(A)

Supplementary Figure 1. RNA-Seq expression data of (A) G3BP1, and (B) G3BP2 genes from GTEx web portal.

(B)

Supplementary Figure 2. Human disease perturbation through downregulation of G3BP1 and G3BP2 from Enrichr web server

(B)

(C)

Supplementary Figure 3. Gene Ontology (GO) analysis of G3BP1 and G3BP2 genes. (A) Biological process, (B) Molecular process, and (C) Jensen compartments

Supplementary Figure 4. Possible mechanisms affecting gene expression of G3BP1 and G3BP2 genes. Identifications of the enriched records of transcription factor-binding sites.

Supplementary Figure 5. Binding motifs were detected at the gene promoter of G3BP1 and G3BP2 using Enrichr tool through scanning the TRANSFAC and JASPAR databases.

TF perturbations followed by expression

Supplementary Figure 6. Possible mechanisms affecting gene expression of G3BP1/2 genes. Mostly different transcription factors affect expression of the target genes. *SRF* and *THRA/B* gene product as potential repressor of the G3BP1/2 gene expression.

GEO gene perturbations focused on upregulated genes

GEO gene perturbations database focused on down-regulated genes

Supplementary Figure 7. Possible mechanisms affecting gene expression of G3BP1/2 genes. Mostly different transcription factors affect expression of the target genes. *ATM* and *E2F-1* gene product as potential activator and repressor, respectively of G3BP1/2 gene expression.

Supplementary Figure 8. Possible mechanisms affecting activity of G3BP1/2 genes. The kinases found to be co-expressed with the target genes.

ARCHS4 Kinases co-expression

Kinase perturbations from the GEO database focused on downregulated genes

Kinase perturbations from the GEO database on upregulated genes

Drug Perturbations fromGEO_2014

Supplementary Figure 9. GSEA identify Imatinib and Decitabine as potential drug candidate against SARS-CoV-2 infection.

gds3047 chdir up

gpl96

Supplementary Figure 10. Effect of bipartite combinations of imatinib and decitabine on the gene-drug network of SARS-CoV-2-human interactome. (A) Out of 809 SARS-CoV-2 human target proteins, the drug combination interacts with 106 (i.e ~13%) proteins, making 184 interactions in total, and potentially interfering all 27 SARS-CoV-2 protein. (B) Interaction network of the 106 human genes (pink) with 27 SARS-CoV-2 proteins (green).

TargetScan microRNA 2017

miRTarBase 2017

Supplementary Figure 11. miRNAs as potential modulators of G3BP1/2 expression.

Supplementary Figure 12. Protein-protein docking from HDOCK server. The docking of (A) SARS-CoV-2 N (PDB ID:6M3M, green) to G3BP1 (PDB ID: 4FCJ, red) and (B) SARS-CoV-2 N (PDB ID:6M3M, green) to G3BP2 (PDB ID: 5DRV, teal). The binding pockets are similar in both the docking.

Supplementary Figure 13. Density distribution plot for (A) unbound G3BP1, (B) G3BP1- decitabine, and (C) G3BP1- imatinib complexes.