Molecular Cell, Volume 81

Supplemental information

CTP regulates membrane-binding activity

of the nucleoid occlusion protein Noc

Adam S.B. Jalal, Ngat T. Tran, Ling J. Wu, Karunakaran Ramakrishnan, Martin Rejzek, Giulia Gobbato, Clare E.M. Stevenson, David M. Lawson, Jeff Errington, and Tung B.K. Le

Figure S1. Interactions between Noc (WT and variants) and CTP_yS or CDP, related to Figure 1. (A) A sequence alignment between B. subtilis Noc and its paralog ParB. Residues R89 (red) and N121 (red) in *B. subtilis* Noc, whose equivalent substitutions in *B. subtilis* ParB have been shown to impair spreading and CTP binding (Soh et al., 2019), were substituted by alanine and serine, respectively. Residue E29 (blue) was substituted by cysteine to generate a Noc (E29C) variant which was subsequently used in BMOE crosslinking assays (Figure 2A-D). An equivalent substitution T22C was previously used in BMOE crosslinking assays for in *B. subtilis* ParB (Soh et al., 2019). The conserved arginine-rich patch that mediates CTP binding in *B. subtilis* ParB is shown in a solid box. The 10-amino-acid membrane-targeting sequence of Noc is shown in a dashed box. B. subtilis ParB does not possess an equivalent membrane-targeting sequence. The positions of the N-terminal domain, the DNA-binding domain, and the C-terminal domain of Noc and ParB are also indicated on the sequence alignment. (B) Analysis of the interaction of B. subtilis Noc (WT and mutants) with CTPyS or CDP by isothermal calorimetry (ITC). ITC directly measures the heat released or absorbed during a biomolecular binding event. The large heat exchange from Noc-NBS DNA binding (nM binding affinity (Jalal et al., 2020b)) might mask the weaker heat signal from Noc-CTPyS/CDP binding, therefore NBS DNA was not included in these ITC experiments. Each experiment was duplicated. Regression curves were fitted, and binding affinities (K_d) are shown.

Figure S2. CTP and CTP_YS, but not other nucleotides, promote the engagement of the Nterminal domain of Noc, related to Figure 2. (A) SDS-PAGE analysis of BMOE crosslinking products of 10 µM B. subtilis Noc (WT) protein ± 1.0 µM 22-bp parS/NBS DNA ± 1.0 mM NTP. Wildtype Noc naturally lacks cysteine, hence does not crosslink in the presence of BMOE. All crosslinking reactions were performed at 22°C unless indicated otherwise. (B) Same as panel A but Noc (E29C) was used instead. X indicates a crosslinked form of Noc (E29C). Quantification of the crosslinked fraction is shown below each representative image. Error bars represent SEM from three replicates. (C) Same as panel A, but NocN Δ 10 (E29C) was used instead. (D) Time-course of Noc (E29C) crosslinking with CTP in the presence or absence of 22-bp NBS DNA. Purified Noc (E29C) was preincubated with 1.0 mM CTP ± 1 µM 22-bp NBS DNA for 1, 5, 10, 15, or 30 min at 4°C (instead of the usual 22°C) before BMOE was added. A lower incubation temperature was needed to slow down the reaction. Quantification of the crosslinked fraction is shown below each representative image. Error bars represent SE from three replicates. (E) Same as panel D, but 1.0 mM CTPyS was used instead. (F) BLI analysis of the interaction between B. subtilis Noc-CTP and a 170-bp dual biotinlabeled NBS DNA. For the association phase, the interaction between a premix of 1.0 µM B. subtilis Noc ± 1.0 mM CTP and a 170-bp dual biotin-labeled NBS probe was monitored in real-time for 10 min. For the dissociation phase, the probe was returned to either a buffer-only solution or a buffer supplemented with 1mM CTP. The dissociation rate (k_{off}) of bound Noc into buffer is shown for each reaction. (G) BLI analysis of the interaction between B. subtilis Noc-CTP or Noc-CTPyS and a 170bp dual biotin-labeled NBS DNA. For the association phase, the interaction between a premix of 1.0 µM B. subtilis Noc + 1.0 mM CTP or CTPyS and a 170-bp dual biotin-labeled NBS probe was monitored in real-time for 10 min. For the dissociation phase, the probe was returned to a buffer-only solution. The dissociation rate (k_{off}) of bound Noc into buffer is shown for each reaction. Each experiment was triplicated and a representative sensorgram was shown.

Figure S3. CTP and NBS DNA enable Noc binding to liposomes, related to Figure 3. (A) Analysis of *B. subtilis* Noc binding to membranes by a liposome co-sedimentation assay. A premix of 1.0 µM 22-bp linear NBS DNA ± 0.75 µM B. subtilis Noc protein ± 1.0 mM CTP ± 1.0 mg/mL liposomes was incubated at 22°C before ultracentrifugation. The resulting supernatant (S) and pellet (P) fractions were analyzed by SDS-PAGE. Without Noc, 22-bp NBS DNA did not co-sediment on its own (lanes 1-2) or with liposomes (lanes 3-4). Samples were also loaded onto a 20% TBE PAGE, and the gel was subsequently stained with Sybr Green for DNA. Quantification of Noc in each fraction is shown below each representative image. Error bars represent SEM from three replicates. (B) CTP but no other nucleotide enables Noc to co-sediment with liposomes. A premix of 0.75 µM B. subtilis Noc protein + 1.0 μM 22-bp NBS DNA ± 1.0 mM NTP + 1.0 mg/mL liposomes was incubated at 22°C for 5 min before ultracentrifugation. The resulting supernatant (S) and pellet (P) fractions were analyzed by SDS-PAGE. (C) Caulobacter crescentus ParB does not co-sediment with liposomes in any tested conditions. A premix of 0.75 µM C. crescentus ParB protein ± 1.0 µM 22-bp linear parS/NBS DNA ± 1.0 mM CTP ± 1.0 mg/mL liposomes was incubated at 22°C for 5 min before ultracentrifugation. The resulting supernatant (S) and pellet (P) fractions were analyzed by SDS-PAGE.

Figure S4. Liposome flotation assays show Noc can recruit *NBS* plasmid to the membrane in the presence of CTP, related to Figure 4. (A) The principle of a liposome flotation assay. Liposomes ± purified Noc ± CTP ± NBS plasmid were incubated in a 30% sucrose binding buffer. Buffer with 25% sucrose and 0% sucrose were subsequently layered on top sequentially. After ultracentrifugation, liposomes and associated protein/DNA migrate along the sucrose gradient i.e. floating to the uppermost fractions. Three equal fractions (bottom, middle, and top) were drawn out sequentially using a Hamilton syringe, and their protein and DNA contents were analyzed. (B) Control experiments: liposome flotation assays in which one component, either Noc protein, a 5-kb plasmid DNA, CTP, or liposomes, was omitted. (C) Analysis of B. subtilis Noc binding to membranes and the recruitment of plasmid DNA to membranes by a liposome flotation assay. A premix of 0.75 µM B. subtilis Noc ± 100 nM 5-kb plasmid DNA ± 1.0 mM CTP ± 1.0 mg/mL liposomes was incubated at 22°C for 5 min before ultracentrifugation. Either an empty plasmid or an NBS-harboring plasmid was employed in this assay. The resulting fractions (Bottom B, Middle M, and Top T) were analyzed by SDS-PAGE. Samples were also loaded onto a 1% agarose gel and was subsequently stained with Sybr Green for DNA. Quantification of Noc or DNA in each fraction is shown below each representative image. Error bars represent SEM from three replicates. (D) Other Noc variants, Noc (R89A), Noc (N121S), and NocN∆10, were also analyzed in a liposome flotation assay. A premix of 0.75 µM B. subtilis Noc protein (WT or mutants) + 100 nM NBS plasmid + 1.0 mM CTP + 1.0 mg/mL liposomes was ultracentrifuged, and the resulting fractions were analyzed for protein and DNA contents.

Figure S5. The composition of the asymmetric unit of *G. thermoleovorans* Noc \triangle CTD crystal structure, related to Figure 5. (A) A sequence alignment between *B. subtilis* Noc and its homolog *G. thermoleovorans* Noc. The conserved arginine-rich patch that mediates CTP binding in *B. subtilis* ParB (Soh et al., 2019) is shown in the solid box. The sequences of helix α 1, helix α 2, and the α 2- β 1 connecting loop are also indicated on the sequence alignment. (B) The asymmetric unit of *G. thermoleovorans* Noc \triangle CTD contains two copies of Noc \triangle CTD monomers (left panel). Chains A and B are structurally similar, RMSD = 0.96 Å (right panel).

Figure S6. The conformation of *G. thermoleovorans* NocN Δ 26 Δ CTD is similar to that of a nucleotide-bound *B. subtilis* ParB Δ CTD, related to Figure 6. (A) Superimposition between a *G. thermoleovorans* NocN Δ 26 Δ CTD dimer (green) and a *B. subtilis* ParB Δ CTD-CDP dimer (yellow, PDB: 6SDK). CDP molecules are shown in magenta. (B) Magnification of the nucleotide-binding pocket of *B. subtilis* ParB Δ CTD and *G. thermoleovorans* NocN Δ 26 Δ CTD. CDP and Ca²⁺ cations that belong to *B. subtilis* ParB Δ CTD-CDP co-crystal structure are highlighted in magenta and yellow, respectively. In the *G. thermoleovorans* NocN Δ 26 Δ CTD structure, a sulfate ion (dark green) occupies a similar position to the β -phosphate group of CDP. (C) A superimposition at the N-terminal domains of a Noc Δ CTD monomer (grey) and a NocN Δ 26 Δ CTD monomer (green). The amphipathic helix a1 and helix a2 are shown in magenta and pink, respectively. (D) Same as panel B, but only the N-terminal domain (NTD) is shown for clarity.

Figure S7. Effects of N-terminal substitutions and deletions on *B. subtilis* Noc-liposomes interaction, related to Figure 6. A premix of 1.0 μ M 22-bp linear *NBS* DNA + 1.0 μ M *B. subtilis* Noc protein (WT/mutants) + 1.0 mM CTP + 1.0 mg/mL liposomes was incubated at 22°C before ultracentrifugation. The resulting supernatant (S) and pellet (P) fractions were analyzed by SDS-PAGE. Quantification of Noc in each fraction is shown below each representative image. Error bars represent SEM from three replicates.

Strains	Description	Source
<i>E. coli</i> Rosetta (DE3)	$F^- ompT hsdS_B(r_B^- m_B^-)$ gal dcm (DE3) pRARE (chloramphenicol ^R)	Merck
DWA117	B. subtilis 168CA (trpC2) Δnoc::tet	(Adams et al., 2015)
DWA206	B. subtilis 168CA (trpC2) Δnoc::tet ΩamyE::[spc Pxyl-noc (WT)-myfp]	(Adams et al., 2015)
DWA382	B. subtilis 168CA (trpC2) Δ noc::tet Ω amyE::[spc Pxyl-nocN Δ 10-myfp]	(Adams et al., 2015)
DWA546	B. subtilis 168CA (trpC2) Δnoc::tet ΩamyE::[spc Pxyl-noc (R89A)-myfp]	(Adams et al., 2015)
4746	B. subtilis 168CA (trpC2) Δnoc::tet ΩamyE::[spc Pxyl-noc (N121S)- yfpmut1]	This study
DWA564	B. subtilis 168CA (trpC2) Δnoc::tet ΔminCD::kan ΩamyE::[spc Pxyl-noc (WT)-myfp]	(Adams et al., 2015)
DWA566	B. subtilis 168CA (trpC2) Δnoc::tet ΔminCD::kan ΩamyE::[spc Pxyl- nocN∆10-myfp]	(Adams et al., 2015)
DWA600	B. subtilis 168CA (trpC2) Δnoc::tet ΔminCD::kan ΩamyE::[spc Pxyl-noc (R89A)-myfp]	(Adams et al., 2015)
4747	B. subtilis 168CA (trpC2) Δnoc::tet ΔminCD::kan ΩamyE::[spc Pxyl-noc (N121S)-yfpmut1]	This study

TABLE S1. Bacterial strains. Related to STAR Methods.

TABLE S2. DNA, plasmids, and oligos. Related to STAR Methods.

Plasmids	Description	Source	
pET21b:: <i>Bacillus subtilis</i> noc-his ₆	Overexpression of a C-terminally His6-tagged <i>B. subtilis</i> Noc, carbenicillin ^R	This study	
pET21b:: <i>Bacillus subtilis</i> <i>nocN</i> ∆10-his₀	Overexpression of a C-terminally His6-tagged <i>B. subtilis</i> Noc that lacks the first 10 amino acids, carbenicillin ^R	This study	
pET21b:: <i>Bacillus subtilis noc</i> (<i>R89A)-his</i> 6	Overexpression of a C-terminally His ₆ -tagged <i>B. subtilis</i> Noc (R89A), carbenicillin ^R	This study	
pET21b:: <i>Bacillus subtilis noc</i> (<i>N121S)-his</i> 6	Overexpression of a C-terminally His ₆ -tagged <i>B. subtilis</i> Noc (N121S), carbenicillin ^R	This study	
pET21b:: <i>Bacillus subtilis noc</i> (<i>E29C)-his</i> 6	Overexpression of a C-terminally His ₆ -tagged <i>B. subtilis</i> Noc (E29C), carbenicillin ^R	This study	
pET21b:: <i>Bacillus subtilis noc</i> (<i>E</i> 29C R89A)-his ₆	Overexpression of a C-terminally His ₆ -tagged <i>B. subtilis</i> Noc (E29C R89A), carbenicillin ^R	This study	
pET21b:: <i>Bacillus subtilis noc</i> (<i>E</i> 29C N121S)-his ₆	Overexpression of a C-terminally His ₆ -tagged <i>B. subtilis</i> Noc (E29C N121S), carbenicillin ^R	This study	
pET21b:: <i>Bacillus subtilis noc</i> ΔK^2 -his ₆	Overexpression of a C-terminally His ₆ -tagged <i>B. subtilis</i> Noc that lacks the lysine at position 2, carbenicillin ^R	This study	
pET21b:: <i>Bacillus subtilis noc</i> $\Delta 4$ -his ₆	Overexpression of a C-terminally His ₆ -tagged <i>B. subtilis</i> Noc that lacks the first 4 amino acids, carbenicillin ^R	This study	
pET21b:: <i>Bacillus subtilis noc</i> (<i>K2E)-his</i> 6	Overexpression of a C-terminally His ₆ -tagged <i>B. subtilis</i> Noc (K2E), carbenicillin ^R	This study	
pET21b:: <i>Bacillus subtilis noc</i> (S4L)-his ₆	Overexpression of a C-terminally His ₆ -tagged <i>B. subtilis</i> Noc (S4L), carbenicillin ^R	This study	
pET21b::Bacillus subtilis noc (F5A)-his6	Overexpression of a C-terminally His6-tagged <i>B. subtilis</i> Noc (F5A), carbenicillin ^R	This study	
pET21b:: <i>Bacillus subtilis noc</i> (<i>F5E)-his</i> 6	Overexpression of a C-terminally His ₆ -tagged <i>B. subtilis</i> Noc (F5E), carbenicillin ^R	This study	
pET21b:: <i>Bacillus subtilis</i> nocN∆10 (E29C)-his ₆	Overexpression of a C-terminally His ₆ -tagged <i>B. subtilis</i> Noc (E29C) variant that also lacks the first 10 amino acids, carbenicillin ^R	This study	
pET21b::Geobacillus thermoleovorans Noc∆CTD	Overexpression of a C-terminally His6-tagged <i>G.</i> <i>thermoleovorans</i> Noc that lacks the last 42 amino acids, carbenicillin ^R	This study	
pET21b::Geobacillus thermoleovorans NocN∆26∆CTD	Overexpression of a C-terminally His ₆ -tagged <i>G.</i> <i>thermoleovorans</i> Noc that lacks the first 26 amino acids and the last 42 amino acids, carbenicillin ^R	This study	
pMCS5-4xNBS	pMCS5 plasmid that harbors four NBS sites, tetracycline ^R	This study	

pMCS5::empty pMCS5 plasmid with an intact multiple cloning site, tetracycline ^R		(Thanbichler et al., 2007)
pET21b:: <i>Caulobacter</i> <i>crescentus parB-his</i> ₆ Overexpression of a C-terminally His ₆ -tagged <i>C.</i> <i>crescentus</i> ParB, carbenicillin ^R		Gift from Christine Jacobs-Wagner (Lim et al., 2014)
pSG4926	<i>bla amyE' spc Pxyl-noc-yfpmut1 'amyE</i> ; shuttle plasmid harboring a xylose-inducible <i>noc-yfp</i> fusion for integration at the <i>B. subtilis amyE</i> locus	(Wu et al., 2009)
pSG4926 N121S	bla amyE' spc Pxyl-noc (N121S)-yfpmut1 'amyE; B. subtilis plasmid harboring a xylose-inducible noc (N121S)-yfp fusion for integration at the B. subtilis amyE locus	This study
Oligos/gBlocks		
170bp- <i>par</i> S	CGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGAC GGCCAGAATTCGCAACGTG <u>TGTTTCACGTGAAACA</u> GC CTTGAACTGATAACGACTCTATCATTGATAGAGTGTTC TCTCCACG GGATCC CCAGGCATGCAAGCTTGGCGTAA TCATGGTCATAGCTGTTTCCT	(Jalal et al., 2020a)
CGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGAC GGCCAGAATTCGCAACGTG <u>TATTTCCCGGGAAATA</u> GC 170bp-NBS CTTGAACTGATAACGACTCTATCATTGATAGAGTGTTC TCTCCACG GGATCC CCAGGCATGCAAGCTTGGCGTAA TCATGGTCATAGCTGTTTCCT		This study
22bp- <i>par</i> S	GGA <u>TGTTTCACGTGAAACA</u> TCC	(Jalal et al., 2020b)
22bp-NBS	GGATATTTCCCGGGAAATATCC	This study
260bp-4x <i>NBS</i> gBlocks	260bp-4xNBS gBlocks 260bp-4xNBS gBlocks 260bp-4xN	
AJ65	TAACTTTAAGAAGGAGATATACATATGTTGGGTGAAAA GGAGCAAGAACCG	This study
AJ66	GGTGGTGCTCGAGTGCGGCCGCAAGCTTTTTTGGAAT ACGGATTGTAAGCTG	This study
AJ73	CTGAACCGCGCGCCACGCGCGTTCTCCCGCAAT	This study
AJ74	AIIGCGGGAGAACGCGCGTGGCGCGCGGTTCAG	I his study
AJ76	AAAAGGCTTTACGTTTAGG	This study
AJ81	TAACTTTAAGAAGGAGATATACATATGGAAGAGGTCCG TCACATCCCCGTCAAA	This study
AJ84	AJ84 GATACCAATAAGGAATGCATTTTAGAAATTCCA	
AJ85	TGGAATTTCTAAAATGCATTCCTTATTGGTATC	
AJ86 GTGGCCTTAATTGAGTCTTTGCAACGCGAGGAG		This study
AJ87	CTCCTCGCGTTGCAAAGACTCAATTAAGGCCAC	This study
M13-F CGCCAGGGTTTTCCCAGTCACGAC		Lab stock
M13-R	ATGGTCATAGCTGTTTCCT	Lab stock
Noc(N121S)-F GTGGCGTTAATCGAAAGCTTGCAGCGGGAAGAA		This study
Noc(N121S)-R	IICIICCCGCIGCAAGCITTCGATTAACGCCAC	I his study

The sequences of *parS/NBS* are underlined. The sequence of BamHI recognition site is bold.

Structure	<i>G. thermoleovorans</i> Noc∆CTD - iodide	<i>G. thermoleovorans</i> Noc∆CTD - native	<i>G. thermoleovorans</i> NocN∆26∆CTD
Data collection			
Diamond Light Source beamline	104	104-1	104
Wavelength (Å)	1.800	0.912	0.980
Detector	Eiger2 XE 16M	Pilatus 6M-F	Eiger2 XE 16M
Resolution range (Å)	96.61 - 3.40 (3.67 - 3.40) <i>P</i> 2 ₁ 3	84.89 – 2.50 (2.60 – 2.50) <i>P</i> 2 ₁ 3	37.44 – 2.95 (3.13 – 2.95) C222 ₁
Space Group			
Cell parameters (Å/°)	<i>a</i> = <i>b</i> = <i>c</i> = 136.6	<i>a</i> = <i>b</i> = <i>c</i> = 146.8	<i>a</i> = 105.1, <i>b</i> = 106.6, <i>c</i> = 42.2
Total no. of measured intensities	2147484 (426036)	1458851 (163435)	66966 (10641)
Unique reflections	11990 (2445)	36704 (4119)	5285 (835)
Multiplicity	179.1 (174.2)	39.7 (39.7)	12.6 (12.0)
Mean I/σ(I)	15.9 (3.3)	28.5 (1.8)	5.5 (1.5)
Completeness (%)	100.0 (100.0)	100.0 (100.0)	100.0 (100.0)
$R_{ m merge}{}^{ m a}$	0.500 (3.392)	0.091 (2.654)	0.281 (1.343)
$R_{ m meas}{}^{ m b}$	0.501 (3.402)	0.093 (2.688)	0.293 (1.399)
CC ^{1/2} C	0.999 (0.894)	1.000 (0.670)	0.997 (0.885)
Wilson <i>B</i> value (Ų)	88.7	68.0	38.2
Refinement			
Resolution range (Å)	-	84.89 – 2.50 (2.57 – 2.50)	37.44 – 2.95 (3.03 – 2.95)
Reflections: working/freed	-	34843/1794	4752/522
Rwork ^e	-	0.210 (0.328)	0.267 (0.438)
<i>R</i> _{free} ^e	-	0.240 (0.386)	0.288 (0.443)
Ramachandran plot: favored/allowed/disallowed ^f (%)	-	98.1/1.9/0.0	98.0/2.0/0.0
R.m.s. bond distance deviation (Å)	-	0.010	0.007
R.m.s. bond angle deviation (°)	-	1.55	1.33
Mean <i>B</i> factors: protein/sulfate/water/ overall (Å ²)	-	85/118/71/86	74/70/0/74
PDB accession code		7NFU	7NG0

TABLE S3. X-ray data collection and processing statistics. Related to Figures 5 and 6.

Values in parentheses are for the outer resolution shell.

^a $R_{\text{merge}} = \sum_{hkl} \sum_{i} |I_i(hkl) - \langle I(hkl) \rangle |/ \sum_{hkl} \sum_{i} |I_i(hkl).$ ^b $R_{\text{meas}} = \sum_{hkl} [N/(N-1)]^{1/2} \times \sum_{i} |I_i(hkl) - \langle I(hkl) \rangle |/ \sum_{hkl} \sum_{i} |I_i(hkl), \text{ where } I_i(hkl) \text{ is the } i\text{th observation of reflection } hkl,$ $\langle I(hkl) \rangle$ is the weighted average intensity for all observations *i* of reflection hkl and N is the number of observations of reflection hkl.

^c CC_½ is the correlation coefficient between symmetry equivalent intensities from random halves of the dataset. ^d The dataset was split into "working" and "free" sets consisting of 95 and 5% of the data respectively. The free set was not used for refinement.

^e The R-factors R_{work} and R_{free} are calculated as follows: $R = \sum (|F_{\text{obs}} - F_{\text{calc}}|)/\sum |F_{\text{obs}}|$, where F_{obs} and F_{calc} are the observed and calculated structure factor amplitudes, respectively.

^f As calculated using MolProbity (Williams et al., 2018)