## **Supplemental Table of Contents**

#### **Supplemental Methods**

TERT DNA sequencing TERT variant classification Human TERT structural homology model

### Figures

- Figure S1. Summary of overall study analysis
- Figure S2. Domain distribution of TERT variants in NHL cohort
- Figure S3. Distribution of TERT rare variants by age younger or older than 40
- Figure S4. Somatic mutations in patients with a TERT rare variant
- Figure S5. Clonal markers and bone marrow blasts among patients with a TERT rare variant
- Figure S6. TERT A1062T clinical characteristics and transplant outcomes
- Figure S7. Transplant outcomes in patients with a TERT rare variant based on somatic mutation status
- Figure S8. Transplant outcomes by TERT variant status and conditioning intensity
- Figure S9. Univariate analyses of overall survival, NRM, and relapse by TERT variant status
- Figure S10. Western blot summary of TERT rare variants
- Figure S11. K562 TERT rare variant qPCR relative telomere length summary
- Figure S12. Terminal restriction fragment analysis summary of TERT rare variants
- Figure S13. Functional and structural characterization of the single NHL TERT rare variant

## Tables

- Table S1. Site-directed mutagenesis primers
- Table S2. Extended TERT rare variant classification
- Table S3. TERT common variant classification
- Table S4. TERT rare variant clinical summary
- Table S5. Extended patient characteristics by TERT variant status
- Table S6. MDS mutations by TERT rare variant status

Table S7. HCT-CI components by *TERT* rare variant status
Table S8. Chromosome 7 abnormalities by *TERT* rare variant status
Table S9. Characteristics of patients with a *TERT* rare variant according to somatic mutation status.
Table S10. Multivariable models transplant outcomes
Table S11. Causes of death by *TERT* rare variant status
Table S12. *TERT* rare variant functional-structural summary

## **Supplemental Methods**

### **TERT DNA sequencing**

Amplicon libraries were prepared with an Ion AmpliSeq Custom panel by using the Ampliseq Library Kit Plus (Thermo Fisher Scientific, USA) according to the manufacturer's protocol. These amplicons were partially digested before ligation of adapters and multiplex barcodes. Ligation products were purified with AMPure XP beads (Beckman Coulter, USA) and quantified using the Ion Library TaqMan Quantitation Kit (Thermo Fisher Scientific, USA). Libraries were normalized to 30 pM concentration and multiplexed in batches of no more than 96 samples for further processing. Templating and Ion 530 chip loading was performed on the Ion Chef (Thermo Fisher Scientific, USA) followed by sequencing on the Ion S5 (Thermo Fisher Scientific, USA) according to the manufacturer's instructions. Samples were sequenced to at least 150x average read depth. Raw reads were aligned with the TMAP alignment package and variants called using the VariantCaller plugin, both from the Torrent Suite software (Thermo Fisher Scientific, USA). Variant annotation was done using Annovar<sup>4</sup>. Intronic and synonymous variants and variants with less than 5 alternate reads or less than 10 total reads were excluded from the analysis.

## **TERT** variant classification

*TERT* variants were classified as "common" or "rare" using a maximum population allele frequency in gnomAD (v2.1.1) of 0.001 in any reference population. *TERT* common and rare variants were classified by consensus as benign (B), likely benign (LB), variant of unknown significance (VUS), likely pathogenic (LP) or pathogenic (P) according to ACMG/AMP<sup>33</sup> and Sherloc<sup>34</sup> guidelines through manual curation. *In silico* prediction models Combined Annotation-Dependent Depletion (CADD)<sup>50</sup> and ClinPred<sup>51</sup> were used

to estimate likelihood of pathogenicity of each variant. A CADD PHRED score of 20 or greater indicates a SNV is in the top 1% of deleterious variants across all possible SNVs in human genome reference ( cadd.gs.washington.edu). A ClinPred score >0.5 is considered a prediction of pathogenicity for a given variant (sites.google.com/site/clinpred/).

#### hTERT structural homology model

The full human TERT TEN domain, RTD, and the template-primer complex were modeled using the Tetrahymena thermophila telomerase holoenzyme cryo-EM structure (PDB accession code: 6D6V). The human TERT RBD domain bound to TR was modeled using the crystal structure of Takifugu rubripes TERT RBD-TR CR4/5 complex (PDB accession code: 4LMO) as a template. The solved crystal structures of human TERT CTE (PDB accession code: 5UGW) and human TPP1-OB (PDB: 2I46) were used as such. The full model of human telomerase-TPP1-OB was assembled from these individual homology models by using the Tetrahymena thermophila telomerase holoenzyme cryo-EM reconstruction (PDB accession code: 6D6V) as a scaffold. The human TERT TEN, RT (and associated template-primer duplex), RBD (and associated CR4/5 RNA), and CTE were superimposed on their counterparts in the Tetrahymena thermophila telomerase holoenzyme reconstruction in Pymol using the "Align" command to assemble the human telomerase part of the homology model. Human TPP1-OB was superimposed on the p50 subunit of the Tetrahymena thermophila telomerase holoenzyme reconstruction to complete the human telomerase-TPP1 homology model. While TERT and TPP1 amino acids in the homology model correspond to sequences found in the human polypeptides, the original sequences and structures were retained for TR (Tetrahymena thermophila TR sequence for the template region and Takifugu rubripes TR sequence for the CR4/5 domain) and primer (Tetrahymena thermophila telomeric DNA primer sequence) regions in the homology model. No energy minimization or other refinement of the homology model was performed after assembly from individual components.



**Supplementary Figure 1. Summary of overall study analysis.** The *TERT* coding region was sequenced in the MDS and NHL cohorts. Nonsynonymous *TERT* coding variants were classified as either 'rare' or 'common' based on a gnomAD maximum population allele frequency (AF) cutoff of 0.001. The associations between the presence of *TERT* rare variants were analyzed with respect to clinical variables, disease variables, and transplant outcomes.



## Supplemental Figure 2. Domain distribution of TERT variants within the NHL cohort. TERT

common variants (n = 48) and the single rare variant (n =1) are located above and below the coding region, respectively. The size of each ball is proportional to the number of patients with that variant. The single *TERT* rare variant is colored in red and *TERT* common variants in gray.



Supplemental Figure 3. Distribution of *TERT* rare variants by age younger or older than 40. Panel A shows the number of patients in the MDS cohort by age group (0-40 years and >40 years). Panel B shows the proportion of patients with a TERT rare variant by age group.

| Patients with a <i>TERT</i> rare varia | ant Number | Frequency |
|----------------------------------------|------------|-----------|
| U2AF1                                  | 8          | 0.20      |
| ASXL1                                  | 8          | 0.20      |
| TP53                                   | 7          | 0.17      |
| RUNX1                                  | 5          | 0.12      |
| ETV6                                   | 5          | 0.12      |
| PPM1D                                  | 4          | 0.10      |
| TET2                                   | 3          | 0.07      |
| DNMT3A                                 | 2          | 0.05      |
| SF3B1                                  | 2          | 0.05      |
| DDX41                                  | 2          | 0.05      |
| GNAS                                   | 1          | 0.02      |
| EZH2                                   | 3          | 0.07      |
| RASTK                                  | 3          | 0.07      |
| SETBP1                                 | 2          | 0.05      |
| STAG2                                  | 2          | 0.05      |
| NRAS                                   | 2          | 0.05      |
| PTPN11                                 | 2          | 0.05      |
| ATM                                    | 2          | 0.05      |
| ETNK1                                  | 1          | 0.02      |
| GATA2                                  | 1          | 0.02      |
| PHF6                                   | 1          | 0.02      |
| ZRSR2                                  | 1          | 0.02      |
| SRSF2                                  | 1          | 0.02      |
| KRAS                                   | 1          | 0.02      |
| BCORL1                                 | 1          | 0.02      |
| CUX1                                   | 1          | 0.02      |
| BRCC3                                  | 1          | 0.02      |
| GNB1                                   | 1          | 0.02      |
| WT1                                    | 1          | 0.02      |
| NPM1                                   | 1          | 0.02      |

**Supplemental Figure 4. Somatic mutations in patients with a** *TERT* rare variant. Each column represents a patient with a *TERT* rare variant in the MDS cohort. Red boxes indicate the presence of a somatic mutation in the respective gene. Number and frequency of gene mutations are listed on the right of the panel.



Supplemental Figure 5. Clonal markers and bone marrow blasts among patients with a *TERT* rare variant. Flow chart of patients with *TERT* rare variants based on presence or absence of myeloid somatic mutations, MDS-defining cytogenetic abnormalities, or other cytogenetic clones. Four patients did not have available cytogenetic data. (\*) refers to -5/-5q, -7/7q, and/or bone marrow blasts  $\ge 5\%$ .



**Supplemental Figure 6.** *TERT* A1062T clinical characteristics and transplant outcomes. Panel A and B show relative telomere length and age at MDS diagnosis according to TERT variant status, respectively. Overall survival and the cumulative incidences of NRM and relapse are show in panels C-E according to *TERT* variant status: No *TERT* rare (red), A1062T (green), other *TERT* common (blue), and *TERT* rare (black).



Supplemental Figure 7. Transplant outcomes in patients with a *TERT* rare variant based on somatic mutation status. Panels A, B, and C show the Kaplan-Meier curve of overall survival, the cumulative incidence of NRM, and the cumulative incidence of relapse for patients with a *TERT* rare variant, respectively. Patients with somatic mutations colored in red and patients without somatic mutations are labelled black.



### Supplemental Figure 8. Transplant outcomes by TERT rare variant status and conditioning

**intensity.** Cumulative incidence of NRM in patients receiving myeloablative conditioning (A – solid lines) and reduced—intensity conditioning (B – dashed lines) according to *TERT* rare variant status (*TERT* rare in red and no *TERT* rare in black)



Supplemental Figure 9. Univariate analyses of overall survival, NRM, and relapse by *TERT* variant status. A) Kaplan-Meier curve of overall survival. B) Cumulative incidence curve for non-relapse mortality. C) Cumulative incidence curve for relapse. Patients with a *TERT* rare variants, *TERT* common variants, or no *TERT* variant are colored in red, gray, and black, respectively.

#### A. Controls

|                |      | L    | ucif | eras | se  |          | N    | /T  |       |    | V6          | 94N  |     |    | A   | 279 | Г |    |     |          |
|----------------|------|------|------|------|-----|----------|------|-----|-------|----|-------------|------|-----|----|-----|-----|---|----|-----|----------|
| Days of d      | х    | 0    | 1    | 15   | 27  | 0        | 1    | 15  | 27    | 0  | 1           | 15   | 27  | 0  | 1   | 15  | 2 | 27 |     |          |
| hTERT          | *    | -    | -    | -    | -   | -        | =    | =   | =     | -  | =           | =    | -   |    | -   | -   |   |    |     |          |
| B-actin        | )    | -    | -    | -    | -   | -        |      | -   | -     | -  | -           | -    | -   | -  | -   |     | - | -  |     |          |
| B. TERT rare v | aria | ant  | s, I | N to | o C | ter      | min  | us  |       | 20 |             |      |     |    |     |     |   |    |     | 270      |
| 100 1000 -     | C76  | 5S   | _    | V    | 84N | <u>)</u> |      | G11 | OA    | (  | <b>G</b> 13 | 5R   |     | R2 | 63F | 1   | - | H2 | 96F | <u> </u> |
| Days of dox 0  | 1    | 15 3 | 27   | 0 1  | 15  | 27       | 0    | 1 1 | 15 27 | 0  | 1           | 15 2 | 7 0 | 1  | 15  | 27  | 0 | 1  | 15  | 27       |
| 10 Mar 10      | -    |      |      |      |     |          | 1000 |     | 10 11 |    | =:          |      |     | -  | -   |     | - | -  | -   | -        |

| hTERT → <b>*</b><br>B-actin       |                     |                       |                    |                     |                     |                   | -    |
|-----------------------------------|---------------------|-----------------------|--------------------|---------------------|---------------------|-------------------|------|
| Days of dox<br>hTERT →<br>B-actin | G306S<br>0 1 15 27  | V435L<br>0 1 15 27    | V461E              | E484<br>0 1 15      | K R44               | 85C<br>15 27 0    | A532 |
| Days of dox<br>hTERT →<br>B-actin | T567M<br>0 1 15 27  | K570R<br>0 1 15 27    | R622H              | S663G<br>0 1 15 27  | R669W               | R6980             | 27   |
| Days of dox<br>hTERT →<br>B-actin | G715D<br>0 1 15 27  | Q722R<br>0 1 15 27 0  | V741L<br>1 15 27 0 | L766S<br>1 15 27 0  | P771L<br>1 15 27 0  | V777M             |      |
| Days of dox<br>hTERT →<br>B-actin | G847S<br>0 1 15 27  | D848N<br>0 1 15 27    | R865C              | V867M<br>0 1 15 27  | T917M<br>0 1 15 27  | R951W<br>0 1 15 2 | 27   |
| Days of dox<br>hTERT →<br>B-actin | S984R<br>0 1 15 27  | L994F<br>0 1 15 27 0  | A1014P 3           | S1041F<br>1 15 27 0 | R1086H<br>1 15 27 0 | R1086C<br>1 15 27 |      |
| Days of dox<br>hTERT →<br>B-actin | V1090M<br>0 1 15 27 | R1105W<br>0 1 15 27 0 | T1110M<br>1 15     |                     |                     |                   |      |

**Supplemental Figure 10. Western blot summary of TERT rare variants.** Induced expression of hTERT was measured at Day 0 prior to starting doxycycline and Day 1, 15, and 27 during the experiment. Arrow corresponds to the expected molecular weight of hTERT (~127 kDa) and asterisks corresponds to non-specific band seen in all conditions. A) Control conditions: luciferase, TERT<sup>WT</sup>, TERT<sup>V694M</sup>, and the common variant TERT<sup>A279T</sup>. B) *TERT* rare variants from N to C terminus.

27



**Supplemental Figure 11. K562 TERT rare variant qPCR relative telomere length summary.** Graphs of relative telomere length measurements for each TERT rare variant at the beginning (Day 0 - black) and end (Day 27 - blue) of the experiment. Error bars correspond to standard deviation of triplicate values. qPCR measurements for all variants were performed in two batches.





Supplemental Figure 12. Terminal restriction fragment analysis summary of TERT rare variants. TRF images of 2ug digested genomic DNA extracted at Day 0, 15, and 27 for each TERT variant run on

1% agarose gel. Variants are arranged by structural domain and depict data from multiple gels.

## A. Telomere elongation capacity of V826F



## B. V826 in hTERT homology model



**Supplemental Figure 13**. Functional and structural characterization of the single NHL *TERT* rare variant V826F. Panel A shows telomere elongation capacity calculated using qPCR TL data and corresponding TRF and hTERT western blot; (\*) indicates non-specific band and the arrow corresponds to hTERT. Panel B shows the position of V826 within the enzymatic core of the RTD.

| TERT rare variant | Forward Primer                       | Reverse Primer          |
|-------------------|--------------------------------------|-------------------------|
| C76S              | CAGGTGTCCTCCCTGAAGGAGCTGGTGG         | GCGGAAGGAGGGGGGGGG      |
| V84M              | GGTGGCCCGAATGCTGCAGAG                | AGCTCCTTCAGGCAGGACACC   |
| G110A             | GCCCGCGGGGCCCCCCCGAG                 | CCCGTCCAGCAGCGCGAAGCCG  |
| G135R             | GCGGGGGAGCAGGGCGTGGGG                | AGTGCGTCGGTCACCGTGTTGGG |
| R263H             | GGCAGGACGCATGGACCGAGTG               | CGGGTGGGCCCAGGACCC      |
| A279T             | TGCCAGACCCACCGAAGAAGC                | GGTGACACCACACAGAAAC     |
| H296P             | CGCCACTCCCCCCATCCGTG                 | CGTGCCAGAGAGCGCACC      |
| G306S             | GCACCACGCGAGCCCCCCATC                | TGGCGGCCCACGGATGGG      |
| V435L             | CCAGGGCTCTCTGGCGGCCCC                | GGCTTCTCCCGGGCACAG      |
| V461E             | CCCTGGCAGGAGTACGGCTTC                | GCTGCTGTGCTGGCGGAG      |
| E484K             | CAGGCACAACAACGCCGCTTCC               | GAGCCCCAGAGGCCTGGG      |
| R485C             | GCACAACGAATGCCGCTTCCTC               | CTGGAGCCCCAGAGGCCT      |
| A532T             | TGTTCCGGCCACAGAGCACCG                | CAGCCAACCCCTGGGCTC      |
| T567M             | ACGGAGACCATGTTTCAAAAG                | GACATAAAAGAAAGACCTGAG   |
| K570R             | ACGTTTCAAAGGAACAGGCTC                | GGTCTCCGTGACATAAAAG     |
| R622H             | TCCAGACTCCACTTCATCCCCAAGCCTGAC       | CGTCAGCAGGGCGGGCCT      |
| S663G             | GGCACTGTTCGGCGTGCTCAA                | TTCACCCTCGAGGTGAGAC     |
| R669W             | CAACTACGAGTGGGCGCGGCG                | AGCACGCTGAACAGTGCCTTC   |
| V694M             | GCGCACCTTCATGCTGCGTGT                | CAGGCCCTGTGGATATCGTC    |
| R698Q             | CTGCGTGTGCAGGCCCAGGAC                | CACGAAGGTGCGCCAGGC      |
| G715D             | GATGTGACGGACGCGTACGAC                | CACCTTGACAAAGTACAGCTC   |
| Q722R             | ACCATCCCCCGGGACAGGCTC                | GTCGTACGCGCCCGTCAC      |
| V741L             | CACGTACTGCCTGCGTCGGTA                | TTCTGGGGTTTGATGATGC     |
| L766S             | GTCTCTACCTCGACAGACCTCC               | GTGGCTCTTGAAGGCCTT      |
| P771L             | GACCTCCAGCTGTACATGCGA                | TGTCAAGGTAGAGACGTGG     |
| V777M             | GCGACAGTTCATGGCTCACCT                | ATGTACGGCTGGAGGTCT      |
| G847S             | CCTGTGCTACAGCGACATGGAG               | CTGCAGAGCAGCGTGGAG      |
| D848N             | GTGCTACGGCAACATGGAGAACAAG            | AGGCTGCAGAGCAGCGTG      |
| R865C             | GCTGCTCCTGTGTTTGGTGGATGATTTC         | CCGTCCCGCCGAATCCCC      |
| V867M             | CCTGCGTTTGATGGATGATTTCTTGTTGGTGACACC | AGCAGCCCGTCCCGCCGA      |
| T917M             | CTGGGTGGCATGGCTTTTGTT                | GGCCTCGTCTTCTACAGG      |
| R951W             | CAGCTATGCCTGGACCTCCAT                | GAGTAGTCGCTCTGCACC      |
| S984R             | AGTGTCACAGGCTGTTTCTGGATTTG           | TCAGCCGCAAGACCCCAA      |
| L994F             | GGTGAACAGCTTCCAGACGGT                | TGCAAATCCAGAAACAGGC     |
| A1014P            | CAGGTTTCACCCATGTGTGCTGCAG 3          | TACGCCTGCAGCAGGAGG      |
| S1041F            | GACACGGCCTTCCTCTGCTAC                | AGAGATGACGCGCAGGAAAAATG |
| R1086C            | GACTCGACACTGTGTCACCTA                | AGCTTGAGCAGGAATGCT      |
| R1086H            | ACTCGACACCATGTCACCTAC                | CAGCTTGAGCAGGAATGC      |
| V1090M            | TGTCACCTACATGCCACTCCT                | CGGTGTCGAGTCAGCTTG      |
| R1105W            | GCAGCTGAGTTGGAAGCTCCC                | GTCTGGGCTGTCCTGAGTG     |
| T1110M            | CTCCCGGGGATGACGCTGACT                | CTTCCGACTCAGCTGCGTC     |

# Supplemental Table 1. Site-directed mutagenesis primers

|  | Supplemental | Table 2. | Extended | TERT rar | e variant | classification |
|--|--------------|----------|----------|----------|-----------|----------------|
|--|--------------|----------|----------|----------|-----------|----------------|

| Ch 5<br>genomic    | Ref    | Alt | TERT rare   | ACMG/AMP Criteria                   | Sherloc Criteria                                    | ClinPred   | PMID<br>Reference     |
|--------------------|--------|-----|-------------|-------------------------------------|-----------------------------------------------------|------------|-----------------------|
| 1294774            |        | G   | p C76S      | PM2: BP4                            | EV01035                                             | 0.05921087 |                       |
| 1294751            | C      | т   | p.0700      | PM2: PP3                            | EV01035                                             | 0.90967768 |                       |
| 1294672            | С      | G   | p.G110A     | PM2; PP3, PP5                       | EV01035, EV0061,<br>EV0053                          | 0.42297935 | 26024875              |
| 1294598            | С      | т   | p.G135R     | PM2                                 | EV0161                                              | 0.02669442 |                       |
| 1294213            | С      | т   | p.R263H     | PM2; BP4                            | EV01035, EV0126                                     | 0.20593388 |                       |
| 1294114            | Т      | G   | p.H296P     | PM2; BP4                            | EV0161, EV0126                                      | 0.05764545 |                       |
| 1294085            | С      | т   | p.G306S     | PM2; BP4                            | EV01035, EV0126                                     | 0.04076032 |                       |
| 1293698            | С      | G   | p.V435L     | PM1, PM2; BP4                       | EV01035, EV0172 EV0126                              | 0.12568937 |                       |
| 1293619            | Α      | т   | p.V461E     | PM1, PM2; PP3                       | EV01035, EV0172 EV0122                              | 0.99402605 |                       |
| 1293551            | С      | т   | p.E484K     | PM1, PM2; BP4                       | EV01035, EV0172 EV0126                              | 0.02799475 |                       |
| 1293548            | G      | А   | p.R485C     | PM1, PM2                            | EV0101, EV0172, EV0024                              | 0.0912887  | 17460043              |
| 1282719            | С      | т   | p.A532T     | PM1, PM2; BP4                       | EV0101, EV0172, EV0126                              | 0.05038688 |                       |
| 1282613            | G      | А   | p.T567M     | PM1, PM2; PP3                       | EV01035, EV0172,<br>EV0053                          | 0.71335232 | 23538340              |
| 1282604            | т      | С   | p.K570R     | PM1, PM2, PM5; PP3                  | EV01035, EV0172,<br>EV0044                          | 0.86071074 |                       |
| 1280455            | т      | С   | c.1770-2A>G | PM2                                 | EV01035, EV0172                                     | n/a        |                       |
| 1280358            | с      | т   | p.R622H     | PM1, PM2; PP3                       | EV01035, EV0172,<br>EV0122                          | 0.9958812  | 25346280              |
| 1279549            | Т      | С   | p.S663G     | PM1, PM2                            | EV01035, EV0172                                     | 0.14513995 |                       |
| 1279531            | G      | А   | p.R669W     | PM1, PM2; PP3                       | EV0101, EV0172, EV0122<br>EV01035, EV0172,          | 0.94496411 |                       |
| 1279443            | С      | Т   | p.R698Q     | PM1, PM2; PP3                       | EV0081                                              | 0.45770326 | 22664374              |
| 1278898            | С      | Т   | p.G715D     | PM1, PM2; PP3                       | EV01035, EV0172                                     | 0.99102062 |                       |
| 1278877            | Т      | С   | p.Q722R     | PM1, PM2; PP3                       | EV01035, EV0172                                     | 0.97397363 |                       |
| 1278821            | С      | A   | p.V741L     | PM1, PM2                            | EV0101, EV0172                                      | 0.07110612 |                       |
| 1272385            | A      | G   | p.L766S     | PM1, PM2; PP3                       | EV01035, EV0172                                     | 0.5904355  |                       |
| 1272370            | G      | A   | p.P771L     | PM1, PM2; PP3                       | EV01035, EV0172                                     | 0.99044496 |                       |
| 1272353            | С      | Т   | p.V777M     | PM1, PM2, PM5, PP3                  | EV01035, EV0172                                     | 0.92925555 | 25741868              |
| 1268678            | С      | Т   | p.G847S     | PM1, PM2; PP3                       | EV0101, EV0172                                      | 0.99762005 |                       |
| 1268675<br>1266640 | C<br>G | Т   | p.D848N     | PM1, PM2; PP3<br>PM1, PM2; PP3, PP5 | EV0101, EV0172<br>EV0101, EV0172, EV0024,<br>EV0122 | 0.9248184  | 17460043              |
|                    |        |     |             | ,,                                  | EV01035, EV0172,                                    |            |                       |
| 1266634            | С      | Т   | p.V867M     | PM1, PM2; PP3                       | EV0024                                              | 0.82887769 | 20502709              |
| 1264612            | G      | A   | p.T917M     | PM1, PM2; PP3                       | EV0101, EV0172<br>EV0101, EV0051, EV0024,<br>EV0122 | 0.27089664 | 20502709;<br>27540018 |
| 1260607            | G      | C   | n S984R     | PM2: BP4                            | EV0101                                              | 0.31716758 | 21010010              |
| 1258765            | G      | Δ   | p.0004R     | PM2                                 | EV0101                                              | 0 44978669 |                       |
| 1255519            | C      | G   | p.2004      | PM2: PP3                            | EV01035                                             | 0.98364198 |                       |
| 1255437            | G      | Δ   | p.51041F    | PM2· PP3                            | EV01035                                             | 0.87835681 |                       |
| 1254522            | G      | Δ   | p.81086C    | PM2                                 | EV01035 EV0122                                      | 0.96164751 | 28099038              |
| 1254521            | C      | т   | p.R1086H    | PM2                                 | EV0161                                              | 0.05256126 | 20000000              |
| 1201021            |        |     | pirtrooorr  | 1 1112                              | 2,0101                                              | 0.00200120 | 15814878;             |
| 1254510            | С      | Т   | p.V1090M    | PM2; PP5                            | EV0161, EV0080, EV0024                              | 0.03671261 | 23901009              |
| 1253929            | G      | A   | p.R1105W    | PM2; PP3                            | EV01035, EV0221                                     | 0.73196268 |                       |
| 1253913            | G      | Α   | p.T1110M    | PM2; PP6                            | EV0161, EV0221                                      | 0.04365337 | 17392301              |

| Ch 5<br>genomic<br>position | Reference | Alternate | <i>TERT</i><br>common<br>variant | Structural domain | gnomAD<br>max<br>popAF | ACMG/AMP classification | Sherloc classification | ClinVar Accession<br>Number |
|-----------------------------|-----------|-----------|----------------------------------|-------------------|------------------------|-------------------------|------------------------|-----------------------------|
| 1294429                     | С         | G         | p.S191T                          | TEN               | 0.003646               | LB                      | LB                     | VCV000350804                |
| 1294397                     | С         | т         | p.A202T                          | TEN               | 0.00182                | LB                      | LB                     | VCV000012729                |
| 1294166                     | С         | т         | p.A279T                          | TEN               | 0.1209                 | В                       | В                      | VCV000039125                |
| 1294163                     | С         | Т         | p.E280K                          | TEN               | 0.00277                | LB                      | LB                     | VCV000471904                |
| 1293767                     | G         | А         | p.H412Y                          | TRBD              | 0.0188                 | В                       | В                      | VCV000012730                |
| 1293677                     | 0         | -         | p.E441del                        | TRBD              | 0.003621               | LB                      | LB                     | VCV000212398                |
| 1293665                     | G         | Т         | p.R446S                          | TRBD              | 0.002254               | LB                      | LB                     | VCV000242216                |
| 1254594                     | С         | Т         | p.A1062T                         | CTE               | 0.02149                | в                       | В                      | VCV000039121                |

# Supplemental Table 3. TERT common variant classification

# Supplemental Table 4. TERT rare variant clinical summary

| Potiont ID | DTI         | Age at       | TEDT roro voriont | Variant alle fraction |
|------------|-------------|--------------|-------------------|-----------------------|
| 131-871-0  | 0 530985789 | 50 7         |                   | (VAF)<br>0.5517       |
| 632 160 1  | 0.3391/6726 | 52.6         | p.0703            | 0.5517                |
| 167-534-0  | 0.330140720 | 52.0<br>68.0 | p. v 04ivi        | 0.300                 |
| 012 006 6  | 0.30999903  | 08.0<br>58.5 | p.G110A           | 0.3002                |
| 012-000-0  | 0.700310320 | 56.0         | p.0155K           | 0.024                 |
| 605 506 0  | 0.074400007 | 25.1         | p.R20311          | 0.010                 |
| 102 452 1  | 0.292339710 | 20.1         | p.n290F           | 0.4400                |
| 193-455-1  | 0.475952599 | 72.9<br>50.1 | p.03003           | 0.4901                |
| 106-599-5  | 0.009049249 | 59.1         | p. V435L          | 0.4764                |
| 006-488-1  | 0.207104032 | 49.4         | p.v461E           | 0.526                 |
| 684-474-3  | 0.412020455 | 63.3         | p.E484K           | 0.4905                |
| 182-114-2  | 0.350501483 | 00.2         | p.R485C           | 0.4228                |
| 202-087-6  | 0.557648152 | 45.9         | p.A5321           | 0.4974                |
| 188-048-6  | 0.223210607 | 46.6         | p. 1567M          | 0.5269                |
| 112-386-1  | 0.516129796 | 60.6         | p.K570R           | 0.4749                |
| 139-119-5  | 0.225024512 | 73.0         | c.1//0-2A>G       | 0.4609                |
| 199-354-5  | 0.405217397 | 52.9         | p.R622H           | 0.422                 |
| 672-577-7  | 0.401343382 | 52.8         | p.S663G           | 0.5024                |
| 680-768-2  | 0.440760004 | 49.7         | p.R669W           | 0.5181                |
| 622-265-0  | 0.394371706 | 44.2         | p.R698Q           | 0.5228                |
| 675-834-9  | 0.329298568 | 45.4         | p.G715D           | 0.3652                |
| 138-295-4  | 0.57269467  | 55.7         | p.Q722R           | 0.4072                |
| 646-745-3  | 0.411590539 | 70.6         | p.V741L           | 0.4719                |
| 631-993-6  | 0.32504369  | 48.2         | p.L766S           | 0.4414                |
| 116-369-3  | 0.335353357 | 47.1         | p.P771L           | 0.5012                |
| 658-186-5  | 0.343358458 | 57.0         | p.V777M           | 0.5204                |
| 126-140-6  | 0.291944859 | 52.3         | p.G847S           | 0.4721                |
| 169-536-3  | 0.336384474 | 50.9         | p.D848N           | 0.4718                |
| 137-528-9  | 0.317172711 | 48.4         | p.R865C           | 0.4533                |
| 618-645-9  | 0.462689547 | 60.3         | p.V867M           | 0.4801                |
| 653-872-5  | 0.418968207 | 62.0         | p.T917M           | 0.5008                |
| 648-041-5  | 0.356232164 | 53.0         | p.R951W           | 0.465                 |
| 694-861-9  | 0.692395209 | 49.3         | p.S984R           | 0.4878                |
| 637-301-6  | 0.545545414 | 39.7         | p.L994F           | 0.5012                |
| 618-695-4  | 0.400868653 | 47.6         | p.A1014P          | 0.4567                |
| 001-142-9  | 0.595007843 | 48.4         | p.S1041F          | 0.4733                |
| 126-937-5  | 0.42325787  | 53.4         | p.R1086C          | 0.4618                |
| 216-744-6  | 0.450950753 | 67.1         | p.R1086H          | 0.3925                |
| 223-987-2  | 0.366835906 | 14.1         | p.R1086H          | 0.4264                |
| 141-314-8  | 0.501318668 | 66.9         | p.V1090M          | 0.4502                |
| 155-275-4  | 0.500527712 | 59.1         | p.R1105W          | 0.5865                |
| 671-880-6  | 0.265103336 | 22.2         | p.T1110M          | 0.4573                |

# Supplemental Table 5. Extended patient characteristics by TERT variant status

|                                                                               |                | TERT variant       |                |
|-------------------------------------------------------------------------------|----------------|--------------------|----------------|
|                                                                               | None           | Common             | Rare           |
|                                                                               | n = 1301       | n = 172            | n = 41         |
| Patient-related variables                                                     |                |                    |                |
| Age at transplantation, median (range), years                                 | 59 (0 - 77)    | 59 (5 - 75)        | 52 (14 - 72)   |
| Female sex, n (%)                                                             | 519 (40)       | 72 (42)            | 11 (27)        |
| Karnofsky performance status score < 90, n (%)                                | 349 (27)       | 54 (31)            | 16 (39)        |
| Hematopoietic cell transplant comorbidity index (HCT-CI)                      |                |                    |                |
| 0                                                                             | 225 (24)       | 30 (25)            | 3 (11)         |
| 1-2                                                                           | 225 (24)       | 22 (19)            | 8 (29)         |
| 3                                                                             | 469 (51)       | 66 (56)            | 17 (61)        |
| Missing                                                                       | 382            | 54                 | 13             |
| Disease-related variables                                                     |                |                    |                |
| Hemoglobin, median (interquartile range), g/dL                                | 9.4 (8.1-11.2) | 9.2 (8.0-11.0)     | 9.9 (8.6-11.1) |
| Platelet count, median (interquartile range), x 10 <sup>9</sup> /L            | 73 (30-148)    | 68 (23-140)        | 72 (37-115)    |
| Absolute neutrophil count, median (interquartile range), x 10 <sup>9</sup> /L | 1.1 (0.5-2.3)  | 1.4 (0.5-2.3)      | 1.3 (0.5-2.6)  |
| Bone marrow blasts at transplant, median (interquartile range), %             | 3 (1-6)        | 2 (1-7)            | 1 (0-5)        |
| IPSS-R cytogenetic risk group, n (%)                                          | <b>•</b> (1)   |                    | ( ( )          |
| Very good                                                                     | 8 (1)          | -                  | 1 (3)          |
| Good                                                                          | 461 (45)       | 66 (48)            | 15 (43)        |
| Intermediate                                                                  | 216 (21)       | 28 (20)            | 9 (26)         |
| Poor                                                                          | 226 (22)       | 34 (25)            | 5 (14)         |
| Very poor                                                                     | 107 (11)       | 10 (7)             | 5 (14)         |
|                                                                               | 283            | 34                 | 6              |
| IPSS-R group, n (%)                                                           | 101 (10)       | 4.4.(4.4.)         | 4 (42)         |
|                                                                               | 101 (10)       | 14 (11)            | 4 (13)         |
| Intermediate                                                                  | 249 (23)       | 27 (21)            | FT (37)        |
| High                                                                          | 196 (20)       | 43 (30)<br>21 (16) | 6 (20)         |
| Very high                                                                     | 149 (15)       | 19 (15)            | 3 (10)         |
| Missing                                                                       | 321            | 42                 | 11             |
| Prior MDS-directed therapy, n (%)                                             | 763 (59)       | 98 (57)            | 24 (59)        |
| Therapy-related MDS, n (%)                                                    | 272 (21)       | 33 (19)            | 6 (15)         |
| Monosomal karvotype, n (%)                                                    | 180 (14)       | 25 (15)            | 5 (12)         |
| Transplantation-related variables                                             | ( )            | - ( - /            | - ( )          |
| Conditioning regimen, n (%)                                                   |                |                    |                |
| Myeloablative                                                                 | 681 (52)       | 84 (49)            | 24 (59)        |
| Reduced intensity                                                             | 491 (38)       | 74 (43)            | 17 (41)        |
| Nonmyeloablative                                                              | 116 (9)        | 14 (8)             | -              |
| Missing                                                                       | 13             | -                  | -              |
| Donor type, n (%)                                                             |                |                    |                |
| Matched, Related                                                              | 157 (12)       | 19 (11)            | 5 (12)         |
| Matched, Unrelated                                                            | 730 (56)       | 107 (62)           | 26 (63)        |
| Mismatched                                                                    | 256 (20)       | 33 (19)            | 7 (17)         |
| Cord Blood                                                                    | 158 (12)       | 13 (8)             | 3 (7)          |
| Graft type, n (%)                                                             |                |                    |                |
| Bone marrow                                                                   | 189 (15)       | 26 (15)            | 6 (15)         |
| Peripheral blood stem cells                                                   | 950 (73)       | 132 (77)           | 32 (78)        |
| Cord Blood                                                                    | 152 (12)       | 13 (8)             | 3 (7)          |
| Other                                                                         | 10 (1)         | 1 (1)              | -              |
| Donor age                                                                     | 700 (51)       |                    | 00 (==)        |
| Under 35                                                                      | 790 (61)       | 110 (64)           | 28 (70)        |
| 35 OF Older                                                                   | 495 (39)       | 61 (36)            | 12 (30)        |
| IVISSING                                                                      | 16             | 1                  | 1              |
| Fernale donor, n (%)                                                          | 396 (32)       | 45 (27)            | 13 (35)        |
| in vivo i cell depletion, n (%)                                               | 521 (40)       | 71 (41)            | 13 (32)        |

| GVHD prophylaxis, n (%)                                   |                                |                 |         |
|-----------------------------------------------------------|--------------------------------|-----------------|---------|
| Tacrolimus-based                                          | 963 (74)                       | 137 (80)        | 34 (83) |
| CSA-based                                                 | 210 (16)                       | 26 (15)         | 6 (15)  |
| Other                                                     | 39 (3)                         | 2 (1)           | 1 (2)   |
| CD34 selection                                            | 31 (2)                         | 1 (1)           | -       |
| Ex vivo T-cell depletion                                  | 18 (1)                         | 3 (2)           | -       |
| Cyclophosphamide-based                                    | 18 (1)                         | 1 (1)           | -       |
| None reported                                             | 22 (2)                         | 2 (1)           | -       |
| Year of transplantation                                   |                                |                 |         |
| ≤2007                                                     | 252 (19)                       | 39 (23)         | 9 (22)  |
| >2007                                                     | 1,049 (81)                     | 133 (77)        | 32 (78) |
| Unless otherwise stated, peripheral blood counts and bone | marrow blast counts at time of | transplantation |         |
| (-) indicates data not available                          |                                |                 |         |

# Supplemental Table 6. MDS mutations by TERT rare variant status

|                           | No TERT rare         | TERT rare  |        |
|---------------------------|----------------------|------------|--------|
| Gene                      | n = 1473 (%)         | n = 41 (%) | Р      |
| TP53                      | 282 (19)             | 7 (17)     | 0.84   |
| ASXL1                     | 289 (20)             | 8 (20)     | > 0.99 |
| TET2                      | 181 (12)             | 3 (7)      | 0.47   |
| DNMT3A                    | 225 (15)             | 2 (5)      | 0.08   |
| RUNX1                     | 169 (11)             | 5 (12)     | 0.81   |
| RAS pathway               | 190 (13)             | 3 (7)      | 0.47   |
| SF3B1                     | 145 (10)             | 2 (5)      | 0.42   |
| U2AF1                     | 119 (8)              | 8 (20)     | 0.02   |
| PPM1D                     | 84 (6)               | 4 (10)     | 0.29   |
| STAG2                     | 94 (6)               | 2 (5)      | > 0.99 |
| SETBP1                    | 88 (6)               | 2 (5)      | > 0.99 |
| SRSF2                     | 95 (6)               | 1 (2)      | 0.51   |
| NRAS                      | 66 (4)               | 2 (5)      | 0.71   |
| ETV6                      | 57 (4)               | 5 (12)     | 0.02   |
| PTPN11                    | 54 (4)               | 2 (5)      | 0.66   |
| GATA2                     | 53 (4)               | 1 (2)      | > 0.99 |
| EZH2                      | 54 (4)               | 3 (7)      | 0.20   |
| PHF6                      | 49 (3)               | 1 (2)      | > 0.99 |
| WT1                       | 30 (2)               | 1 (2)      | 0.58   |
| CUX1                      | 29 (2)               | 1 (2)      | 0.56   |
| ZRSR2                     | 32 (2)               | 1 (2)      | 0.60   |
| KRAS                      | 28 (2)               | 1 (2)      | 0.55   |
| NPM1                      | 24 (2)               | 1 (2)      | 0.50   |
| ETNK1                     | 18 (1)               | 1 (2)      | 0.41   |
| ATM                       | 15 (1)               | 2 (5)      | 0.08   |
| BRCC3                     | 15 (1)               | 1 (2)      | 0.36   |
| BCORL1                    | 11 (1)               | 1 (2)      | 0.28   |
| GNB1                      | 10 (1)               | 1 (2)      | 0.26   |
| GNAS                      | 7 (0)                | 1 (2)      | 0.20   |
| DDX41                     | 67 (5)               | 2 (5)      | 0.71   |
| None                      | 306 (21)             | 12 (29)    | 0.24   |
| P values calculated using | Fisher's exact test. |            |        |

|                                   | Total      | No TERT rare | TERT rare |
|-----------------------------------|------------|--------------|-----------|
|                                   | n = 1514   | n = 1473     | n = 41    |
| Infection, n (%)                  |            |              |           |
| No                                | 1,142 (75) | 1,111 (75)   | 31 (76)   |
| Yes                               | 69 (5)     | 68 (5)       | 1 (2)     |
| Missing                           | 303 (20)   | 294 (20)     | 9 (22)    |
| Pulmonary, n (%)                  |            |              |           |
| No                                | 738 (49)   | 722 (49)     | 16 (39)   |
| Moderate                          | 292 (19)   | 282 (19)     | 10 (24)   |
| Severe                            | 179 (12)   | 173 (12)     | 6 (15)    |
| Missing                           | 305 (20)   | 296 (20)     | 9 (22)    |
| Hepatic, n (%)                    |            |              |           |
| No                                | 1,121 (74) | 1,092 (74)   | 29 (71)   |
| Mild                              | 71 (5)     | 68 (5)       | 3 (7)     |
| Moderate/severe                   | 18 (1)     | 18 (1)       | -         |
| Missing                           | 304 (20)   | 295 (20)     | 9 (22)    |
| Prior solid tumor, n (%)          |            |              |           |
| No                                | 1,012 (67) | 983 (67)     | 29 (71)   |
| Yes                               | 198 (13)   | 195 (13)     | 3 (7)     |
| Missing                           | 304 (20)   | 295 (20)     | 9 (22)    |
| Arrhythmia, n (%)                 |            |              |           |
| No                                | 1,152 (76) | 1,121 (76)   | 31 (76)   |
| Yes                               | 55 (4)     | 54 (4)       | 1 (2)     |
| Missing                           | 307 (20)   | 298 (20)     | 9 (22)    |
| Cardiac, n (%)                    |            |              |           |
| No                                | 1,035 (68) | 1,008 (68)   | 27 (66)   |
| Yes                               | 174 (11)   | 169 (11)     | 5 (12)    |
| Missing                           | 305 (20)   | 296 (20)     | 9 (22)    |
| Diabetes, n (%)                   |            |              |           |
| No                                | 1,055 (70) | 1,028 (70)   | 27 (66)   |
| Yes                               | 154 (10)   | 149 (10)     | 5 (12)    |
| Missing                           | 305 (20)   | 296 (20)     | 9 (22)    |
| Renal, n (%)                      |            |              |           |
| No                                | 1,201 (79) | 1,169 (79)   | 32 (78)   |
| Yes                               | 10 (1)     | 10 (1)       | -         |
| Missing                           | 303 (20)   | 294 (20)     | 9 (22)    |
| Inflammatory Bowel Disease, n (%) |            |              |           |
| No                                | 1,196 (79) | 1,164 (79)   | 32 (78)   |

# Supplemental Table 7. HCT-CI components by *TERT* rare variant status

| Yes                        | 15 (1)     | 15 (1)     | -       |
|----------------------------|------------|------------|---------|
| Missing                    | 303 (20)   | 294 (20)   | 9 (22)  |
| Psychiatric, n (%)         |            |            |         |
| No                         | 994 (66)   | 971 (66)   | 23 (56) |
| Yes                        | 215 (14)   | 206 (14)   | 9 (22)  |
| Missing                    | 305 (20)   | 296 (20)   | 9 (22)  |
| Obesity, n (%)             |            |            |         |
| No                         | 1,102 (73) | 1,078 (73) | 24 (59) |
| Yes                        | 108 (7)    | 100 (7)    | 8 (20)  |
| Missing                    | 304 (20)   | 295 (20)   | 9 (22)  |
| Cerebrovascular, n (%)     |            |            |         |
| No                         | 1,182 (78) | 1,150 (78) | 32 (78) |
| Yes                        | 25 (2)     | 25 (2)     | -       |
| Missing                    | 307 (20)   | 298 (20)   | 9 (22)  |
| Rheumatologic, n (%)       |            |            |         |
| No                         | 1,175 (78) | 1,145 (78) | 30 (73) |
| Yes                        | 35 (2)     | 33 (2)     | 2 (5)   |
| Missing                    | 304 (20)   | 295 (20)   | 9 (22)  |
| Peptic Ulcer, n (%)        |            |            |         |
| No                         | 1,190 (79) | 1,161 (79) | 29 (71) |
| Yes                        | 20 (1)     | 17 (1)     | 3 (7)   |
| Missing                    | 304 (20)   | 295 (20)   | 9 (22)  |
| Heart valve disease, n (%) |            |            |         |
| No                         | 1,184 (78) | 1,153 (78) | 31 (76) |
| Yes                        | 25 (2)     | 24 (2)     | 1 (2)   |
| Missing                    | 305 (20)   | 296 (20)   | 9 (22)  |

| Sup | plemental | Table 8. | Chromosome <sup>1</sup> | 7 abnormalities | bv <sup>°</sup> | TERT | rare variant | status |
|-----|-----------|----------|-------------------------|-----------------|-----------------|------|--------------|--------|
|     |           |          | •••••••••••             |                 | ~ ,             |      |              |        |

|                      | Total<br>(n = 1514) | No <i>TERT</i> rare<br>(n = 1473) | <i>TERT</i> rare<br>(n = 41) | Р       |
|----------------------|---------------------|-----------------------------------|------------------------------|---------|
| -7/del7q, n (%)      |                     |                                   |                              |         |
| Present              | 293 (19)            | 285 (19)                          | 8 (20)                       | > 0.99‡ |
| Absent               | 334 (22)            | 325 (22)                          | 9 (22)                       |         |
| Missing              | 887 (59)            | 863 (59)                          | 24 (59)                      |         |
| ‡Fisher's exact test |                     |                                   |                              |         |

Supplemental Table 9. Characteristics of patients with a *TERT* rare variant according to somatic mutation status.

| Patient   | Age at            | Blast % at | Somatic | Prior aplastic | IPSSR      | Cytogenetic risk | Ch5/7       |
|-----------|-------------------|------------|---------|----------------|------------|------------------|-------------|
| 004-659-9 | diagnosis<br>25.1 | diagnosis  | No      | anemia<br>No   | -          | group<br>-       | abnormality |
| 675-834-9 | 45.4              |            | No      | No             | Int-2      | Poor             | VAS         |
| 631-993-6 | 48.2              | 0          | No      | Yes            | -          | -                | yes         |
| 137-528-0 | 40.2              | 1          | No      | No             | Int-2      | Intermediate     | Ves         |
| 001 142 0 | 40.4              | •          | No      | No             | 1111-2     | Internediate     | 163         |
| 604 961 0 | 40.4              | -          | No      | No             | -<br>Int 1 | -                | -           |
| 094-001-9 | 49.5              | 10         | No      | No             | Int O      | Deer             | NO          |
| 680-768-2 | 49.67             | 0          | INO     | NO             | Int-2      | Poor             | Yes         |
| 138-295-4 | 55.7              | 16         | NO      | NO             | Int-1      | Poor             | Yes         |
| 193-453-1 | 56.9              | 0          | No      | No             | Int-2      | Intermediate     | Yes         |
| 653-872-5 | 62                | 5          | No      | No             | -          | Intermediate     | -           |
| 182-114-2 | 66.2              | 0          | No      | No             | Int-1      | Good             | -           |
| 139-119-5 | 72.9              | 1          | No      | No             | Int-1      | Good             | No          |
| 223-987-2 | 14                | -          | Yes     | No             | -          | Unknown          | -           |
| 671-880-6 | 21.5              | 5          | Yes     | No             | -          | Poor             | No          |
| 637-301-6 | 39.2              | -          | Yes     | No             | -          | Unknown          | -           |
| 622-265-0 | 42.4              | 1          | Yes     | No             | Low        | Good             | -           |
| 202-087-6 | 45.4              | 2          | Yes     | No             | Int-1      | Good             | -           |
| 188-048-6 | 43.9              | 1          | Yes     | No             | Int-1      | Good             | -           |
| 116-369-3 | 46.7              | 8          | Yes     | No             | Int-1      | Good             | -           |
| 618-695-4 | 47                | -          | Yes     | No             | Int-2      | Intermediate     | Yes         |
| 006-488-1 | 47.5              | 0          | Yes     | No             | Int-2      | Poor             | Yes         |
| 169-536-3 | 45.4              | 9          | Yes     | No             | Int-2      | Good             | No          |
| 126-140-6 | 51.9              | 2          | Yes     | No             | Int-1      | Good             | No          |
| 632-160-1 | 52                | 14         | Yes     | No             | Low        | Good             | -           |
| 672-577-7 | 52.4              | 10         | Yes     | No             | Int-1      | Good             | -           |
| 199-354-5 | 52.4              | 5          | Yes     | No             | Int-1      | Very good        | No          |
| 648-041-5 | 52.5              | 4          | Yes     | No             | -          | Very poor        | Yes         |
| 126-937-5 | 53.2              | 7          | Yes     | No             | Int-2      | Very poor        | Yes         |
| 695-506-9 | 54.6              | 10         | Yes     | No             | -          | Good             | -           |
| 658-186-5 | 53.5              | 4          | Yes     | No             | Int-1      | Intermediate     | No          |
| 012-006-6 | 57.8              | -          | Yes     | No             | -          | Unknown          | -           |
| 155-275-4 | 58.7              | 1          | Yes     | No             | Low        | Good             | No          |
| 108-599-5 | 58.7              | 8          | Yes     | No             | Int-2      | Very poor        | Yes         |
| 131-871-9 | 58.8              | 2          | Yes     | No             | Int-1      | Intermediate     | No          |
| 618-645-9 | 60                | 12         | Yes     | No             | Int-2      | Very poor        | Yes         |
| 112-386-1 | 60.1              | 12         | Yes     | No             | Int-1      | Very poor        | No          |
| 684-474-3 | 62.4              | -          | Yes     | No             | Int-1      | Intermediate     | No          |
| 141-314-8 | 61.5              |            | Ves     | No             | -          | Good             | -           |
| 216-744-6 | 66.7              |            | Ves     | No             | Int-1      | Good             | -           |
| 167-534-0 | 67.6              | ٩          | Ves     | No             | High       | Intermediate     | Ves         |
| 646 745 2 | 60.9              | 9          | Voo     | No             | Low        | Good             | 1 63        |
| 040-745-3 | 09.8              | U          | res     | INO            | LOW        | 6000             | -           |

(-) indicates data not available

## Supplementary Table 10. Multivariable models of transplant outcomes

|                               |                    | Cox regression: overall<br>survival |         | Competing risks regression:<br>NRM |         | Competing risks regression:<br>relapse |         |
|-------------------------------|--------------------|-------------------------------------|---------|------------------------------------|---------|----------------------------------------|---------|
|                               | No. of<br>patients | HR (95% CI)                         | р       | HR (95% CI)                        | р       | HR (95% CI)                            | р       |
| TERT rare variant status      |                    |                                     |         |                                    |         |                                        |         |
| No rare variant (reference)   | 1473               |                                     |         |                                    |         |                                        |         |
| Rare variant                  | 41                 | 1.50 (1.04, 2.17)                   | 0.03    | 1.75 (1.13, 2.71)                  | 0.01    | 0.78 (0.42, 1.46)                      | 0.44    |
| TP53 status                   |                    |                                     |         |                                    |         |                                        |         |
| No mutation (reference)       | 1225               |                                     |         |                                    |         |                                        |         |
| Mutation                      | 289                | 1.74 (1.49, 2.04)                   | < 0.001 | 1.03 (0.82, 1.31)                  | 0.80    | 1.85 (1.51, 2.28)                      | < 0.001 |
| IPSS-R Risk Category          |                    |                                     |         |                                    |         |                                        |         |
| Other (reference)             | 1343               |                                     |         |                                    |         |                                        |         |
| Very high                     | 171                | 1.46 (1.20, 1.78)                   | < 0.001 | 1.04 (0.78, 1.38)                  | 0.81    | 1.41 (1.07, 1.85)                      | 0.01    |
| Donor group                   |                    |                                     |         |                                    |         |                                        |         |
| Matched, Related (reference)  | 181                |                                     |         |                                    |         |                                        |         |
| Matched, Unrelated            | 863                | 1.07 (0.71, 1.62)                   | 0.73    | 1.16 (0.63, 2.15)                  | 0.63    | 1.12 (0.71, 1.77)                      | 0.63    |
| Mismatched                    | 296                | 1.48 (0.97, 2.25)                   | 0.07    | 1.69 (0.90, 3.15)                  | 0.10    | 0.95 (0.59, 1.53)                      | 0.83    |
| Cord Blood                    | 174                | 1.91 (1.20, 3.03)                   | 0.006   | 2.19 (1.10, 4.35)                  | 0.03    | 0.96 (0.56, 1.64)                      | 0.89    |
| RAS-tyrosine kinase pathway n | nutation           |                                     |         |                                    |         |                                        |         |
| No mutation (reference)       | 1321               |                                     |         |                                    |         |                                        |         |
| Mutation                      | 193                | 1.35 (1.12, 1.63)                   | 0.002   | 1.02 (0.77, 1.34)                  | 0.92    | 1.32 (1.02, 1.71)                      | 0.04    |
| Donor age                     |                    |                                     |         |                                    |         |                                        |         |
| < 35 years old (reference)    | 928                |                                     |         |                                    |         |                                        |         |
| 35 years or older             | 568                | 1.22 (1.05, 1.42)                   | 0.009   | 1.12 (0.92, 1.37)                  | 0.24    | 1.00 (0.82, 1.22)                      | 0.99    |
| Missing                       | 18                 | 0.95 (0.50, 1.79)                   | 0.87    | 0.59 (0.19, 1.85)                  | 0.37    | 1.06 (0.58, 1.95)                      | 0.86    |
| Recipient age                 |                    |                                     |         |                                    |         |                                        |         |
| 10-year increase              | 1514               | 1.23 (1.16, 1.30)                   | < 0.001 | 1.23 (1.14, 1.33)                  | < 0.001 | 0.98 (0.91, 1.04)                      | 0.48    |
| Year of transplant            |                    |                                     |         |                                    |         |                                        |         |
| 2005-2007 (reference)         | 300                |                                     |         |                                    |         |                                        |         |
| 2008-2014                     | 1214               | 0.77 (0.49, 1.19)                   | 0.24    | 0.48 (0.26, 0.90)                  | 0.02    | 1.86 (1.10, 3.14)                      | 0.02    |
| Karnofsky Performance Score   |                    |                                     |         |                                    |         |                                        |         |
| 90-100 (reference)            | 817                |                                     |         |                                    |         |                                        |         |
| 10-80                         | 419                | 1.27 (1.10, 1.48)                   | 0.002   | 1.23 (1.02, 1.53)                  | 0.03    | 0.99 (0.80, 1.22)                      | 0.94    |
| Missing                       | 278                | 1.05 (0.87, 1.27)                   | 0.59    | 0.95 (0.73, 1.24)                  | 0.72    | 1.14 (0.90, 1.45)                      | 0.27    |
| HCT-CI                        |                    |                                     |         |                                    |         |                                        |         |
| 0 (reference)                 | 258                |                                     |         |                                    |         |                                        |         |
| 1-2                           | 255                | 1.29 (1.01, 1.65)                   | 0.04    | 1.15 (0.83, 1.58)                  | 0.40    | 1.20 (0.88, 1.63)                      | 0.25    |
| 3 or above                    | 552                | 1.47 (1.19, 1.83)                   | < 0.001 | 1.32 (0.99, 1.76)                  | 0.06    | 1.07 (0.81, 1.40)                      | 0.64    |
| Missing                       | 449                | 1.35 (0.86, 2.11)                   | 0.19    | 0.78 (0.41, 1.47)                  | 0.44    | 1.86 (1.12, 3.07)                      | 0.02    |
| Conditioning intensity        |                    |                                     |         |                                    |         |                                        |         |
| Myeloablative (reference)     | 789                |                                     |         |                                    |         |                                        |         |
| Reduced intensity             | 582                | 0.90 (0.77, 1.04)                   | 0.15    | 0.82 (0.67, 1.00)                  | 0.05    | 1.29 (1.05, 1.58)                      | 0.02    |
| Nonmyeloablative              | 130                | 1.04 (0.81, 1.33)                   | 0.78    | 0.60 (0.41, 0.90)                  | 0.01    | 2.19 (1.60, 3.01)                      | < 0.001 |
| Missing                       | 13                 | 0.99 (0.44, 2.24)                   | 0.98    | 0.90 (0.28, 2.89)                  | 0.85    | 2.49 (1.49, 4.16)                      | < 0.001 |

|                                  | TERT rare | variant  |
|----------------------------------|-----------|----------|
|                                  | Present   | Absent   |
|                                  | n = 28    | n = 902  |
| Cause of death, n (%)            |           |          |
| GVHD                             | 0 (0)     | 146 (16) |
| Non-infectious pulmonary disease | 6 (21)    | 69 (8)   |
| Other malignancy                 | 2 (7)     | 19 (2)   |
| Organ failure                    | 3 (11)    | 67 (7)   |
| Primary disease                  | 9 (32)    | 347 (38) |
| Infection                        | 5 (18)    | 139 (15) |
| Other                            | 3 (11)    | 115 (13) |

# Supplemental Table 11. Causes of death by *TERT* rare variant status

# Supplemental Table 12. TERT rare variant functional and structural analysis summary

\_

| TERT rare   | Telomere elongation capac | citv | hTERT homology model structural comments                                                                                                                                                            |
|-------------|---------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| p.C76S      | preserved                 | 0.88 | Surface residue within DAT subdomain implicated in TPP1 binding; Ser results in mild change but decreased hydrophobicity; predicted likely tolerated.                                               |
| p.V84M      | severe                    | <0.0 | Core residue in DAT subdomain implicated in TPP1 binding; Met substitution<br>increases bulk but preserves hydrophobicity; predicted likely tolerated                                               |
| p.G110A     | severe                    | 0.00 | Not modeled but within DAT subdomain implicated in TPP1 binding; predicted pobably tolerated.                                                                                                       |
| p.G135R     | preserved                 | 0.84 | Located distal to DAT subdomain; Arg predicted to disrupt helix orientation and impair<br>TPP1 binding; predicted likely pathogenic.                                                                |
| p.R263H     | intermediate              | 0.53 | Not modeled                                                                                                                                                                                         |
| p.H296P     | intermediate              | 0.71 | Not modeled                                                                                                                                                                                         |
| p.G306S     | preserved                 | 0.82 | Not modeled                                                                                                                                                                                         |
| p.V435L     | intermediate              | 0.72 | tolerated.                                                                                                                                                                                          |
| p.V461E     | severe                    | 0.07 | In hydrophobic core; Glu likely disrupts folding; predicted pathogenic.                                                                                                                             |
| p.E484K     | intermediate              | 0.71 | Acidic residue in basic patch close to RNA; Lys could destabilize the basic helix;<br>Predicted likely pathogenic                                                                                   |
| p.R485C     | severe                    | 0.15 | On basic surface close to RNA binding groove; Cys results in loss of positive charge;<br>predicted pathogenic<br>On a belix that binds CR4/CR5 domain: Thr reduces bydrophobicity: predicted likely |
| p.A532T     | intermediate              | 0.50 | tolerated.                                                                                                                                                                                          |
| p.T567M     | severe                    | 0.18 | likely pathogenic                                                                                                                                                                                   |
| p.K570R     | intermediate              | 0.60 | On a hydrophilic loop close to RNA-DNA duplex; Arg maintains positive charge; predicted likely tolerated.                                                                                           |
| c.1770-2A>G | n/a                       | n/a  | Not modeled                                                                                                                                                                                         |
| p.R622H     | severe                    | 0.07 | Close to the template phosphodiester backbone; His likely disrupts this interaction; predicted pathogenic                                                                                           |
| p.S663G     | intermediate              | 0.53 | Surface residue facing IFD; Gly unlikely to produce significant change in structure; predicted likely tolerated                                                                                     |
| p.R669W     | intermediate              | 0.48 | tolerated                                                                                                                                                                                           |
| p.R698Q     | severe                    | <0.0 | Surface residue that forms H-bond to a beta-turn. GIn would allow H-bond; predicted likely tolerated.                                                                                               |
| p.G715D     | severe                    | 0.12 | Active site residue; Asp would repel DNA-RNA duplex; predicted pathogenic                                                                                                                           |
| p.Q722R     | intermediate              | 0.38 | On a IFD bracing helix; Arg adds positive charge; predicted likely pathogenic.                                                                                                                      |
| p.V741L     | intermediate              | 0.41 | Hydrophobic IFD reside; Leu is minimal change; predicted tolerated.                                                                                                                                 |
| p.L766S     | severe                    | 0.12 | predicted likely tolerated.                                                                                                                                                                         |
| p.P771L     | severe                    | 0.03 | Surface residue at TEN-IFD junction that could be involved in TPP1 interactions; retained hydrophobicity; predicted likely pathogenic.                                                              |
| p.V777M     | severe                    | <0.0 | Residue of IFD helix contacting TEN and TPP1; Met increases bulk; predicted pathogenic.                                                                                                             |
| p.G847S     | severe                    | 0.18 | pathogenic.                                                                                                                                                                                         |
| p.D848N     | intermediate              | 0.32 | Residue faces IFD bracing helices; Asn may disrupt salt bridge with R724; predicted likely pathogenic.                                                                                              |
| p.R865C     | severe                    | <0.0 | Active side residue; Cys leads to loss of salt bridge with E850; predicted pathogenic.                                                                                                              |
| p.V867M     | severe                    | 0.06 | Residue in close proximity to DNA; Met increases bulk; predicted likely pathogenic                                                                                                                  |
| p.T917M     | intermediate              | 0.48 | Surrace residue away from any interface; Met increases hydrophobicity; predicted likely tolerated.                                                                                                  |
| p.R951W     | severe                    | <0.0 | Not modeled or conserved; predicted likely tolerated.                                                                                                                                               |
| p.S984R     | intermediate              | 0.56 | Surface residue away from any interface; predicted tolerated                                                                                                                                        |
| p.L994F     | intermediate              | 0.48 | Hydrophobic region and Phe will increase bulk; predicted likely tolerated.                                                                                                                          |

٦

| p.A1014P | severe       | <0.0 | Strongly conserved and likely helix-breaking; predicted pathogenic.                   |
|----------|--------------|------|---------------------------------------------------------------------------------------|
|          |              |      | Hydrophilic residue within 14-3-3 binding site on helix involved in RNA binding;      |
| p.S1041F | intermediate | 0.55 | predicted likely pathogenic                                                           |
|          |              |      | Close to FVYL pocket involved in P6.1 binding; Cys less hydrophilic; predicted likely |
| p.R1086C | severe       | 0.08 | tolerated.                                                                            |
|          |              |      |                                                                                       |
| p.R1086H | preserved    | 0.89 | Close to FVYL pocket involved in P6.1 binding; His predicted tolerated.               |
|          |              |      | Surface residue; Met increases bulk; predicted tolerated but previously determined to |
| p.V1090M | severe       | <0.0 | be dysfunctional and disease-associated.                                              |
|          |              |      | Very close to RNA backbone; Trp results in loss of positive charge; predicted likely  |
| p.R1105W | intermediate | 0.37 | pathogenic.                                                                           |
|          |              |      |                                                                                       |
| p.T1110M | intermediate | 0.63 | Poorly conserved surface residue at a distance from RNA; predicted tolerated.         |