, SPARK. Values in parenthesis are computed from the adjusted pvalues for SPARK, with
the other based on the combined p-values.

S5.10 Performance Benchmarking

With experimental techniques constantly being refined, the number of observations within each ex-
periment tends to increase, and as such the size of the data sets to be analyzed. While performance
rarely is the sole determining factor when choosing a method, it’s necessary that results are obtained
within a reasonable amount of time, and swift results usually makes the workflow more seamless.
Thus, we have examined the performance of ours and the alternative methods.

To put our method into context of those to which we compare it with, we registered the time it
took for each method to analyze the MOB sample. The MOB sample was used for the same reason as
given for the comparative analysis presented in Supplementary Section S5.9; both alternative meth-
ods provide explicit code and/or recommendations regarding how to analyze this sample. We used
the same filtering procedure as specified for SpatialDE (minimal number of total gene counts ≥ 3)
resulting in a total of 14859 profiles being analyzed. Supplementary Figure 34 and Supplementary
Table 5 illustrates the results from this benchmarking.

Method Cores : 1 Cores : 2 Cores : 3 Cores : 4

sepal 9.425 4.832 3.162 2.197

SPARK 24.156 15.522 13.493 12.539

SpatialDE 7.599 7.527 7.613 7.856

Supplementary Table 5: Performance Benchmarking - Same data as Supplementary Figure 34 but in
tabulated form. Rows represent methods, columns analysis with varying number of cores, elements
give the time in minutes to complete the analysis, values are rounded to three decimals.

To ensure a fair evaluation, we compared our results with those reported by the authors of SPARK
(SPARK publication, Supplementary Table 3) and noted that our times were of similar magnitudes
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Supplementary Figure 34: Performance Benchmarking - y-axis gives the time in minutes to complete
analysis of the 14859 profiles found within the MOB dataset after filtration. The x-axis gives the
number of cores (2 threads per core) used in respective analysis. Results for SPARK are shown in
blue, SpatialDE in gray and sepal in red.

to those reported for the MOB sample. More explicitly the reported times were (using 11274 genes):
46.53min on 1 thread and 5.62min on 10 threads using SPARK, 6.98min on one thread using Spa-
tialDE).[1] As can be seen from the results, sepal requires less time to complete the analysis compared
to the other two methods in all cases except one (1 Core). As most machines tend to have more than
a single core, this implies a faster runtime for sepal in general.

Technical Specifications
All analyses were run on a Lenovo ThinkPad P51 20HH0015MX, with a 6th Generation Intel®

CoreTM i7-6820HQ Processor, which has 4 hyperthreaded cores (8 threads). The operating system
was Fedora 29 (LSB version: core-4.1-amd64:core-4.1-noarch). To control the number of cores avail-
able for each analysis, we used the taskset command (from the util-linux-ng package) with the flag
--cpu-list to specify which (logical) CPUs that should be used; having restricted CPU-accessibility
on a system level, we let the methods use all available CPU resources.
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