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Supplementary Figures 

 
Supplementary Figure 1A. Between-platform replications for cis-eQTLs. In this analysis, 
discovery cis-eQTL lead SNP for each gene was compared against all effects in the replication 
dataset. Note that for better visualization, scales of x- and y-axis vary on each plot. Grey dots 
indicate eQTLs not significant in the replication dataset (FDR≥0.05), yellow dots indicate eQTLs 
significant in the replication dataset (FDR<0.05) but with opposite allelic effect, and red dots 
indicate eQTLs significant in the replication dataset with identical allelic effect direction as in the 
discovery dataset. Cis-eQTLs show high concordance between gene expression platforms. 
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Supplementary Figure 1B. Between-platform replications for trans-eQTLs. Note that for 
better visualization, scales of x- and y-axis vary on each plot. Grey dots indicate eQTLs not 
significant in the replication dataset (FDR≥0.05), yellow dots indicate eQTLs significant in the 
replication dataset (FDR<0.05) but with opposite allelic effect, and red dots indicate eQTLs 
significant in the replication dataset with identical allelic effect direction as in the discovery 
dataset. Trans-eQTLs show high concordance between gene expression platforms. 
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Supplementary Figure 1C. Between-platform replications for eQTSs. Note that for better 
visualization, scales of x- and y-axis vary on each plot. Grey dots indicate eQTSs not significant 
in the replication dataset (FDR≥0.05), yellow dots indicate eQTSs significant in the replication 
dataset (FDR<0.05) but with opposite allelic effect, and red dots indicate eQTSs significant in the 
replication dataset with identical allelic effect direction as in the discovery dataset. eQTSs show 
high concordance between gene expression platforms. 
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Supplementary Figure 2. Comparison of the numbers of significant cis-eQTL, trans-eQTL 
and eQTS effects acquired by different multiple testing methods. Bonferroni corrected P-
values and Benjamini-Hochberg FDRs were calculated by p.adjust() command in R, permutation-
based FDRs were calculated with our pipeline as specified in Methods. 
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Supplementary Figure 3. Correlations between gene expression principal components and 
cell metrics in BIOS cohorts. Cell metrics were measured directly or estimated by Decon-cell 
(part of Decon2 framework). Visualised are squared Spearman correlation coefficients and no 
transformation was applied on cell metrics. Each correlation was calculated using the maximum 
number of samples available for this specific comparison (N = 446–3,831). Multiple testing 
threshold was determined by Benjamini-Hochberg FDR over all comparisons. Grey boxes indicate 
principal components which were not associated with genetic variation and regressed out prior 
analyses. 
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Supplementary Figure 4. Genomic positions for lead cis-eQTL SNPs relative to cis-eQTL 
gene positions. Compared are locations from a previous blood-based meta-analysis (Westra et 
al., 2013, N=5,331, in grey) and the current meta-analysis (N=31,684, in green). In the current 
meta-analysis results, more cis-eQTL lead SNPs are positioned within the gene body. 
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Supplementary Figure 5. Comparison of trans-eQTL meta-analysis Z-scores (x-axis) and 
replication analyses Z-scores in purified cell types, cell lines and in BIOS methylation data 
(y-axes). Note that for better visualization, the scale of y-axis varies on each plot. Grey dots 
indicate trans-eQTLs that were not significant (Benjamini-Hochberg FDR≥0.05) in the replication 
study, red dots indicate trans-eQTLs with significant (Benjamini-Hochberg FDR<0.05) in the 
replication analysis and identical allelic direction with the discovery analysis, and orange dots 
indicate significant (Benjamini-Hochberg FDR<0.05) effects in the replication analysis but 
opposite allelic direction with discovery analysis. BIOS methylation data contains samples which 
were part of the discovery meta-analysis and should not be considered as independent 
replication. Rather it indicates whether trans effects on gene expression are showing QTL effects 
on different data modality (methylation). 
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Supplementary Figure 6A. QQ-plots for investigating the inflation of trans-eQTL signal in 
different replication datasets: scRNA-seq datasets, purified cell types, cell lines, bulk 
tissues from GTEx v6p and BIOS methylation data. Each plot visualises two-sided -log10(P-
values) from each replication analysis (Spearman correlation; per-dataset effects were meta-
analyzed if replication included multiple datasets from the same cell- or tissue type; Methods, 
Supplementary Methods). Replication datasets from whole blood and from individual immune 
cell types are outlined with a red header. For GTEx replications, separate discovery meta-analysis 
was performed without GTEx, QQ-plots and lambda inflation values were calculated using trans-
eQTL effects reaching FDR<0.05 in this separate discovery analysis. BIOS methylation data 
includes samples which were part of the discovery meta-analysis. The methylation replication 
should thus not be considered as independent replication, but rather as evidence that trans effects 
on gene expression also affect a different data layer (methylation). 
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Supplementary Figure 6B. QQ-plots for investigating the inflation of eQTS signal in cell 
lines and bulk tissues from GTEx v7. Each plot visualises two-sided -log10(P-values) from each 
replication analysis (Spearman correlation; per-dataset effects were meta-analyzed if replication 
included multiple datasets from the same cell- or tissue type; Methods, Supplementary 
Methods). Replication datasets from whole blood and from individual immune cell types are 
outlined with a red header. For GTEx replications, separate discovery meta-analysis was 
performed without GTEx, QQ-plots and lambda inflation values were calculated using eQTS 
effects reaching FDR<0.05 in this separate discovery analysis. Because most of the GWAS 
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summary statistics used in eQTS analyses originated from GWASs performed in European 
cohorts and discovery meta-analysis included the majority of European samples, we included 
only samples of European ancestry into GTEx replication analyses shown here. 
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Supplementary Figure 7. Correlation analysis (rb) for trans-eQTL replication in scRNA-seq 
data, cell lines and purified cell types. The rb statistic is a measure for correlation of effect 
sizes; higher rb values indicate stronger sharing of trans-eQTL signal between studies. A. rb 
analysis in scRNA-seq data. Dot indicates the rb, error bar indicates the standard error (SE) of rb. 
In order to calculate P-value, rb and SE(rb) were converted to Z-score and P-value was derived 
from chi-squared distribution with one degree of freedom. B. Number of testable trans-eQTLs in 
each scRNA-seq cell type. The length of the bars indicates the number of all testable trans-eQTLs 
and dark grey bars indicate the subset of independent effects (SNPs ±1 Mb from lead discovery 
SNP removed) which were used for rb calculation. C. rb analysis in purified cell types and cell 
lines. D. Number of testable trans-eQTLs in each purified cell type and cell line. 



 24 

 



 25 

 



 26 

 
 
 



 27 

Supplementary Figure 8. Distribution of significant (FDR<0.05) cis-eQTL, trans-eQTL and 
eQTS effect sizes (absolute correlation coefficients r, calculated from meta-analysis Z-
scores) and the replication power of replication datasets. A, E, I: Effect size distributions and 
corresponding minimal, median and maximal effect sizes. B, F, J: Relationship between discovery 
analyses effect sizes and analysis power. Outlined are power to detect minimal discovery effect 
size (green), effect size corresponding to power level of 0.8 (purple), and line signifying the power 
threshold of 0.8 (yellow). C, G, K: Relationship between sample size and power in the discovery 
analysis. Different lines indicate how many samples would be needed to detect effects with 
minimal effect size (green), median effect size (orange) and maximal effect size (yellow). D, H, L: 
Relationship between replication dataset effect size and replication power. Lines indicate the 
power threshold of 0.8 and corresponding replication effect threshold (purple) for given dataset. 
For GTEx v7, largest sample size over all the tissues was used for those power estimations, real 
replication power in remaining tissues is smaller. BIOS methylation dataset contains samples 
which were part of the discovery meta-analysis, therefore this should not be considered as 
independent replication. 
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Supplementary Figure 9. Putative mechanisms leading to trans-eQTL effects. We explored 
putative mechanisms that might explain the trans-eQTLs observed in discovery meta-analysis by 
series of enrichment analyses (two-sided Fisher’s exact test). To perform these enrichment 
analyses, we first converted trans-eQTL results to a cis-trans gene-gene matrix using the Pascal 
method. 
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Supplementary Figure 10. Strategy of converting trans-eQTL data to cis-trans gene-gene 
matrix by Pascal method. Using the permuted Z-score summary statistics of our trans-eQTL 
analysis, we corrected the trans-eQTL Z-score statistics for LD between variants and created 
gene-gene P-value matrices (left) for the unpermuted and permuted data. 
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Supplementary Figure 11A. Age-of-menarche-associated SNP rs1532331 (5p12) is in high 
LD (R2>0.8, 1kG p1v3 EUR) with the lead cis-eQTL effect for ZNF131 which encodes 
transcription factor. In total, we identified 3 cis-eQTL genes and 75 trans-eQTL genes 
associated with this variant. In a recent short hairpin RNA knockdown experiment of ZNF131, 
three separate cell isolates showed downregulation of four genes that we identified as trans-eQTL 
genes: HAUS5, TMEM237, MIF4GD and AASDH (indicated by red stars). The product of ZNF131 
has been hypothesized to inhibit estrogen signaling, which may explain how the SNP in this locus 
contributes to altering the age of menarche. For trans-eQTLs, the outline indicates that lead cis-
eQTL from the full discovery meta-analysis and lead trans-eQTL SNPs (from locus-wide trans-
eQTL analysis in the subset of 4,339 samples) are in high LD (R2>0.8, 1kG p1v3 EUR), 
suggesting co-localization. 
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Supplementary Figure 11B. Trans-eQTLs extend insight for loci with multiple cis-eQTL 
effects. In the FADS1/FADS2 locus, rs174574 (11q12.2) is associated with lipid levels and affects 
6 genes in cis and 17 genes in trans. The strongest cis-eQTLs in this locus modulate the 
expression of FADS1, FADS2 and TMEM258, with the latter being in high LD with the GWAS 
SNP (R2>0.8, 1kG p1v3 EUR). From those genes, FADS1 and FADS2 have been implicated to 
affect lipid levels since these encode fatty acid desaturases. Consistent with their function, trans-
eQTL genes from this locus are highly enriched for triglyceride metabolism in REACTOME 
(P<4.1×10-9, GeneNetwork pathway enrichment method which leverages large-scale gene 
expression data; www.genenetwork.nl). 
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Supplementary Figure 11C. Trans-eQTLs can shed light on loci with no detectable cis-
eQTLs. rs1990760 (2q24.2) is associated with multiple immune-related traits (type 1 diabetes 
(T1D), inflammatory bowel disease (IBD), systemic lupus erythematosis (SLE) and psoriasis). For 
this SNP there are 17 significant (FDR<0.05) trans-eQTL effects, but no detectable gene-level 
cis-eQTL. The risk allele for this SNP causes an Ala946Thr amino acid change in the RIG-1 
regulatory domain of MDA5 (encoded by gene IFIH1 - Interferon Induced With Helicase C Domain 
1), outlining one possible mechanism leading to the observed trans-eQTLs. MDA5 acts as a 
sensor for viral double-stranded RNA, activating interferon I signaling among other antiviral 
responses. All the trans-eQTL genes were up-regulated relative to risk allele to T1D, and 9 (52%) 
are known to be involved in interferon signaling. 
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Supplementary Figure 11D. Trans-eQTLs can reveal cell type composition effects of the trait-associated SNP. Asthma-associated SNP 

rs7216389 (17q12-q21.1) has 14 cis-eQTL effects (FDR<0.05), most notably on IKZF3, GSDMB, and ORMDL3 (left). Ninety-four out of the 104 

trans-eQTL genes were up-regulated by the risk allele for asthma and were mostly expressed in B cells and natural killer cells (right). IKZF3 

encodes the protein which is part of the Ikaros transcription factor family that regulates B-cell proliferation, suggesting that a decrease of the 

product of IKZF3 leads to an increased number of B cells and resulting trans-eQTL effects caused by cell-type composition differences. 

 



 34 

 

 
Supplementary Figure 11E. Trans-eQTLs can suggest the involvement of pathways that 
are not previously associated with certain complex traits. Height-associated SNP 
rs1311351834 (4q12) is in high LD (R2>0.8, 1kG p1v3 EUR) with the lead cis-eQTL SNP for the 
CLOCK gene. The upregulated TF CLOCK forms a heterodimer with TF BMAL1, and the resulting 
protein complex regulates circadian rhythm. Three known circadian rhythm trans-eQTL genes 
(TEF, NR1D1 and NR1D2) showed increased expression for the trait-increasing allele, suggesting 
a possible mechanism for the observed trans-eQTLs through binding of CLOCK:BMAL1.  
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Supplementary Figure 12. Replication analyses for eQTSs. Comparison of eQTS discovery 
meta-analysis Z-scores (x-axis) and replication analysis Z-scores (y-axis) in LCL (A) and iPSC 
(B) cell lines. Note, that for better visualization, the scale of the y-axis varies on each plot. Grey 
dots indicate eQTS effects that were not significant in the replication study, red dots indicate 
significant (Benjamini-Hochberg FDR<0.05) eQTS effects with identical direction with the 
discovery, and orange dots indicate significant effects with opposite direction with the discovery. 
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Supplementary Figure 13A. eQTS analysis can identify genes relevant for non-blood traits. 
For example, the expression of GPR15 (discovery eQTS meta-analysis P=3.7×10-8, 
FDR=0.00137) is associated with the trait ‘ever versus never smoking’. GPR15 is a biomarker for 
smoking that is overexpressed and hypomethylated in smokers. We observe strong GPR15 
expression in lymphocytes, suggesting that the association with smoking could originate from a 
change in the proportion of T cells in blood. As GPR15 is involved in T cell homing and has been 
linked to colitis and inflammatory phenotypes, it is hypothesized to be involved in the systematic 
inflammation induced by tobacco smoking. The expression of GPR15 in GTEx v7 tissues is 
visualized in the right pane (bars indicate transcripts per million (TPM), 10 tissues with the highest 
GPR15 expression are visualized). 
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Supplementary Figure 13B. The PGS for educational attainment correlated significantly 
with the expression of 21 genes (FDR<0.05). Several of the strongly associated genes are 
known to be involved in neuronal processes (thick border). 
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Supplementary Figure 13C. Expression levels of significant eQTS genes for educational 
attainment in GTEx v7 tissues. The log2-scaled expression values in transcripts per million 
(log2(TMP+1)) are visualised on the heatmap. The regulation bar indicates if the gene is up- (red) 
or down-regulated (blue) relative to higher PGS for educational attainment; the log10P bar shows 
the discovery eQTS meta-analysis association significance for a given gene, represented as -
log10(P); the tissue class column indicates whether the GTEx tissue is neuronal. Several of the 
eQTS genes for educational attainment show expression in brain and neuronal tissues
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Supplementary Figure 13D. Cell types associated with autoimmune disorders. eQTS gene signatures in scRNA-seq data of ~25,000 
peripheral blood mononuclear cells isolated from 45 individuals (Van der Wijst et al, Nat. Genet. 2018) shows the cell types in which the genes 
associated with the PGS for ulcerative colitis, systemic lupus erythematosus and celiac disease are most likely expressed.



 40 

 
Supplementary Figure 14A. Cleaning of cross-mapping trans-eQTLs, based on nominal 
replication in GTEx v6p tissues. For that, each trans-eQTL gene was divided to synthetic reads 
and mapped against each 10 Mb region, centered around each trans-eQTL SNP. Trans-eQTLs 
for which >5% of all reads mapped near the trans-eQTL SNP were considered as potential 
artifacts. On the y-axis is shown the 5% cross-mapping threshold we used to filter out trans-eQTLs 
which might be caused by a read cross-mapping within the cis region. Red dots outline 26 trans-
eQTLs which showed high nominal replication rates in GTEx tissues (uncorrected two-sided 
P<0.05; Spearman correlation) but low cross-mapping rate, and which were subsequently 
selected for further investigation. 
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Supplementary Figure 14B. Twenty-six trans-eQTLs that show high replication rates in 
GTEx v6p tissues, yet low cross-mapping with cis region surrounding the trans-eQTL SNP. 
Forest plots show the effect directions (Z-scores) in all 37 datasets. 
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Supplementary Figure 14C. Trans-eQTL replication plots with cross-mapping trans-eQTLs 
outlined (yellow dots), comparing Z-scores between the discovery meta-analysis on the x-
axis, and the replication datasets on the y-axis. We observed generally higher effect sizes for 
cross-mapping trans-eQTLs in several replication cell types. WholeBlood and PBMC indicate 
results from size-matched whole blood and PBMC subsets of the discovery analysis. Note that 
for better visualization, scales of y-axis differ from scales of x-axis. 
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Supplementary Figure 14D. Trans-eQTL replication analysis in LCLs, with cross-mapping 
effects outlined. On the x-axis is Z-score from LCL replication meta-analysis, on the y-axis are 
Z-scores from individual LCL cohorts. Cross-mapping trans-eQTLs are outlined (yellow dots). 
Note that for better visualization, scales of y-axis differ from scales of x-axis. 
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Supplementary Figure 15. SNP allele frequency (AF) comparison between eQTLGen and 
1000G p1v3 EUR reference panel. eQTLGen AF calculations did not include Framingham Heart 
Study (N=5,075). Allele frequencies in eQTLGen are highly consistent with the 1000G p1v3 EUR 
reference panel. 
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Supplementary Figure 16A. Comparison of the allelic direction of cis-eQTL lead SNPs 
between each individual dataset (y-axis) and the meta-analysis (x-axis) using Z-scores. 
Note, that for better visualization, the scale of the scales of y-axis differ from scales of x-axis. 
Black dots indicate cis-eQTLs with identical allelic direction compared to the meta-analysis, while 
red dots indicate opposite effects. Cis-eQTL directions per dataset are highly concordant with the 
meta-analysis. 
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Supplementary Figure 16B. Comparison of the trans-eQTL allelic direction between each 
individual dataset (y-axis) and the meta-analysis (x-axis) using Z-scores. Note, that for better 
visualization, the scales of y-axis differ from scales of x-axis. Black dots indicate trans-eQTLs with 
identical allelic direction compared to the meta-analysis, while red dots indicate opposite effects. 
Trans-eQTL directions per dataset are highly concordant with the meta-analysis. 
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Supplementary Figure 16C. Comparison of the eQTS effect direction between each 
individual dataset (y-axis) and the meta-analysis (x-axis) using Z-scores. Note, that for better 
visualization, the scale of the scales of y-axis differ from scales of x-axis. Black dots indicate 
eQTSs with identical effect direction compared to the meta-analysis, while red dots indicate 
opposite effects. eQTS effect directions per dataset are highly concordant with the meta-analysis. 
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Supplementary Figure 17. Schematic of the conditional trans-eQTL analysis and LD-
overlap with cis-eQTL SNPs. We analyzed the 59,786 trans-eQTLs identified in discovery meta-
analysis, and limited ourselves to those having P<8.3×10-6 in the subset of 4,339 samples for 
which we had access to genotype and RNA-seq data. We then focused on regions of 1 Mb 
surrounding the identified trans-eQTL SNPs, and performed conditional analysis using all variants 
in those regions. Finally, we calculated LD between the independent lead variants showing 
strongest association in each locus and lead cis-eQTL SNPs from discovery analysis. 
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Supplementary Figure 18. Trans-eQTLs effects emerging from rs7045087 (9p21.1) are 
affected by cis-eQTL gene DDX58. For these analyses, we constructed trans-eQTL linear 
models and included DDX58 into genotype × gene expression interaction term for each model. 
The two-sided P-value for genotype × DDX58 interaction term is indicated for the each plot. A low 
P-value for this interaction term indicates that the three slopes (one for each genotype; red, blue 
and green) for the trans-eQTL differ depending on DDX58 expression levels, suggesting that 
DDX58 affects the outlined trans-eQTL effects. Interaction P-values on this plot were calculated 
based on the meta-analysis on all BIOS cohorts and EGCUT RNA-seq (combined N=4,339, all 
FDR<0.05). Scatterplots, slopes and corresponding Pearson correlation coefficients were 
calculated on BIOS cohorts only (combined N=3,831) because these RNA-seq data were 
generated and processed together.  
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Supplementary Figure 19. QQ-plots to investigate the effect of cell type composition on 
trans-eQTLs (left) and eQTS (right). We included only those discovery effects (FDR<0.05 in 
discovery meta-analysis) that were testable in up to 1,858 BIOS samples and SNPs which had 
per-cohort MAF>0.05. For both trans-eQTLs and eQTS, we evaluated three linear models 
(Supplementary Methods): a model without cell type correction (blue), a model including all 49 
available cell metrics as covariates (orange), and a model including all 49 cell metrics and their 
respective SNP × cell-type or PGS × cell-type interaction terms as covariates (red). The y-axis 
shows the two-sided -log10(P-value) for the effect of the SNP or eQTS in each model. The x-axis 
shows the expected -log10(P-value) under a uniform null distribution. Lambda values indicate 
inflation over the null, and show decrease when interaction terms are added to the model, 
indicating that trans-eQTLs and eQTSs are likely cell type dependent. 
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Supplementary Figure 20. Cis-eQTL genes showing evidence of co-localization with trans-
eQTLs (R2>0.8, 1000G p1v3 EUR) were enriched by transcription factor process as defined 
by Gene ontology’s Biological Process (GO BP), Cellular Compartment (GO CC) and 
Molecular Function (GO MF) categories. The x-axis shows the odds ratio and the y-axis shows 
the accompanying P-value (-log10(P)) from a one-sided Fisher's exact test and significant GO 
terms are outlined as red. In this analysis, the only effect reaching Benjamini-Hochberg FDR 
threshold of 0.05 had a P-value of 9.15×10-6. 
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Discovery Cohorts 
Illumina array cohorts 

BEST 

The BEST (Bangladesh Vitamin E and Selenium Trial) study is a randomized chemoprevention 
trial evaluating the long-term effects of vitamin E and selenium supplementation on non-
melanoma skin cancer risk among 7,000 individuals with arsenic-related skin lesions living in 
seven sub-districts in Bangladesh (Argos et al., 2013). Participants included in this work are a 
subset of BEST participants for whom data is available on genome-wide single nucleotide 
polymorphisms (SNPs) and array-based expression. DNA was extracted from the whole blood 
using the QIAamp 96 DNA Blood Kit (cat # 51161; Qiagen, Valencia, USA). Concentration and 
quality of extracted DNA were assessed using Nanodrop 1000. Genotyping was conducted using 
Illumina HumanCytoSNP-12 v2.1 chips according to Illumina’s protocol, and chips were read on 
the BeadArray Reader. Image data was processed in BeadStudio software to generate genotype 
calls. Quality control (QC) was conducted as described previously (Pierce et al., 2012; Pierce et 
al., 2013). We removed DNA samples with call rates <97%, gender mismatches, and technical 
duplicates. We removed SNPs with call rates <95% or HWE P-values<10−10. The Michigan 
Imputation Server (Das et al., 2016) was used to conduct genotype imputation using 1,000 
genomes reference haplotypes (1KG phase3 v5, mixed populations). Only high-quality imputed 
SNPs (imputation r2>0.3) with SNPs with Minor Allele Frequency (MAF) >0.05 were retained. 
RNA was extracted from PBMCs, preserved in buffer RLT, and stored at −86°C using RNeasy 
Micro Kit (cat# 74004) from Qiagen. Concentration and quality of RNA samples were assessed 
on Nanodrop 1000. cRNA synthesis was done from 250 ng of RNA using the Illumina TotalPrep 
96 RNA Amplification kit, and 750 ng of cRNA was applied to the Illumina Human HT-12 v4 
expression array. Individuals having <30% of probes with detection P-value <0.05 were excluded 
from the analysis. We also exclude 1st degree relatives by using GCTA software (–grm cut point 
of 0.3).  
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BSGS 

The Brisbane Systems Genetics Study (BSGS) cohort was previously described in detail in 
(Powell et al., 2012; Powell et al., 2013). Briefly, BSGS is comprised of 862 individuals of 
Northern-European origin from 274 families consisting of either monozygotic or dizygotic twin 
pairs along with their siblings and parents. Expression levels for each individual were measured 
from whole blood using Illumina HT-12 v4.0 microarray chips. Whole genome SNP genotypes 
were generated using Illumina 610 Quad-Beadchips and, after QC, were imputed to the 1000 
Genomes Release. The expression dataset is available from the GEO (Gene Expression 
Omnibus) public repository under the accession GSE 33321. Here, we selected only unrelated 
individuals, leaving 329 for analysis by the eQTLGen analysis plan for Illumina arrays. 
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Cardiology 

Cardiology data contains 338 samples (Kim et al., 2014), and gene expression data have been 
deposited at the Gene Expression Omnibus archive under accession number (GEO:GSE49925). 
In this study, only 147 individuals in the discovery cohort were used. Peripheral blood samples 
were collected immediately prior to angiography and after overnight fasting, and stored in 
Paxgene tubes (QIAGEN, San Diego, CA, USA) at -80°C. Microarray analysis of transcript 
abundance was performed by hybridization of dye-labeled RNA to Illumina HT-12 v4 bead arrays. 
Hybridizations was performed by Expression Analysis (Durham, NC, USA). Whole genome 
genotypes for the discovery phase were determined by Illumina OmniQuad arrays at Expression 
Analysis (Durham, NC, USA), and was then imputed using Impute v2, using the 1000G reference 
phase1 v3 genotypes. After outlier detection and mixup correction, 134 individuals were included 
for the further analysis. 
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CHDWB 

The Center for Health Discovery and Well Being (CHDWB) cohort (Preininger et al., 2013, Wingo 
et al., 2015) is comprised of 465 samples collected in Atlanta, Georgia, USA. Whole peripheral 
blood RNA samples were collected using Tempus Blood RNA Tubes (Life Technologies, NY, 
USA), and RNA was extracted using Tempus Spin RNA Isolation Kit (Life Technologies, NY, 
USA). Quality was measured by NanoDrop 1000 Spectrophotometer (Thermo Fisher Scientific, 
DE, USA) and Agilent 2100 Bioanalyzer (Agilent Technologies, CA, USA). Whole-Genome gene-
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expression levels were available for 408 individuals and were obtained by Illumina Human HT-12 
v4 arrays (Illumina Inc, San Diego, US) according manufacturers protocols. Genotyping was 
performed using HumanCoreExome and HumanOmniExpress, and was imputed using Impute 
v2, using the 1000G reference phase1 v3 genotypes. After outlier detection and mix-up correction, 
384 samples were left for eQTL detection. 
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Morocco 

The Morocco dataset (Idaghdour et al., 2010) is comprised of 194 individuals representing two 
ethnicities (Arabs and Amazighs) from three geographic locations (Agadir, Boutroch and Ighrem) 
and two lifestyles (Urban and Rural). Gene expression data from this study have been deposited 
under series GSE17065. Peripheral blood samples were collected over the course of 6 d during 
June and July 2008 using LeukoLockTM system 
(https://www.thermofisher.com/order/catalog/product/AM1923#/AM1923). The same 
collection protocol was followed for all samples to minimize heterogeneity due to technical 
reasons. Total RNA extraction and cDNA and cRNA synthesis were performed with an Illumina 
TotalPrep RNA Amplification kit (Ambion) in accordance with the manufacturer’s instructions. 
Total RNA samples were checked for quality with an RNA 6000 Nano LabChip kit and 2100 
Bioanalyzer (Agilent). RNA from each was hybridized to an Illumina HT-12 v3 array. Genotype 
was assayed with Infinium Human 610-Quad beadchips (Illumina) by following standard 
procedures, also at the Duke University IGSP. The beadchips were imaged by using a BeadArray 
Reader (Illumina), and genotype calls were extracted with the Genotyping Module in BeadStudio 
software, and was then imputed using Impute v2, using the 1000G reference phase1 v3 
genotypes. After outlier detection and mix-up correction, a total of 175 individuals were retained. 
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EGCUT 

The Illumina array gene expression data from the Estonian Genome Center, University of Tartu 
(EGCUT, Leitsalu et al., 2015) biobank of 53,000 samples consists of two different cohorts: the 
Estonian Gene Expression Cohort (EGCUT1) and the Center for Translational Genomics cohort 
(EGCUT2). EGCUT Illumina array analyses were approved by Ethics Review Committee of 
Human Research of the University of Tartu, Estonia (permission no 234/T-12). 
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EGCUT1 

EGCUT1 cohort is composed of 2,658 individuals obtained from the Estonian Genome Center, 
University of Tartu (EGCUT) cohort. Genotyping was performed using Human370CNV 
BeadChips (Illumina), and imputed using the 1000 Genomes project reference by IMPUTE v2 
(Phase III, March 2012 release). SNP QC was done on the basis of call rate (≤97%) across 
samples and deviation from HWE (≤1×10-6). Before imputation, non-autosomal SNPs, SNPs with 
minor allele frequency < 1% and palindromic SNPs were removed. Gene expression levels were 
measured in whole blood using Illumina HT12v3 microarray chips. After sample QC and mix-up 
correction, 818 samples were included in the eQTLGen meta-analyses. The expression dataset 
is available at GEO public repository under the accession GSE48348. 

EGCUT2 

EGCUT2 cohort is composed of 1,000 individuals who have been re-contacted for a second time-
point sample. Of these, 96 individuals have gene expression levels measured in whole blood. 
Genotyping was performed using HumanOmniExpress BeadChips (Illumina), and imputed using 
the 1000 Genomes project reference by IMPUTE v2. RNA from whole blood was purified using 
the MagMAX™ for Stabilized Blood Tubes RNA Isolation Kit. RNA was concentrated using the 
Heraeus vacuum centrifugation system without heating. RNA was labeled and amplified using the 
TargetAmp-Nano Labeling Kit for Illumina Expression BeadChip (Epicentre Biotechnologies) with 
SuperScript III Reverse Transcriptase (Life Technologies), followed by purification with the 
RNeasy MinElute Cleanup Kit (Qiagen). RNA quality was assessed after extraction and after 
labelling using an Agilent 2100 Bioanalyzer and Agilent RNA 6000 Nano Kit (all from Agilent 
Technologies). Labeled RNA was hybridized to the HumanHT-12 v4 Expression BeadChip 
(Illumina) according to the manufacturer's instructions. After sample QC and mix-up correction, 
19 samples were excluded and 77 samples remained. The expression dataset is available at GEO 
public repository under the accession GSE78840. 
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DILGOM 

The DIetary, Lifestyle and Genetic determinants of Obesity and Metabolic syndrome (DILGOM) 
cohort (Inouye et al., 2010) is composed of 518 individuals obtained from the National FINRISK 
Study, The National Institute for Health and Welfare, Helsinki, Finland. Genotyping was performed 
using HumanHap 610K BeadChips (Illumina), and imputed using the 1000 Genomes project 
reference by IMPUTE v2 (Phase III, March 2012 release). SNP QC was done on the basis of call 
rate (≤98%) across samples and deviation from HWE (≤1 ×10-6). Before imputation, non-
autosomal SNPs, SNPs with minor allele frequency < 1% and palindromic SNPs were removed. 
Gene expression levels were measured in whole blood using Illumina HT12v3 microarray chips. 
After sample QC and mix-up correction, 498 samples were included to eQTLGen meta-analyses. 
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Fehrmann 

The Fehrmann datasets consist of whole blood samples from United Kingdom and Netherlands 
(Dubois et al., 2010; Fehrmann et al., 2011). This dataset consists of blood samples from patients 
(overview: Fehrmann et al., 2011) and healthy controls. Samples were genotyped with Illumina 
HumanHap300, HumanHap370 or 610 Quad platforms. Genotypes were imputed by Impute v2 
(Howie et al., 2009) using the GIANT 1000G p1v3 integrated call set for all ancestries as a 
reference (The 1000 Genomes Project Consortium, 2010). Gene expression levels were 
measured by Illumina HT-12 v3 and Illumina HumanRef-8 v2.0 arrays. This expression dataset is 
available at GEO (Gene Expression Omnibus) repository, accession numbers GSE20142 and 
GSE20332. After data processing and QC, 1,227 samples from HT-12 v3 dataset and 214 from 
HumanRef-8 v2.0 dataset were included to eQTLGen meta-analyses. All samples were collected 
after informed consent and approved by local ethical review boards. 
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HVH 

The Heart and Vascular Health (HVH) study (Heckbert et al., 2009; Psaty et al., 1995; Smith et 
al., 2004) constitutes a group of population-based case control studies of myocardial infarction 
(MI), stroke, venous thromboembolism (VTE), and atrial fibrillation. Study participants were 30-79 
year old members of Group Health, a large integrated health care organization in Washington 
State. Cases were identified from hospital discharge diagnosis codes and subsequently validated 
by medical record review. Cases shared a common control group that was a random sample of 
Group Health members, frequency-matched to MI cases on age (within decade), sex, treated 
hypertension, and calendar year of identification. The HVH study started in 1987 and blood 
specimens have been collected since 1995. Study eligibility, participant characteristics and risk 
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factor information were collected by medical record review and telephone interview. In addition, 
surviving cases and controls who agreed to participate had blood drawn. 

Since 2003, whole blood has been collected in PAXGene tubes for mRNA expression studies. 
Participants of the current study are those for whom expression profiling was done as part of 
several gene expression pilot studies conducted among HVH controls to investigate incident 
cardiovascular disease, hormone therapy, medications, diabetes and atrial fibrillation. The Group 
Health human subjects review committee approved the study and all participants provided written 
informed consent. 

Total RNA was extracted using PAXGene Blood RNA Kit and RNase-Free DNase Set (QIAGEN 
Inc., Valencia, CA) at the Fred Hutchinson Cancer Research Center, Seattle, WA. RNA integrity 
and quality was assessed using Agilent 2100 Bioanalyzer (Agilent Technologies Inc., Santa Clara, 
CA). Illumina® TotalPrep™-96 RNA Amplification Kit (Life Technologies Corp., Carlsbad, CA) 
was used for RNA amplification and labeling using manufacturer’s instructions. Labeled cRNAs 
were hybridized onto Illumina HumanHT-12v3 and Illumina HumanHT-12 v4 Expression 
Beadchip (Illumina, San Diego, CA) arrays, according to manufacturer’s protocols. The images of 
the array chips were captured using an Illumina Beadarray scanner and scanned array images 
were imported into Illumina’s GenomeStudio Gene Expression Module. RNA QC and microarray 
expression profiling experiments were conducted at the laboratory of Dr. Jerome Rotter. The 
expression data is available at GEO (Gene Expression Omnibus) public repository under the 
accession GSE47729. 

Genotyping was performed at the General Clinical Research Center's Phenotyping/Genotyping 
Laboratory at Cedars-Sinai using the Illumina 370CNV BeadChip system. Genotypes were called 
using the Illumina BeadStudio software. Samples were excluded from analysis for sex mismatch 
or call rate < 95%. The following exclusions were applied to identify a final set of 301,321 
autosomal SNPs: call rate < 97%, HWE P-value < 10-5, > 2 duplicate errors or Mendelian 
inconsistencies (for reference CEPH trios), heterozygote frequency = 0, SNP not found in 
HapMap and inconsistencies across genotyping batches. The genotypes retained after QC were 
pre-phased using MaCH. The phased genotypes were imputed into a reference panel of 1092 
individual of multiple ethnicities from the Phase1 version 3 haplotypes of Thousand Genomes 
project using minimac (release stamp 2012-11-16). Imputation of the X chromosome was limited 
to the non pseudo-autosomal region and was imputed separately by sex. Samples profiled by HT-
12 v3 (N=40) and HT-12 v4 (N=59) arrays were analyzed separately. 
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InCHIANTI 

The Invecchiare in Chianti, ageing in the Chianti area (InCHIANTI) study 
(http://www.inchiantistudy.net) (Ferrucci et al., 2000) is a population-based, prospective study of 
human ageing in the Tuscany region of Italy. 1,455 participants were enrolled at baseline (1998-
2000), with follow-up waves every 3 years. Extensive interviews, questionnaires, medical 
examinations, physical tests and blood samples were taken at every wave. Ethical approval was 
granted by the Instituto Nazionale Riposo e Cura Anziani institutional review board in Italy, and 
participants gave informed consent to participate. 

At wave 4 (year 9, 2008/9), peripheral blood specimens were collected from 712 individuals using 
the PAXGene technology to preserve levels of mRNA transcripts as they were at the point of 
collection (Debey-Pascher et al., 2009). RNA was extracted from peripheral blood samples using 
the PAXGene Blood mRNA kit (Qiagen, Crawley, UK) according to the manufacturer’s 
instructions. RNA was biotinylated and amplified using the Illumina® TotalPrep (Broer et al., 2014) 
-96 RNA Amplification Kit and directly hybridized with HumanHT-12 v3 Expression BeadChips 
that include 48,803 probes. Image data was collected on an Illumina iScan and analyzed using 
the Illumina and Beadstudio software (Illumina, San Diego, California, USA) as previously 
described (Gibbs et al., 2010). All microarray experiments and analyses complied with MIAME 
guidelines. Genotyping was carried out by Illumina 550K array and imputation was performed by 
MACH, using 1000G phase 1 v3 reference panel. 

    Inclusion criteria     
Imputation inclusion 
criteria 

Genotype 
Platform 

Calling 
algorithm MAF Call rate HWE p-value 

N of SNPs that met 
QC criteria 

Imputation 
software MAF   

Illumina 
550K Beadstudio ≥1% ≥99% >10-6 514,027 MACH ≥1% R2-hat≥0.30 

 

The total number of InCHIANTI samples with good quality whole-genome expression data equals 
698, 695 of which also have cell-count data. After preprocessing and QC, 609 samples were 
included to eQTLGen study. 
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KORA F4 

The Cooperative Health Research in the Region of Augsburg (KORA F4) is a follow-up survey 
(2006-2008) of the population-based KORA S4 survey that was conducted in the region of 
Augsburg in Southern Germany in 1999-2001. The expression analysis in this study was based 
on whole blood samples of the KORA F4 participants aged 62 to 81 years (Rathmann et al., 
2009). RNA was isolated from whole blood using PAXgene Blood miRNA Kit (Qiagen, Hilden, 
Germany). Purity and integrity of the RNA was analyzed using the Agilent Bioanalyzer with the 
6000 Nano LabChip reagent set (Agilent Technologies, Germany). RNA was reverse transcribed 
with TotalPrep-96 RNA Amp Kit (Ambion, Germany) and hybridized to the Illumina HumanHT-12 
v3 Expression BeadChip (Schurmann et al., 2012). The samples were genotyped on the 
Affymetrix 6.0 GeneChip array and imputed with IMPUTE (v1.0.15) using 1000 Genomes phase 
1, version 3 as reference population for calling and imputation. All together there were 952 
samples with gene expression and genotype data available for analysis. The expression dataset 
is available at ArrayExpress public repository under the accession E-MTAB-1708. 
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LIFE-Adult 

LIFE-Adult is a population-based cohort study that recruited about 10,000 randomly selected 
inhabitants of the city of Leipzig, Saxony, Germany. Further information can be found elsewhere 
(Loeffler et al., 2015).  

Gene expression 

Whole blood was collected in Tempus Blood RNA Tubes (Life Technologies) and relocated to -
80°C before further processing. Isolated RNA was processed and hybridized to Illumina HT-12 
v4 Expression BeadChips (Illumina, San Diego, CA, USA) and measured on the Illumina HiScan. 

Raw data of all 47,322 probes was extracted by Illumina GenomeStudio in all 3,489 initially 
included individuals. Three criteria were used to remove samples of low quality (processed within 
R / Bioconductor): First, the number of gene-expression probes detected in a sample was required 
to be within ± 3 interquartile ranges (IQR) from the median, leading to the exclusion of 0.4% of 
the initially included samples. Second, as described in (Du et al., 2008), log-transformed and 
quantile-normalized Euclidean distances of expression values had to be within 4 x IQR of the 
median, leading to the exclusion of 0.2% of the samples. Third, the Mahalanobis distance of 
several quality characteristics of each sample (log-transformed and quantile-normalized signal of 
perfect-match and miss-match control probes, control probes present at different concentrations, 
mean of negative control probes, mean of house-keeping genes, number of expressed genes, 
mean signal strength of biotin-control-probes and ERCC-spike-in probes (Jiang et al., 2011) had 
to be within median + 3 x IQR, leading to the exclusion of an additional 2.3% of the samples. 
Hence, valid expression data was available in a total of 3,388 individuals. 

Genotyping 

Genomic DNA was extracted from peripheral blood leukocytes applying an automated protocol 
on the Autopure LS instrument (Qiagen, Hilden, Germany) as recommended by the manufacturer. 
Chip-genotyping was done applying Axiom Genome-Wide CEU 1 Array Plate (Affymetrix, Inc., 
Santa Clara, California, USA) technology including 587,352 Single Nucleotide Polymorphisms 
(SNPs) according the manufacturer’s instructions. Sample quality filtering removed all individuals 
with dish-QC < 0.82, call rate < 0.97, reported vs. genotype-wise computed sex mismatch and 
cryptic relatedness. Using about 200,000 high-quality SNPs (call rate > .998), PCA was performed 
using EIGENSOFT 3.0. Outliers according to the standard-cutoff 6SD were removed, leaving 
4985 individuals for further analysis. SNP quality filtering removed SNPs with call rate < 0.97, 
Hardy-Weinberg P-value ≤ 1E-6, plate association p-value ≤ 1E-7 and inappropriate cluster-plot 
quality metrics (Fisher’s Linear Discriminant < 3.6, heterozygous cluster strength offset < -0.1 or 
invalid homozygote ratio offset). A total of 538,181 mapped SNPs were included in imputation 
using 1000G reference phase 1, release V3 of CEU as reference (hg19, dbSNP 135). Data were 
imputed by first pre-phasing using SHAPEIT (version v2.r778) with standard settings for European 
populations followed by imputation with IMPUTE2 (version 2.3.0), resulting in 39,300,191 imputed 
SNPs. For post-imputation QC, SNPs with minor allele frequency<1% or info-score<0.5 were 
removed. 

For eQTL analysis, individuals with both genotyping and expression data were filtered. After 
validating that no mix-up of gene expression and genetic data was present, a total of 1,978 
individuals were included into interim cis-eQTL analysis and 2,456 individuals into final cis-eQTL, 
trans-eQTL and eQTS analyses. 
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LIFE-Heart 

LIFE-Heart is a cohort study of patients with suspected or confirmed coronary artery disease 
collected at the Heart-Center of Leipzig. Details of the study can be found elsewhere (Scholz et 
al., 2020). 

Gene expression 

PBMC-based gene-expression was measured by Illumina HumanHT-12 v4 Expression 
BeadChip. Pre-processing was performed analogously to LIFE-Adult as described previously 
(Kirsten et al., 2015). Briefly, PBMC isolation was performed using Cell Preparation Tubes (CPT, 
Becton Dickinson), total RNA was extracted using TRIzol reagent (Invitrogen) and 500 ng RNA 
per sample were ethanol precipitated with GlycoBlue (Invitrogen) as carrier and hybridized to 
Illumina HT-12 v4 Expression BeadChips (Illumina, San Diego, CA, USA). Raw data of all 47,231 
gene-expression probes available was extracted by Illumina GenomeStudio without additional 
background correction. Three criteria were used to remove samples of low quality (processed 
within R / Bioconductor): First, the number of detected gene-expression probes of a sample was 
required to be within ± 3 interquartile ranges (IQR) of the median, leading to the exclusion of 2.7% 
of the 4,509 initially included samples. Second, the Mahalanobis distance of several quality 
characteristics of each sample (log-transformed and quantile-normalized signal of biotin-control-
probes, signal of low-concentration control probes, signal of medium-concentration control 
probes, signal of mismatch control probes, signal of negative control probes and signal of perfect-
match control probes) (Cohen et al., 2007) had to be within median + 3 x IQR, leading to the 
exclusion of an additional 0.02% of the samples. Third, log-transformed and quantile-normalized 
Euclidean distances of expression values as described (Du et al., 2008) had to be within 4 × IQR 
from the median, leading to the exclusion of another 0.4% of the samples. Overall, of the 4,509 
samples assayed, 141 samples were excluded for quality reasons. 

Genotyping 

Genotyping was performed using the Affymetrix Axiom Technology with custom option (Axiom-
CADLIFE). Genotype calling was performed with Affymetrix Power Tools version 1.12. Sample 
QC comprised call rate (>97%), hetero- or homozygosity excess (outliers of mean squared 
differences of observed and expected genotypes), sex-mismatch, cryptic relatedness and outliers 
of PCA (6SD criterion of Eigenstrat software (Price et al., 2006)). Prior to imputation, low quality 
SNPs defined by low call-rate (<90% plate-wise call rate corresponding to <94.2% overall call-
rate), deviation from HWE (P-value <10−6) or plate-association (P-value <10−7) were filtered. 
Individuals were imputed at the 1000Genomes reference phase 1, release 3 
(http://mathgen.stats.ox.ac.uk/impute/data_download_1000G_phase1_integrated.html) using 
SHAPEIT v2 and IMPUTE 2.3.0. For post-imputation QC, SNPs with minor allele frequency<1% 
or info-score<0.5 were removed. 
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For eQTL analysis, individuals with both genotyping and expression data were filtered. After 
validating that no mix-up of gene expression and genetic data is present, a total of 2,106 
individuals were included into interim cis-eQTL analysis and 4,285 individuals into final cis-eQTL, 
trans-eQTL and eQTS analyses. 
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Rotterdam Study 

The Rotterdam Study (Hofman et al., 2015) is a single-center, prospective population-based 
cohort study conducted in Rotterdam, the Netherlands. Subjects were included in different phases 
from the start of the study in 1998, with a total of 14,926 men and women aged 45 years and over 
included as of late 2008. The main objective of the Rotterdam Study is to investigate the 
prevalence and incidence of risk factors for chronic diseases to contribute to better prevention 
and treatment of such diseases in the elderly. 

Whole-blood was collected in PAXGene tubes (Becton Dickinson) and total RNA was isolated 
using PAXGene Blood RNA kits (Qiagen). To ensure constant high-quality of RNA preparation, 
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all RNA samples were analyzed using the Labchip GX (Calliper) according to manufacturer’s 
instructions. Samples with an RNA Quality Score > 7 were amplified and labelled (Ambion 
TotalPrep RNA) and hybridized to the Illumina HumanHT-12 v4 Expression Beadchips (Illumina) 
as described by the manufacturer’s protocol. Processing of the Rotterdam Study RNA samples 
was performed at the Genetic Laboratory of Internal Medicine, Erasmus University Medical Center 
Rotterdam. For genotyping, whole blood was also collected in EDTA tubes and DNA was isolated 
using a manual salting-out protocol. Genotyping for this sample subset was performed on the 
Illumina 610K quad beadchip array (Illumina) according to manufacturer’s specifications. SNP 
genotype data was then imputed to a combined 1000 Genomes + UK10K imputation panel using 
IMPUTE2 software. 
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SHIP-Trend 

The Study of Health in Pomerania (SHIP) is a population-based survey consisting of two 
independent cohorts in the North-East of Germany, SHIP and SHIP-Trend. The study design and 
sampling methods were described previously (Volzke et al., 2011). For this eQTL analysis, a 
subset of the SHIP-Trend cohort (N=986) with gene expression levels measured was used. 
Serum aliquots of the SHIP-Trend probands were prepared for immediate analysis and for storage 
at -80 °C in the Integrated Research Biobank (Liconic, Liechtenstein) and genotyped using the 
Illumina HumanOmni2.5 Quad arrays. Samples with a call rate < 94%, with reported vs. 
genotyped sex-mismatch, and duplicate samples (by estimated IBD) were excluded. Genotypes 
were imputed to 1000 Genomes v3 using IMPUTE v2.2.2. Prior to imputation, monomorphic 
SNPs, SNPs with a call rate ≤ 90%, and SNPs out of Hardy-Weinberg-Equilibrium (p ≤ 0.0001) 
were excluded. Blood sample collection as well as RNA preparation were described in detail 
elsewhere (Schurmann et al. 2012). Briefly, RNA was prepared from whole blood under fasting 
conditions in PAXgene tubes (BD) using the PAXgene Blood miRNA Kit (Qiagen, Hilden, 
Germany) on a QIAcube according to the protocols provided by the manufacturer (Qiagen). RNA 
was amplified (Ambion TotalPrep RNA), and hybridized to the Illumina whole-genome Expression 
BeadChips (HT-12v3). The SHIP-Trend expression dataset is available at GEO (Gene Expression 
Omnibus) public repository under the accession GSE 36382. After sample mix-up correction and 
outlier removal based on genetic principal components (<4 SD from mean of PC1) both imputed 
genotypes and whole-blood gene expression data were available for a total of 955 SHIP-TREND 
samples. The medical ethics committee of the University of Greifswald approved the study 
protocol, and oral and written informed consents were obtained from each of the study 
participants. 
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SSIC 

The Singapore Systems Immunology Cohort (SSIC) is a cross-sectional cohort collected by the 
Singapore Immunology Network (SIgN) at the Agency for Science, Technology and Research 
(A*STAR) along with National University of Singapore. The SSIC consists of ethnic Chinese 
participants recruited in Singapore for whom we have collected multiple high throughput data such 
as genomics, transcriptomics and metabolomics. The volunteer recruitment and sample collection 
have been described previously (Andiappan et al., 2014; Puan et al., 2017). For this eQTL 
analysis, whole blood gene expression data from the Singapore Chinese cohort was determined 
from the mRNA isolated from blood. Each blood sample was processed using the Tempus Spin 
Column Blood RNA isolation kit (Applied Biosystems) and the MagMAX Blood RNA extraction kit 
(Life Technologies). After which, globin mRNA reduction was conducted on a fraction of the 
extracted total RNA. The extracted RNA was then hybridized onto Illumina HumanHT-12 whole-
genome gene expression chips. To avoid batch effects, the RNA samples were randomly placed 
onto Illumina HumanHT-12 arrays such that each chip contains a number of samples from the 
various RNA extraction batches. Additionally, whole genome genotyping was done on these 
individuals using the Human Illumina Omni 5M chip. Samples were then checked for any pair of 
samples identified as first-degree relatives, and, if found, these were removed. SNPs that were 
monomorphic in the population and those that failed a call rate of 95% were also removed. The 
genotyping data for 303 individuals was determined for 4,286,238 SNPs and taken forward for 
further statistical analysis. 

References 

Andiappan, A. K., Puan, K. J., Lee, B., Nardin, A., Poidinger, M., Connolly, J., … Rotzschke, 
O. (2014). Allergic airway diseases in a tropical urban environment are driven by 
dominant mono-specific sensitization against house dust mites. Allergy, 69(4), 501–
509. http://doi.org/10.1111/all.12364 

Puan, K. J., Andiappan, A. K., Lee, B., Kumar, D., Lai, T. S., Yeo, G., … Rötzschke, O. 
(2017). Systematic characterization of basophil anergy. Allergy, 72(3), 373–384. 
http://doi.org/10.1111/all.12952 

Acknowledgements 

The authors would like to thank all the volunteers and their family members who participated in 
this study. We would also like to thank Ramani Anantharaman, Parate Pallavi Nilkanth, Bani Kaur 
Suri, Sri Anusha Matta, and other members of the functional genomics laboratory at National 
University of Singapore for helping in sample collection. This study was supported by grants from 
the Singapore Immunology Network (SIgN-06-006, SIgN-08-020 and SIgN-10-029); the National 
Medical Research Council (NMRC/1150/2008), Singapore; the Biomedical Research Council, 
Singapore; SIgN core funding from the Agency for Science, Technology and Research (A*STAR); 
and the National University of Singapore for the Graduate Research Scholarship for students 
involved in the study. 

 



 65 

Sorbs 

The Sorbs are a population of Slavonic origin living in ethnic isolation among the Germanic 
majority in Eastern Saxony for about 1100 years. A convenience sample of this population was 
collected including unrelated subjects and families. Details of the population can be found 
elsewhere (Tonjes et al., 2009; Gross et al., 2011). 

Gene expression 

PBMCs were extracted from blood samples collected in VACUTAINER CPT (Cell Preparation 
Tubes) containing sodium heparin as the anti-coagulant according to the manufacturer's protocol 
(BD, Franklin Lakes, NJ). RNA from PBMCs was extracted using the TRIzol protocol (Thermo 
Fisher Scientific). DNase I digestion of the RNA samples was performed with subsequent RNA 
clean-up using the RNeasy MinElute Cleanup Kit (Qiagen, Hilden, Germany). 250 ng of total RNA 
was reverse transcribed cDNA (Target Amp labelling kit (Illumina, SanDiego, CA, USA and 
Superscript III, Life Technologies, Gaithersburg, MD, USA), which was further synthesized to 
cRNA by in vitro transcription (Superscript III, Life Technologies, Gaithersburg, MD, USA and 
Target Amp labelling kit, Illumina, SanDiego, CA, USA). Subsequently, unincorporated 
nucleotides were removed using the RNeasy kit (QIAGEN, Hilden, Germany) and the cRNA was 
hybridized to the Illumina Human HT-12 v4 Bead Chip according to the manufacturers' 
instructions using an Illumina High Scan SQ. 

Pre-processing of RNA microarray data relied on the intensities of 47,323 transcripts derived from 
Illumina BeadStudio in 1,029 individuals of the Sorbs cohort. Steps for pre-processing comprised 
1. filtering of individuals with atypical low number of expressed genes (median - 3 interquartile 
ranges (IQR) of the cohort's values), 2. filtering individuals with atypical log-transformed and 
quantile-normalized gene-expression profiles (Euclidian distance to average expression larger 
than median +3 IQR), and 3. filtering individuals with atypical values of internal quality parameters 
(quantified as Mahalanobis distance of log-transformed and quantile-normalized gene-expression 
data from QC probes included on the HT-12 v4 chip by Illumina, individuals having a larger value 
than median +3 IQR of this measure were excluded). A total of 924 individuals fulfilled all quality 
criteria. For 898 of these, SNP array data were also available. 

Genotyping 

The cohort was recruited from the self-contained Sorb population in Germany (Gross et al., 2011). 
The study was approved by the ethics committee of the University of Leipzig and all subjects gave 
written informed consent before taking part in the study.  

Subjects were genotyped by either by 500 K Affymetrix GeneChip or Affymetrix Genome-Wide 
Human SNP Array 6.0. The BRLMM algorithm (Affymetrix, Inc) was applied for the 500 K array 
and the Birdseed algorithm was applied for the Genome-Wide Human SNP Array 6.0. QC of 
samples was performed as described in Gross et al., 2011, resulting in N = 977 individuals with 
genotypes of good quality (N = 483 genotyped with the 500 K assay, N = 494 genotyped with the 
6.0 assay). Genotype imputation was performed separately for individuals genotyped with the two 
different assays. No prior SNP filtering was performed. Imputation was done with IMPUTE v2.1.2 
(http://mathgen.stats.ox.ac.uk/impute/impute_v2.html) using HapMap2 CEU, Release 24, 
dbSNP-build 126, NCBI 36 as the reference panel. For post-imputation QC, SNPs with minor 
allele frequency<1% or info-score<0.5 were removed. To detect ethnical outliers, a ‘drop one in’ 
procedure was done to avoid bias by the relatedness structure within the Sorbs cohort (Veeremah 
et al., 2011). PCA was performed for each Sorbian individual together with the 50 most unrelated 
HapMap CEU individuals based on genotype data as explained in Gross et al., 2011. Resulting 
eigenvectors of CEU individuals were averaged over all iterations. Individuals were considered 
as ethnical outliers if the distance from the mean of the respective eigenvector of at least one of 
the first 10 eigenvectors exceeds 6 sd. After application of filtering, three individuals were 
discarded from association analysis, leaving 824 for further analysis. 
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For eQTL analysis, individuals with both genotyping and expression data were filtered. 
Additionally, individuals with relatedness greater than 0.2 were removed (Wang et al., 2002). After 
validating that no mix-up of gene expression and genetic data is present, a total of 513 individuals 
were included in cis-eQTL and trans-eQTL analysis. 
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YFS 

The Cardiovascular Risk in Young Finns Study (YFS) is a population-based, prospective multi-
center cohort study being conducted in five university hospital cities in Finland (Raitakari et al., 
2008). Of the 3,596 individuals participating at baseline in 1980, 2,050 individuals took part in the 
YFS follow-up examinations in 2011-2012. As described previously (Elovainio et al., 2015), 2,049 
of them gave blood samples for RNA isolation. Of these, 1,664 samples had high enough 
concentration after the amplification step and were analyzed with Illumina HumanHT-12 version 
4 Expression BeadChips. 

In YFS, 2.5 mL of whole blood was collected into PaXgene Blood RNA Tubes (PreAnalytix, 
Hombrechtikon, Switzerland). Each tube was inverted 8-10 times and then stored at room 
temperature for at least 2 h. PaXgene tubes were frozen and stored for <1 year at −80°C. After 
thawing, tubes were stored at room temperature for 2–12h, following the manufacturer’s 
instructions. RNA was then isolated with the PAXgene Blood RNA Kit (Qiagen) with the DNase 
Set according to manufacturer’s instructions. We used a QiaCube isolation robot. The 
concentrations and purity of the RNA samples were evaluated spectrophotometrically with 
NanoDrop (BioPhotomer, Eppendorf, Wesseling-Berzdorf, Germany). We reverse-transcribed 
200 ng of RNA into cDNA and biotin-UTP-labeled using the Illumina TotalPrep RNA Amplification 
Kit (Ambion); 1500 ng of cDNA was then hybridized to the Illumina HumanHT-12 v4 Expression 
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BeadChip (Illumina Inc.). The BeadChips were scanned with the Illumina HiScan system. We 
exported raw Illumina probe data from Beadstudio, combined the data files using the limma R 
package, and extracted the raw expression data for the eQTLGen consortium analysis pipeline. 
After sample mix-up correction, both genotype and gene expression data were available for 1,428 
individuals. The genotyping was done using a custom-built Illumina Human 670 k BeadChip at 
the Wellcome Trust Sanger Institute. Before imputation, QC was performed for the genotype data 
and SNPs with Hardy–Weinberg p-value of <1×10−5 were excluded. Genotype imputation was 
performed using IMPUTE2 (Howie et al., 2012) and 1000 Genomes Phase I Integrated Release 
Version 3 (Mar 2012) samples as a reference. (Raitoharju et al., 2014; Turpeinen et al., 2015). 

References 

Elovainio, M., Taipale, T., Seppälä, I., Mononen, N., Raitoharju, E., Jokela, M., … Lehtimäki, 
T. (2015). Activated immune–inflammatory pathways are associated with long-standing 
depressive symptoms: Evidence from gene-set enrichment analyses in the Young Finns 
Study. Journal of Psychiatric Research, 71, 120–125. 
http://doi.org/10.1016/j.jpsychires.2015.09.017 

Howie, B., Fuchsberger, C., Stephens, M., Marchini, J., & Abecasis, G. R. (2012). Fast and 
accurate genotype imputation in genome-wide association studies through pre-phasing. 
Nature Genetics, 44(8), 955–959. http://doi.org/10.1038/ng.2354 

Raitakari, O. T., Juonala, M., Ronnemaa, T., Keltikangas-Jarvinen, L., Rasanen, L., 
Pietikainen, M., … Viikari, J. S. (2008). Cohort Profile: The Cardiovascular Risk in 
Young Finns Study. International Journal of Epidemiology, 37(6), 1220–1226. 
http://doi.org/10.1093/ije/dym225 

Raitoharju, E., Seppälä, I., Oksala, N., Lyytikäinen, L.-P., Raitakari, O., Viikari, J., … 
Lehtimäki, T. (2014). Blood microRNA profile associates with the levels of serum lipids 
and metabolites associated with glucose metabolism and insulin resistance and 
pinpoints pathways underlying metabolic syndrome. Molecular and Cellular 
Endocrinology, 391(1–2), 41–49. http://doi.org/10.1016/j.mce.2014.04.013 

Turpeinen, H., Seppälä, I., Lyytikäinen, L.-P., Raitoharju, E., Hutri-Kähönen, N., Levula, M., 
… Pesu, M. (2015). A genome-wide expression quantitative trait loci analysis of 
proprotein convertase subtilisin/kexin enzymes identifies a novel regulatory gene 
variant for FURIN expression and blood pressure. Human Genetics, 134(6), 627–636. 
http://doi.org/10.1007/s00439-015-1546-5 

Acknowledgments 

The Young Finns Study has been financially supported by the Academy of Finland: grants 
286284, 134309 (Eye), 126925, 121584, 124282, 129378 (Salve), 117787 (Gendi), and 41071 
(Skidi); the Social Insurance Institution of Finland; Competitive State Research Financing of the 
Expert Responsibility area of Kuopio, Tampere and Turku University Hospitals (grant X51001); 
Juho Vainio Foundation; Paavo Nurmi Foundation; Finnish Foundation for Cardiovascular 
Research ; Finnish Cultural Foundation; The Sigrid Juselius Foundation; Tampere Tuberculosis 
Foundation; Emil Aaltonen Foundation; Yrjö Jahnsson Foundation; Signe and Ane Gyllenberg 
Foundation; Diabetes Research Foundation of Finnish Diabetes Association; and EU Horizon 
2020 (grant 755320 for TAXINOMISIS); and European Research Council (grant 742927 for 
MULTIEPIGEN project); Tampere University Hospital Supporting Foundation. We thank the 
teams that collected data at all measurement time points; the persons who participated as both 
children and adults in these longitudinal studies; and biostatisticians Irina Lisinen, Johanna 
Ikonen, Noora Kartiosuo, Ville Aalto, and Jarno Kankaanranta for data management and 
statistical advice. 



 68 

  

RNA-seq cohorts 

BIOS Consortium 

The Biobank-based Integrative Omics Study (BIOS, http://www.bbmri.nl/acquisition-use-
analyze/bios/) Consortium has been set up in an effort of several Dutch biobanks to create a 
homogenized dataset with different levels of ‘omics’ data layers. Genotyping was performed in 
each cohort separately, as described before: LifeLines DEEP (LLD; Tigchelaar et al., 2015), 
Leiden Longevity Study (LLS; Schoenmaker et al., 2005; Deelen et al., 2016), Netherlands Twin 
Registry (NTR; Lin et al., 2016); Rotterdam Study (RS; Hofman et al., 2013; Hofman et al., 2015), 
Prospective ALS Study Netherlands (PAN; Huisman et al., 2011). All genotypes were imputed to 
the Haplotype Reference Consortium (HRC, McCarthy et al., 2016) using the Michigan imputation 
server (Das et al., 2016). 

RNA-seq gene expression data was generated in The Human Genotyping facility (HugeF, 
Erasmus MC, Rotterdam, the Netherlands, http://www.blimdna.org). RNA-seq extraction and 
processing has been described before for a subset of the data (Zhernakova et al., 2017). Briefly, 
RNA was extracted from whole blood and paired-end sequenced using Illumina HiSeq 2000. 
Reads were aligned using STAR 2.3.0e (Dobin et al., 2013) while masking common (MAF > 0.01) 
SNPs from the Genome of the Netherlands (Genome of the Netherlands Consortium, 2014). 
Gene-level expression was quantified using HTseq (Anders et al., 2015). FastQC 
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to check quality metrics, 
and we removed individuals with < 70% of reads mapping to exons (exon mapped / genome). We 
included only unrelated individuals in this analysis removed population outliers by filtering out 
samples with >3 standard deviations from the average heterogeneity score. We removed 25 PCs, 
from the expression matrix with all cohorts combined, to account for unmeasured variation. Here, 
we briefly describe each cohort. 

CODAM 

The Cohort on Diabetes and Atherosclerosis Maastricht (CODAM) is group of individuals with a 
slightly increased risk of cardiometabolic disease selected from a population-based cohort (Van 
Greevenbroek et al., 2011). Individuals in CODAM are of European descent and older than 40 
years of age. They have either an increased BMI (>25), a family history of type 2 diabetes, 
previous gestational diabetes and/or glycosuria, or they use medication to treat hypertension. 

LLD 

LifeLines is a population-based longitudinal cohort study that includes questionnaire-based and 
clinical data of 167,729 individuals living in the three Northernmost provinces of the Netherlands. 
The study specifically focuses on families and employs a three-generational design. LLD is a 
subset of 1,500 unrelated LifeLines participants who consented to further investigation of their 
genetics, gene expression, methylation, gut microbiome and exhaled breath metabolomics.  

LLS 

The LLS cohort studies families with individuals that reach a high age without health problems. At 
least two long-lived siblings (men > 88 years, women > 90 years) were required to be alive at the 
time of ascertainment, and their children and grandchildren are also included in the study. A total 
of 944 siblings from 421 European-descent families were recruited with 1,671 of their offspring 
and 744 partners. 
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NTR 

The Netherlands Twin Register was set up in 1987 (https://tweelingenregister.vu.nl) to recruit 
Dutch mono- and dizygotic twins and their families. The NTR investigates health and lifestyle 
(Willemsen et al., 2013). Twins and their relatives complete questionnaires and provide clinical 
measurements. From 2004 onwards, a subset of participants were asked to donate blood in order 
to create a biobank. Blood samples were used for genotyping, DNA and RNA isolation and to 
biomarker studies (Willemsen et al., 2010; Wright et al. 2014). A subset of twins is also part of the 
BIOS consortium, and we selected one individual from each twin pair for our study. 
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RS 

The Rotterdam Study has been described above. A subset of the Rotterdam Study is also part of 
the BIOS consortium, and these samples have been RNA-sequenced. We excluded samples that 
were also measured on the Illumina expression arrays. 

PAN 

PAN is a prospective study for patients suffering from amyotrophic lateral sclerosis (ALS). Since 
2006, PAN aims to include all Dutch patients with ALS and similar phenotypes to correlate 
potential lifestyle, genetic and environmental risk factors with the onset and prognosis of ALS 
(https://www.als-centrum.nl/kennisplatform/prospectieve-als-studie-nederland-pan/). To date, 
3,400 patients have been included, and genotypes and expression data have been generated for 
a subset of these patients. 
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EGCUT RNA-seq 

EGCUT RNA-seq dataset has been described elsewhere (Lepik et al., 2017). EGCUT RNA-seq 
analyses were approved by Ethics Review Committee of Human Research of the University of 
Tartu, Estonia (permission no 234/T-12).  

RNA was extracted from thawed Tempus tubes using TRIzol Reagent (Invitrogen) and further 
purified using RNeasy Mini Kit (Qiagen). Globin mRNA was depleted using GLOBINclear Kit 
(Invitrogen). RNA quality was checked using an Agilent 2200 TapeStation (Agilent Technologies). 
Sequencing libraries were prepared using 200 ng of RNA according to the Illumina TruSeq 
stranded mRNA protocol. RNA sequencing was performed at the Estonian Genome Center Core 
Facility using Illumina paired-end 50 bp sequencing technology according to manufacturer 
specifications. 

We used fastQC v.0.11.3 for raw data quality control and Trimmomatic (version 0.36, Bolger et 
al., 2014) to remove 3 leading and 3 trailing bases and remove adapters. For adapter removal we 
used adapter file provided with fastQC. Additional read quality filtering was made using FASTX 
Toolkit v.0.0.13 fastq_quality_filter script with minimum quality score 30 and minimum 50% of 
base pairs with required quality.  

Quality control was done by FastQC (version 0.11.2, Andrews et al., 2010). The quality filtered 
data was mapped on genome hg19, position sorted and indexed with STAR v. 2.5.2 (STAR index 
files were provided by eQTLGen, Dobin et al., 2013). The mapped data quality statistics was 
collected with Picardtools v.1.130 CollectRnaSeqMetrics. Read counts were obtained using 
HTSeq-count script v. 0.6.1 and GRCh37.v71 annotation file. 

After data preprocessing and QC, 508 samples were enrolled into eQTLGen meta-analyses. 
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CartaGene 

CARTaGENE (CaG) is a population-based cohort comprising over 40,000 women and men 
participants randomly recruited among the three urban centers (Montreal, Quebec city and 
Saguenay) of the province of Quebec, Canada. CaG is a regional cohort within the Canadian 
Partnership for Tomorrow Project (CPTP), which included >315,000 participants. CaG targeted 
the segment of the population that is most at risk of developing chronic diseases, with participants’ 
ages ranging from 40 to 60 years old. Health and social-demographic information, such as 
disease history, physiological measures, lifestyle and environmental factors, were collected for 
each individual along with biological samples (Awadalla et al. 2013). 

We selected 708 samples (set 1) from the CaG biobank based on the availability of Tempus blood 
RNA tubes and on the Framingham risk scores to ensure an equal distribution of ages and gender. 
In a second phase, 292 samples (set 2) were included based on their RNA and arterial stiffness 
measures availability. These samples, provided by participants with high and average values of 
arterial stiffness, were chosen to achieve a uniform range of arterial stiffness values. 

Gene expression 

Whole blood samples from participants included in set 1 and 2 were collected in 2010. Total RNA 
was isolated using Tempus Spin RNA isolation kit (ThermoFisher Scientific), and the 
GLOBINclear-Human kit (ThermoFisher Scientific) was used to perform globin mRNA-depletion. 
All samples displayed high quality and minimal degradation of the RNA based on a RNA Integrity 
Number (RIN) > 7.5. Participants’ transcriptomes were obtained by RNA sequencing, for which 
we used paired-end libraries constructed with TruSeq RNA Sample Prep kit v2 (Illumina) with 
500ng of globin-depleted total RNA. Paired-end RNA-seq libraries were inspected before 
sequencing according to Illumina protocols and the sequencing was performed on a HiSeq 2000 
platform at the Genome Quebec Innovation Center (Montreal, Canada). Set 1 (708 samples) and 
set 2 (292 samples) were sequenced by using three and six samples per lane, respectively. 

Genotyping 

High density SNP genotyping data for 928 samples with RNA-Seq profiles passing QC thresholds 
were obtained by using the Illumina Omni2.5 array. Variant imputation was conducted on 968 
individuals. We pre-phased the genotypes with SHAPEIT (v2.r64410) (Delaneau, Zagury, and 
Marchini 2013) using the default parameters, on both the autosomes and the chromosome X. We 
filtered variants for MAF > 1% and Hardy-Weinberg p-value > 0.0001 and used the haplotypes 
within IMPUTE2 (v2.2.2) (Howie et al. 2012) to perform the imputation using the 1000 Genomes 
Phase I integrated haplotypes (Dec 2013). We used the parameters Ne = 11418 and call thresh 
= 0.9. We removed variants with a call rate less than 90%, MAF > 1% and Hardy-Weinberg p-
value > 0.0001. A total of 9,157,622 variants passed the filters. Of these, 8,877,297 variants were 
found on the autosomes and included 779,579 insertion-deletion polymorphisms (indels) (8.78%) 
and 8,097,718 SNPs (91.22%). 280,325 variants were found on the chromosome X, which 
included 28,504 indels (10,16%) and 251,821 SNPs (89.84%). 

After sample pre-processing and QC, 634 samples from set 1 and 191 samples from set 2 were 
included to eQTLGen meta-analyses. 
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DGN 

The Depression Genes and Networks (DGN) study includes genotyping and gene expression 
data from 922 European individuals (463 cases of Major Depressive Disorder and 459 controls), 
aged 21 to 60 years, selected from a survey research panel (Battle et al., 2014). DNA was isolated 
from whole blood and genotyped on the Illumina HumanOmni1-Quad BeadChip. RNA was 
extracted from whole blood and hemoglobin RNA was removed from each sample using 
GLOBINclearTMKit (Invitrogen). RNA sequencing was performed using Illumina HiSeq 2000 (50bp 
single-ended reads) following the Illumina TruSeq RNA protocol. Reads were aligned to the NCBI 
v37 human reference genome using TopHat. Gene expression was quantified by HTSeq using 
uniquely mapped reads. Sample collection, QC, and data processing are described in detail in 
(Battle et al., 2014). After preprocessing and QC, 919 samples were added into eQTLGen 
analyses. 
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GTEx 

The Genotype-Tissue Expression Consortium (GTEx) v6p release (GTEx Consortium, 2017) 
contained samples from 44 healthy tissues of 20-70 year old human postmortem donors. DNA 
isolated from whole blood samples were genotyped with Illumina HumanOmni 2.5M and 5M 
arrays. There were ~2.2 million variants common between the two platforms. An additional ~12.5 
million variants were imputed with IMPUTE2 using the multi-ethnic reference panel from 1000 
Genomes Project Phase 1 v3. RNA-seq was performed for samples with a minimum RIN score 
of 5.7 and a minimum of 500 ng of total RNA using either Illumina HiSeq 2000 or Illumina HiSeq 
2500 (76bp paired-end reads) following the Illumina TrueSeq RNA protocol. Reads were aligned 
to the human reference genome GRCh37/hg19 with Tophat v1.4.1. Gene expression was 
quantified as reads per kilobase of transcript per million mapped reads (RPKM) by RNA-SeQC 
with -strictMode flag based on the GENCODE Release 19 annotation using uniquely mapped, 
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properly paired reads contained fully within exon boundaries and with maximum alignment 
distance of 6. 338 individuals had both genotyping and RNA sequencing data from whole blood. 
Sample collection, QC, and data processing are described in detail in (GTEx Consortium, 2017). 
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Affymetrix array cohorts 

FHS 

The Framingham Heart Study (FHS) is a cohort study initiated in 1948, with the aim of identifying 
risk factors for heart disease. Starting in 1971, the offspring and offspring spouses (N=5,124) of 
the original FHS cohort participants were recruited (Feinleib et al., 1975), and they have been 
examined approximately every 4 years since. From 2002 to 2005, adult children (third generation 
cohort, N=4,095) of the offspring cohort participants were recruited (Splansky et al., 2007) and 
are also being examined in an ongoing manner. For this study, we included a total of 5,075 
participants from the offspring (N = 2,119) and third-generation (N = 2,956) cohorts who provided 
both genotype and gene expression information (Huan et al., 2015). Whole blood samples were 
collected at the eighth examination of the offspring cohort and the second examination of the third 
generation cohort. Fasting peripheral whole blood samples (2.5 ml) were stored in PAXgeneTM 

tubes (PreAnalytiX, Hombrechtikon, Switzerland) and the Affymetrix Human ExonArray ST 1.0 
(Affymetrix, Inc., Santa Clara, CA) was utilized to measure mRNA expression levels. Genotyping 
was performed with the Affymetrix 500K mapping array and the Affymetrix 50K gene-focused MIP 
array. Genotype imputation was conducted using impute2 against 1000 Genomes Phase 3 
reference. 

Trans-eQTL detection pipeline for Framingham Heart Study 
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Imputation results were converted to bgen format with genotype dosage as independent 
variables. A genetic-relatedness matrix was constructed using all of the imputed genotypes using 
GEMMA (Zhou et al., 2012). For the gene expression data, the first 20 non-genetic PCs of gene 
expression were regressed out, and residuals were used as adjusted phenotypes for the 
association studies. 

Prior to trans-eQTL detection, cis-eQTLs were first detected by stepwise sequential conditional 
analysis. Variants located within a distance of less than 1 Mb from either the 5’ or 3’ ends of the 
gene coding region being explored were deemed to be cis, and only SNPs with a minor allele 
frequency (MAF) >0.01 and a HWE P-value >0.001 were included in the analyses. In each 
iteration of the conditional analysis, the peak signal with a P-value <10-6, also computed using the 
GEMMA package, was determined to be an independent eSNP. The residuals from discovery of 
each SNP were then taken forward as the dependent variable in a new scan for additional 
independent SNP(s). 

After cis-eQTL detection, residuals removing all cis-eQTL effects at each gene were used as the 
phenotype, and trans-eQTL detection was performed on 10,562 variants associated with 
phenotype traits. This signal was evaluated with a mixed linear model in GEMMA, controlling for 
population structure and relatedness. To obtain the null distribution by permutation, the 
covariance component was first estimated by REML, and the square root of the covariance matrix 
was used to transform the phenotype and genotype matrices (Abney et al., 2002). After this step, 
the transformed phenotype is exchangeable and can be safely used to conduct permutation 
analysis. The false discovery rate (FDR) was controlled relative to 10 phenotype permutations, 
retaining the co-expression structure by permuting the sample IDs which were used in common 
for all expression phenotypes. 
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NTR-NESDA 

Subjects for eQTL analysis 
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The two parent projects that supplied data for the eQTL analysis are large-scale longitudinal 
studies: the Netherlands Study of Depression and Anxiety (NESDA) (Penninx et al., 2008) and 
the Netherlands Twin Register (NTR) (Boomsma et al., 2006). NESDA and NTR were both 
approved by the Central Ethics Committee on Research Involving Human Subjects of the VU 
University Medical Center, Amsterdam (institutional review board [IRB] number IRB-2991 under 
Federal wide Assurance 3703; IRB/institute codes: NESDA 03-183 and NTR 03-180). All 
participants provided written informed consent. The samples used for eQTLGen analyses 
consisted of 2,767 subjects of European ancestry (1,901 unrelated NESDA subjects and 866 
unrelated NTR subjects). The age of the participants ranged from 17 to 88 years (mean=38, 
SD=13), and 65% of the sample was female. The data used for this study overlaps with that used 
in our earlier studies (Jansen et al., 2017; Wright et al., 2014). For NESDA, the same samples 
were used in both studies. For NTR, only unrelated samples that were not present in the BIOS 
eQTL sample set used for the eQTLGen meta-analysis were used. Population stratification was 
corrected in the cis-eQTL, trans-eQTL and eQTS analyses by regressing out the three first 
genotype PCs from the gene expression matrix. 

Blood sampling, RNA extraction, and RNA expression measurement 

Study protocols and biological sample collection methods were harmonized between NTR and 
NESDA. RNA processing and measurements have been described in detail previously (Wright et 
al., 2014; Jansen et al., 2014). Venous blood samples were drawn in the morning after an 
overnight fast. Heparinized whole blood samples were transferred within 20 minutes of sampling 
into PAXgene Blood RNA tubes (Qiagen, Valencia, California, USA) and stored at−20°C. Gene 
expression assays were conducted at the Rutgers University Cell and DNA Repository. Samples 
were hybridized to Affymetrix U219 arrays (Affymetrix, Santa Clara, CA) containing 530,467 
probes summarized in 49,293 probe sets. Array hybridization, washing, staining and scanning 
were carried out in an Affymetrix GeneTitan System per the manufacturer’s protocol. Gene 
expression data were required to pass standard Affymetrix QC metrics (Affymetrix expression 
console) before further analysis. We excluded probes that did not map uniquely to the hg19 
(Genome Reference Consortium Human Build 37) reference genome sequence from further 
analysis, as well as probes targeting a messenger RNA (mRNA) molecule resulting from 
transcription of a DNA sequence containing a SNP (based on the dbSNP137 common database). 
After this filtering step, data for analysis remained for 423,201 probes, which could be summarized 
into probe sets targeting 18,238 genes. Normalized probe set expression values were obtained 
using Robust Multi-array Average (RMA) normalization as implemented in the Affymetrix Power 
Tools software (APT, version 1.12.0, Affymetrix). Data for samples that displayed a low average 
Pearson correlation with the probe set expression values of other samples and samples with 
incorrect sex-chromosome expression were removed, leaving 2,767 subjects for analysis. 

DNA extraction and SNP genotyping and imputation 

DNA was extracted from peripheral blood as described previously (Boomsma et al., 2008). SNP 
genotype pre-imputation QC, haplotype phasing and 1000 Genomes phase 1 imputation were 
performed as described previously (Nivard et al., 2014). Imputed SNP genotypes were coded into 
the reference allele dosage format and filtered at MAF >0.01 and HW P-value >1×10-4. 

RNA processing 

RNA processing was done using the following normalization steps: RMA normalization, Z-
transformation, removal of the first three PCs from the imputed genotype information to correct 
for population stratification and removal of the first 20 non-genetic PCs from the expression data. 
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Replication cohorts 
LCL cohorts 

ALSPAC 

The Avon Longitudinal Study of Parents and Children (ALSPAC) is a prospective birth cohort that 
recruited pregnant women with expected delivery dates between April 1991 and December 1992 
from Bristol, UK. 14,541 pregnant women were initially enrolled and 14,062 children born. 
Detailed information on health and development of the children and their parents were collected 
from regular clinic visits and completion of questionnaires. A detailed description of the cohort is 
available on our website (http://www.bristol.ac.uk/alspac/researchers/) and has been published 
previously (Boyd et al., 2013). The study website contains details of all the data that is available 
through a fully searchable data dictionary (http://www.bris.ac.uk/alspac/researchers/data-
access/data-dictionary/). Ethical approval for the study was obtained from the ALSPAC Ethics 
and Law Committee and the Local Research Ethics Committees. 

Gene expression data was generated as described previously (Bryois et al., 2014). Briefly, 
lymphoblastoid cell lines were established by transforming lymphocytes from blood samples taken 
when the study participants were 9 years old, using Epstein Barr Virus. Lymphoblastoid cell lines 
(LCLs) from unrelated individuals were grown under identical conditions, and cells frozen in 
RNAlater. RNA was extracted using an RNeasy extraction kit (Qiagen) and amplified using the 
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Illumina TotalPrep-96 RNA Amplification kit (Ambion). Expression profiling of the samples, each 
with two technical replicates, were performed using the Illumina Human HT-12 V3 BeadChips 
(Illumina Inc) including 48,804 l probes where 200 ng of total RNA was processed according to 
the Illumina protocol. Raw data was imported into the Illumina Beadstudio software, and probes 
with less than three beads present were excluded. Log2-transformed expression signals were 
then normalized with quantile normalization of the replicates of each individual, followed by 
quantile normalization across all individuals. We restricted our analysis to 23,935 probes tagging 
genes annotated in Ensembl. 

Data processing, QC, and cis-eQTL, trans-eQTL and eQTS analyses were conducted using the 
eQTLGen analysis plan for Illumina arrays. Independent cis-eQTL effects were removed from the 
expression matrix prior to trans-eQTL and eQTS analyses. Results of summary-statistic-based 
conditional cis-eQTL analysis from 14,115 eQTLGen blood samples (profiled by Illumina arrays) 
were used for this correction. After preprocessing, 867 samples were enrolled in the eQTLGen 
analyses. 
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CoLaus 

The Cohorte Lausannoise (CoLaus) study is a population-based cross-sectional study of 6,188 
participants residing in Lausanne, Switzerland, who were first enrolled from 2003 to 2006 
(Firmann et al., 2008). The main aims of the study are to obtain a deeper knowledge of the 
epidemiology of cardiovascular diseases and to discover new genetic determinants of 
cardiovascular risk factors. LCLs were derived from blood samples. For 5,435 subjects, nuclear 
DNA was extracted from the LCLs for SNP genotyping using the Affymetrix GeneChip Human 
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Mapping 500K array set and the BRLMM genotype calling method (Affymetrix, 2006). 375k SNPs 
were successfully genotyped and passed the pre-imputation QC consisting of minor allele 
frequency >1%, call rate >90% and Hardy Weinberg Equilibrium P-value >1E-6. The pre-phasing 
was done using Shapeit2 (Delaneau et al., 2014), followed by imputation by minimac3 against 
the Haplotype Reference Consortium panel (HRC r1.1 (McCarthy et al., 2016)) hosted on the 
Michigan Imputation Server (Das et al., 2016). For 555 subjects, gene expression profiles of LCLs 
were obtained using the Illumina HiSeq2000 platform (Illumina, Inc., San Diego, CA). 

cis-eQTL, trans-eQTL and eQTS analyses were conducted using eQTLGen analysis plan for 
RNA-seq datasets. 

References 

BRLMM : an Improved Genotype Calling Method for the GeneChip ® Human Mapping 500 
K Array Set - Semantic Scholar. (n.d.). Retrieved July 26, 2018, from 
https://www.semanticscholar.org/paper/BRLMM-%3A-an-Improved-Genotype-Calling-
Method-for-the/b113d9ec5ce87a4597aa868ccc043e7881f2d224 

Das, S., Forer, L., Schönherr, S., Sidore, C., Locke, A. E., Kwong, A., … Fuchsberger, C. 
(2016). Next-generation genotype imputation service and methods. Nature Genetics, 
48(10), 1284–1287. http://doi.org/10.1038/ng.3656 

Delaneau, O., Marchini, J., Consortium, T. 1000 G. P., McVean, G. A., Donnelly, P., Lunter, 
G., … Peltonenz, L. (2014). Integrating sequence and array data to create an improved 
1000 Genomes Project haplotype reference panel. Nature Communications, 5(1), 3934. 
http://doi.org/10.1038/ncomms4934 

Firmann, M., Mayor, V., Vidal, P. M., Bochud, M., Pécoud, A., Hayoz, D., … Vollenweider, 
P. (2008). The CoLaus study: a population-based study to investigate the epidemiology 
and genetic determinants of cardiovascular risk factors and metabolic syndrome. BMC 
Cardiovascular Disorders, 8(1), 6. http://doi.org/10.1186/1471-2261-8-6 

McCarthy, S., Das, S., Kretzschmar, W., Delaneau, O., Wood, A. R., Teumer, A., … 
Consortium, for the H. R. (2016). A reference panel of 64,976 haplotypes for genotype 
imputation. Nature Genetics, 48(10), 1279–83. http://doi.org/10.1038/ng.3643 

Acknowledgements 

S.B. was supported by the Swiss National Science Foundation (310030-152724). The funders 
had no role in study design, data collection and analysis, decision to publish, or preparation of the 
manuscript. 

 

MuTHER 

The Multiple Tissue Human Expression Resource (MuTHER) LCL dataset has been described in 
detail before (Buil et al., 2015). 762 individuals were enrolled in this replication analysis, consisting 
of 134 monozygotic twins, 192 dizygotic twins and 113 unrelated individuals. The effective sample 
size of 535 (N=134+1.5×192+113) was used as a weight in the subsequent weighted Z-score 
meta-analysis. 

MuTHER RNA-seq data were mapped to the GRCh37 reference genome (Lander et al., 2001) 
using GEM version 1.7.1 (Marco-Sola et al., 2012), and genes were quantified to RPKM values 
using the GENCODE 19 annotation (Harrow et al., 2012). RPKM values were scaled and centered 
and data were then mapped to a normal distribution.  
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For replication analyses, all eQTLGen hits were compared to the matched gene-variant pair in 
MuTHER dataset. The model was fitted together with 14 PCs (not showing any Bonferroni 
significant GWAS association, 0.05/6263243 SNPs, calculated with GEMMA), cis-eQTLs 
identified from the same dataset (FDR < 0.05) and family structure, using lmer R package and 
random effects.  
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Geuvadis 

The production of genotypes and RNA-seq data from the publicly available Geuvadis dataset has 
been described previously (Lappalainen et al., 2013). We downloaded the data, harmonized the 
genotypes to 1000G p1v3 using Genotype Harmonizer, and processed the RNA-seq information 
using the steps outlined in the Methods. In brief, we TMM-normalized, CPM-filtered, log2-
normalized, Z-transformed and removed the first 20 non-genetic PCs. We included the individuals 
from four European populations: CEPH (CEU), Finns (FIN), British (GBR), and Toscani (TSI), and 
meta-analyzed them as separate cohorts. 
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LCL replication meta-analysis 

The results from LCL replication cohorts were meta-analyzed using weighted Z-score method, 
using the same approach used in the discovery meta-analysis (Methods) and including all 
available summary statistics. As summary statistics from permuted analyses were not available 
for all the datasets, we applied Benjamini-Hochberg method to correct for multiple testing. 
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iPSC datasets 

i2QTL Consortium 

The i2QTL Consortium was set up to jointly analyze five induced pluripotent stem cell (iPSC) 
datasets (HipSci (Kilpinen et al., 2017), iPSCORE (Panopoulous et al., 2017), GENESiPS 
(Carcamo-Orive et al., 2017), PhiLiPS (Pashos et al., 2017) and the Banovich study (Banovich et 
al., 2018). This integrative analysis allowed to identify iPSC-specific genetic regulation of gene 
expression in both a cis and trans setting. Genotyping and RNA-sequencing-based gene 
expression profiling was performed in each cohort separately, as described in detail before. 

In the i2QTL Consortium, both genetics and RNA-seq-based gene expression data was jointly 
reprocessed. Raw chip genotypes from the studies were imputed using a combined imputation 
panel based on UK10K and 1000G (phase 1) using sample-specific imputation as described in 
Kilpinen et al. Raw RNA-seq reads were trimmed from their adapters and trimmed from low quality 
bases using Trim Galore! (Krueger et al, Martin et al, Simon et al). Trimmed reads were mapped 
to the human reference genome build 37 using STAR (Dobin et al., 2013) (version: 020201) in 
two-pass alignment mode, using the defaults proposed by the ENCODE consortium (STAR 
manual, Dobin et al., 2013).   Based on the STAR alignment, mRNA abundance was quantified 
using featureCounts (Liao et al., 2014) (v1.6.0). FeatureCounts was run on the primary alignments 
only using the “-B” and “-C” options in stranded mode, Genome reference and transcript 
information was retrieved from ENSEMBL 75 (Zerbino et al., 2018).  The featureCounts 
quantifications per sample were merged and subsequently normalized to generate edgeR  
(Robinson et al., 2010)  normalized transcripts per kilobase million (TPM) values. 

Low quality RNA-seq samples were removed leaving 1,178 iPSC lines derived from 762 
European donors for analysis, all of which also have genetic information available. More 
information on genotyping, expression quantification and sample QC can be found in Bonder et 
al (Bonder et al., 2019). 

To correct for multiple lines per donor and the family structure in the data, we used a linear mixed 
model set up as available in LIMIX (Lippert et al., 2014). Based on the LIMIX framework, a QTL 
pipeline matched closely to the main analysis pipeline was developed to map cis-, trans-QTL and 
eQTS. We corrected for population structure and 50 PEER factors were used as covariates. There 
was no minor allele or Hardy-Weinberg filtering and other settings, were matched to the main 
analysis as much as possible. The gene expression was forced into a normal distribution. To 
correct for multiple testing, we applied Benjamini-Hochberg FDR over the number of features 
tested. Cis-eQTLs were regressed out from the gene expression matrix before replicating trans-
eQTLs and eQTS. 
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Blood cell types 

Datasets from purified blood cell types 

Unpublished eQTL data from CD4+, CD8+, CD14+, CD15+ and CD19+ immune cells, 
macrophages and platelets from multiple sources were used to replicate the trans-eQTL results.  

CD14+ and CD19+ data was used from (Fairfax et al. 2012) and (Fairfax et al., 2014). CD4+, 
CD8+, CD14+, CD15+ and CD19+, and platelet data was used from (Momozawa et al., 2018). 
Additionally, CD16+ neutrophil data (Naranbhai et al., 2015) was combined and analysed together 
with abovementioned CD15+ neutrophil data from Momozawa et al., 2018. Additional samples 
from CD14+ and macrophage data was used from the Cardiogenics consortium (Rotival et al., 
2011). An additional unpublished platelet dataset was generated for the samples from NIHR 
Cambridge BioResource (http://www.cambridgebioresource.org.uk). Donors for those datasets 
were recruited with informed consent (REC 12/EE/0040) at the NHS Blood and Transplant, 
Cambridge. Overview of the samples included from each dataset is shown below. 

Cell type	 Original publication/Source	 # samples used	
CD14+ Momozawa et al., 2018 301 
CD14+ Rotival et al., 2011 758 
CD14+ Fairfax et al. 2012 and Fairfax et al. 2014 421 
CD15+ Momozawa et al., 2018 303 
CD16+ Naranbhai et al., 2015 109 
CD19+ Momozawa et al., 2018 298 
CD19+ Fairfax et al. 2012 285 
CD4+ Momozawa et al., 2018 309 
CD8+ Momozawa et al., 2018 304 

Platelets Momozawa et al., 2018 236 
Platelets NIHR Cambridge BioResource 152 

Macrophages Rotival et al., 2011 599 

In all datasets, gene expression was profiled by Illumina HT12v4 and Illumina Human-Ref-8 v3. 
All datasets were individually reprocessed in a unified pipeline based on lumi (Du et al. 2008) and 
COMBAT (Leek et al. 2012) to generate a homogeneous dataset. Ten PEER (Stegle et al. 2012) 
factors were calculated for every dataset. Expression and genotype data was merged within cell 
types to increase sample size.  

Prior to trans-eQTL replication analysis, all independent cis-eQTL effects were regressed out from 
the expression matrices. A linear mixed model from LIMIX v0.8.5 (https://github.com/limix/limix) 
was used to run trans-eQTL analyses by testing all 10,562 trait-associated SNPs against all the 
available genes. Population structure (normalized genotype covariance) was taken into account 
and 10 PEER factors were used as covariates in cis- and trans-eQTL mapping. 
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EGCUT CD4+ and CD8+ datasets 

The EGCUT CD4+ and CD8+ datasets have been described previously (Kasela et al., 2017). 
Briefly, the cohorts consist of healthy gene donors of the Estonian Genome Center of The 
University of Tartu. The study was approved by the Ethics Review Committee of Human Research 
of the University of Tartu, Estonia (permission no 206/T-4, date of issue 25.08.2011), and it was 
carried out in compliance with the Helsinki Declaration. Written informed consent to participate in 
the study was obtained from each individual prior to recruitment. All methods were carried out in 
accordance with approved guidelines. Gene expression data is available in Gene Expression 
Omnibus (GSE78840).  
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Genotype and gene expression data preprocessing, QC and analyses were performed by the 
eQTLGen analysis plan for Illumina arrays, in the same way as in discovery cohorts. After data 
processing and QC, 293 CD4+ samples and 283 CD8+ samples were added to analyses. 
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CD4 and CD8 meta-analyses 

To maximize the replication power, the results of CD4 and CD8 replication analyses from EGCUT 
and Fairfax/Momozawa/Rotival were meta-analyzed by weighted Z-score method, using the 
same approach used in the discovery meta-analysis. For that, summary association statistics 
from Fairfax/Momozawa/Rotival replication analyses were converted to Z-scores by formula: 

" = $/&'($), 

where $ is slope from the association test and &'($) is the standard error of $. Multiple testing 
correction was performed by Benjamini-Hochberg method. 

 

GTEx tissues 

cis-eQTL replication 

We collected genome-wide cis-eQTL summary stats for all tissues tested in the GTEx cohort (v7) 
from the GTEx web portal (gtexportal.org). Variants tested in our analysis were then matched to 
variants tested in GTEx by genomic position (both b37), while genes were matched on Ensembl 
(ENSG) gene id. We then converted the reported slope and standard error estimates to z-scores 
by dividing them by each other. To determine significance, we acquired the file containing 
significant eGenes from the GTEx web portal and used the ‘pval_nominal_threshold’ column to 
determine the P-value significance threshold per gene. 

trans-eQTL replication 

We collected fully processed, filtered and normalized gene expression matrices and covariates 
for each tissue used in GTEx eQTL analysis (v6p) (GTEx Consortium, 2017) from the GTEx web 
portal (gtexportal.org). For each eQTL identified in eQTLGen, we tested if the corresponding SNP 
and the gene are associated in each GTEx tissue using matrix-eQTL (Shabalin et al., 2012) and 
controlling for the covariates used by the GTEx project (three genotype PCs, genotyping platform, 
sex, and PEER factors estimated from expression data). To get an estimate of the null distribution 
for each tissue, we also made the same set of tests for 10 permutation rounds, permuting the 
genotype labels in order to break any true link between genotype and expression. 

eQTS replication 

For eQTS replication in GTEx v7, we retrieved genotypes derived from Whole Genome 
Sequencing (WGS) from dbGAP (www.ncbi.nlm.nih.gov/gap). Genotype data was then 
harmonized with Genotype Harmonizer using the same procedure as those in our discovery 
datasets. Briefly, variants with call-rate > 95%, minor allele frequency > 1% and Hardy-Weinberg 
P-value > 0.0001 were matched against the GIANT phase 1v3 release of 1000 genomes, and 
variant IDs were updated to match the reference. Using the harmonized genotypes, polygenic 
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scores were calculated in the same manner as for our discovery datasets. RNA-seq based gene 
expression levels were retrieved from the GTEx web portal (gtexportal.org) for each tissue. Since 
polygenic scores can be highly population specific, we first removed all non-European individuals 
and consequently corrected the gene expression levels for the covariates for each tissue (three 
genotype PCs, genotyping platform, sex, and PEER factors estimated from expression data). To 
minimize the contribution of cis-eQTLs to the eQTS replication signal, we first performed an 
iterative conditional cis-eQTL analysis on the residual gene expression levels. In this analysis, we 
iteratively regressed out the strongest significant cis-eQTL per gene (FDR<0.05, using 10 
permutations), until no significant cis-eQTL genes were identified. For the final eQTS analysis in 
GTEx, we calculated associations between the polygenic scores and the residual gene 
expression levels after correcting for these cis-eQTLs. For comparison, we also conducted the 
same analysis without removing non-European individuals. 
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DNA Methylation 
Whole blood DNA methylation data was acquired from the BIOS Consortium, which has been 
described above. In total, DNA methylation data was available for 3,814 individuals, including 188 
from CODAM, 751 from LLD, 791 from LLS, 762 from RS and 1,322 from NTR. RNA-seq gene 
expression levels were also available for a total of 2,905 individuals, including 186 from CODAM, 
732 from LLD, 692 from LLS, 741 from RS and 554 from NTR. Methylation data was acquired 
using the Illumina Human Methylation 450K microarray. DNA preparation protocols, including 
bisulfite conversion and microarray hybridization, have been described in detail previously 
(Bonder et al., 2016). 

eQTMs, or expression quantitative trait methylation (i.e. correlation between gene expression 
levels and methylation levels), are required to replicate eQTL using methylation QTL (meQTL), 
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for two reasons. Firstly, the link between genes and methylations sites is not always known; there 
may be many different methylation sites surrounding a gene that may or may not be affecting 
gene expression levels. Secondly, to compare the direction of effect between meQTL and eQTL, 
the direction of the correlation of the eQTM has to be taken into account. For example, with a 
negatively correlating eQTM, and a positive eQTL direction of effect, we would expect the 
direction of effect for the meQTL to be negative as well. 

The power to detect eQTMs can be improved by accounting for cis-regulatory variation explained 
by genetics. For the gene-expression levels, we used the RNA-seq data corrected for cis-eQTLs 
prior to trans-eQTL mapping. Similarly, we corrected the methylation data for previously identified 
cis-meQTLs (Bonder et al., 2016). Since a single methylation site can be independently 
associated with multiple SNPs, we also corrected for independent SNP associations, which 
included up to 11 independent effects per methylation site (Bonder et al., 2016). In the case of 
multiple independent associations, PCA was used to orthogonalize the genotype data, and the 
resulting PCs were used to subtract the genotype effect. Finally, we used Spearman’s ranked 
correlation to correlate the corrected methylation levels with the corrected gene expression levels 
and limiting the distance between methylation probe and gene midpoint to 1 megabases. To 
determine significance, we used FDR<0.05 as determined using 10 permuted datasets, applying 
the same framework as for our eQTL analysis. In total, we identified 57,786 significant eQTM, 
representing 9,675 genes. 

To perform replication of trans-eQTL, we selected the methylation probe from the eQTM analysis 
that showed the strongest significant association with the trans-eQTL gene, and calculated the 
association between that probe and the trans-eQTL SNP. Consequently, we generated 40,590 
unique SNP-methylation probe pairs, of which we were able to test 38,528 (trans-meQTL) 
resulting in 1,320 significant effects (FDR<0.05; 10 permutations). 
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Single cell RNA-seq datasets 

OneK1K 
Ethics approval 

The study was approved by the Tasmanian Health and Medical Human Research Ethics 
Committee (H0012902). Informed consent was obtained from all participants. 

Isolation and preparation of PMBCs 

Peripheral blood samples were collected from 1,083 individuals into vacutainer tubes containing 
either FICOLL™ and sodium heparin (8mL CPT™;  BD Australia, North Ryde, NSW; 362753) or 
K2EDTA (10mL; BD Australia, North Ryde, NSW; Catalogue: 366643). Within 4 hrs of collection, 
peripheral mononuclear cells (PBMCs) were isolated from the CPT tubes according to the 
manufacturer’s instructions. All PBMCs were kept in chilled fetal Bovine Serum (F9665; Sigma-
Aldrich), RPMI-1640 medium (R8758; Sigma-Aldrich) and dimethyl sulfoxide (472301; Sigma-
Aldrich). Isolated PBMCs were cryopreserved using RPMI-1640 medium including 40% FCS, 
RPMI, 10%DMSO. A 1mL aliquot per sample of cryopreserved cells was thawed in a 37oC water 
bath, washed with 9mL Iscove’s Modified Dulbecco’s Media (IMDM; Life Technologies; 
12440061) and 5% Fetal Bovine Serum (FBS; Bovogen; SFBS-FR), and resuspended in 900uL 
IMDM and 10% FBS. Cells were counted using a Countess II Automated Cell Counter 



 88 

(ThermoFisher; AMQAX1000) and Trypan Blue viability stain (Life Technologies; T10282), and 
equal numbers of live cells were combined for 12-14 samples per pool. 

Single-cell library preparation and sequencing 

Pooled single-cell suspensions partitioned and barcoded using the 10X Genomics Chromium 
Controller and the Single Cell 3' Library and Gel Bead Kit version 2 (PN-120237). The pooled 
cells were super-loaded onto the Chromium Single Cell Chip A (PN-120236) to target 20,000 cells 
per pool. Libraries for all samples were multiplexed and sequenced across five 2×150 cycle S4 
flow cells on an Illumina NovaSeq 6000. 

Alignment and initial processing of sequencing data 

The Cell Ranger Single Cell Software Suite (version 2.2.0) was used to process data produced 
by the Illumina NovaSeq 6000 sequencer into transcript count tables. Raw base calls from 
multiple flow cells were demultiplexed into separate pools of samples. Reads from each pool were 
then mapped to the GRCh37/hg19 genome (release 84) using STAR. 

Demultiplexing and doublet identification 

Cells for each individual were identified using the Demuxlet tool (Kang et al., 2018). The most 
likely individual for each droplet was determined using the genotype posterior probability estimate 
from the imputation of 265,053 exonic SNPs (R2>0.3 and MAF>0.05). In all approaches, * was 
set to 0.5, assuming a 50/50 ratio and other parameters were kept as default. Droplets that were 
identified as doublets by both Demuxlet and additional tool, Scrublet (Wolock et al., 2019) were 
removed from the dataset. 

Cell type classification  

The distributions of the total number of UMIs, number of genes, and the percentage of 
mitochondrial gene expression were normalized using ordered quantile transformation in each 
pool. The effect of sequencing depth variation due to any technical errors was removed by 
applying the SCTransform method (Hafemeister et al., 2019) to the variance of the gene UMI 
count matrix. 

Cells were classified using supervised and unsupervised approaches. In the supervised 
classification, a reference signature matrix was built using purified PMBC data (Zheng et al., 2017) 
and the cosine similarity of each cell against all reference cell types was calculated. The cells 
were labeled based on the shortest cosine distance to reference cell type across the layers of the 
hierarchy. Then a graph-based unsupervised clustering was applied at the end of every hierarchy. 
Any misclassified cells were relabelled using known markers. 

Genotypes 

Samples were imputed with the Haplotype Reference Consortium panel (HRC r1.1 2016; R2>0.8; 
MAF > 0.01) and then harmonised to the 1000G phase1 v3 reference panel, in line with the eQTL 
cookbook followed by the eQTLGen cohorts. 
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Commun. 8, 14049 (2017). 
 

1M-scBloodNL data 

Ethics approval 

The LifeLines DEEP study was approved by the ethics committee of the University Medical Center 
Groningen, document number METC UMCG LLDEEP: M12.113965. All participants signed an 
informed consent form before study enrollment. All procedures performed in studies involving 
human participants were in accordance with the ethical standards of the institutional and/or 
national research committee and with the 1964 Helsinki declaration and its later amendments or 
comparable ethical standards. 

Isolation and preparation of PMBCs 

Previously published PBMC scRNA-seq data of 45 donors (Van der Wijst et al., 2018) from the 
general population Lifelines Deep cohort (Tigchelaar et al., 2015) was combined with newly 
generated PBMC scRNA-seq data of another 112 donors from the same cohort. For all donors, 
blood was collected into EDTA-vacutainers (BD) and within 2h PBMCs were isolated with Cell 
Preparation Tubes with sodium heparin (BD). Cells were cryopreserved, thawed and handled as 
described before (Van der Wijst et al., 2018), with the exception that the newly generated dataset 
contains sample pools of eight instead of six individuals. For each individual we aimed at a 
targeted recovery of 1,000 viable single cells. 

Single-cell library preparation and sequencing 

Single cell libraries were generated using the 10x Chromium controller (10x Genomics) in 
combination with the Single Cell 3’ version 2 (117 samples: Single Cell A Chip Kit, PN-120236 
and Single Cell 3′ Library & Gel Bead kit v2, PN-120237) or version 3 (40 samples: Single Cell B 
Chip Kit, PN-1000073 and Single Cell 3′ Library & Gel Bead kit v3, PN-1000075) reagents 
according to the company’s instructions (document CG00052 and CG000183). These libraries 
were multiplexed and sequenced on an Illumina NovaSeq 6000 using a 150bp paired-end kit, per 
BGI (Hong Kong) sequencing guidelines. In total, we captured 130,681 cells in this new dataset 
that were sequenced to an average depth of 45k. 

Alignment and initial processing of sequencing data 

The Cell Ranger Single Cell Software Suite (version 3.0.2) was used to process data produced 
by the Illumina NovaSeq 6000 sequencer into transcript count tables. Raw base calls from 
multiple flow cells were demultiplexed into separate pools of samples. Reads from each pool were 
then mapped to the GRCh37/hg19 Cell Ranger 3.0.0 reference genome using the STAR 
implementation within Cell Ranger. 

Demultiplexing and doublet identification 

Cells for each individual were identified using the Demuxlet tool (Kang et al., 2018). Exonic SNPs 
were filtered for SNPs with MAF>0.02 and were then used as input for Demuxlet. Droplets where 
the doublet likelihood score minus the singlet likelihood score was less than 0.25 were removed. 
An additional filter was applied to remove cells with a singlet likelihood score between 0 and 25, 
with more than 2,000 expressed genes. These cells were excluded for any further analysis. 

Cell type classification  

Cells where mitochondrial gene content was over 8% or 15% were removed for cells sequenced 
with the V2 chemistry or V3 chemistry, respectively. Furthermore, cells in which fewer than 200 
genes were expressed were removed for analysis. Expression per cell was log transformed and 
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scaled to 10,000 reads. Technical errors were tackled using SCTransform (Hafemeister et al., 
2019) with default settings and regressing out mitochondrial gene content.  

Cells were clustered using Seurat’s FindClusters algorithm using a resolution of 1, and either 30 
or 20 principal components for the V2 and V3 chemistry respectively, based on the PC elbow plot. 
After clusters were identified, cell types were assigned a cell type based on differential marker 
expression found using the FindMarkers function in Seurat and known cell type marker genes. 

Genotypes 

Genotypes were processed as in Van der Wijst et al. 2018 as part of the Lifelines Deep 
consortium. Genotypes were phased using Eagle v2.330 (Loh, et al. 2016) and imputed with the 
HRC reference panel (McCarthy, et al. 2016), using the Michigan imputation Server (Das, et al. 
2016). 
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Single cell replication meta-analysis 

The data from the OneK1K cohort and 1M-scBloodNL were meta-analyzed in an effort to replicate 
the eQTLGen trans-eQTLs. 982 samples from the OneK1K cohort, and respectively 45, 72 and 
40 samples from the subgroups of the 1M-scBloodNL cohort were included in the analyses.  

Where cell types were identified with more resolution in one of the cohorts, the expression 
matrices were added to attain a consensus for the meta-analysis: 

 
OneK1K 1M-scBloodNL 
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CD4+ KLRB1- T cell CD4+ 

CD4+ KLRB1+ T cell 

CD4+ SOX4+ T cell 

CD8+ GNLY+ NKG7+ T cell CD8+ 

CD8+ LTB+ T cell 

CD8+ S100B+ T cell 

XCL1- NK NK 

XCL1+ NK 

IgJ+ B cell Plasma 

TCL1A- FCER2- B cell B cells 

TCL1A+ FCER2+ B cell 

Monocyte CD14+ Classical Monocytes 

Monocyte FCGR3A+ Non-classical monocytes 

Dendritic cell Plasmacytoid DC 

Myeloid DC 
 
We tested SNP-gene combinations that were significant in the trans-eQTL analysis and where 
the gene was sufficiently expressed (a missing sample fraction of <20%). We used the eQTL 
mapping pipeline for these analyses, with the same settings as the main analyses.  
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GWAS summary statistics 
Full association summary statistics were downloaded from several publicly available resources 
and are indicated in Supplementary Table 13. Studies done exclusively in non-European cohorts 
were omitted. Filters applied to the separate data sources are indicated below. All the dbSNP rs 
numbers were standardized to match GIANT 1000G p1v3 and the directions of the effects were 
standardized to correspond GIANT 1000G p1v3 minor allele. SNPs with different opposite-strand 
alleles compared to GIANT alleles were flipped. SNPs with A/T and C/G SNPs as well as SNPs 
with different alleles GIANT 1000G p1v3 (tri-allelic SNPs, indels, unknown alleles) were removed 
from the analysis. Genomic control was applied to all the P-values for the datasets that were not 
genotyped by Immunochip, Metabochip or Exome chip. Additionally, genomic control was skipped 
for datasets that did not have all associations available1 and all the datasets from GIANT 
consortium, as these had the application of genomic control indicated on the web site. In all, 1,263 
summary statistic files were added to the analysis. 

AdipoGen 
GWAS meta-analysis summary statistics for adiponectin levels2 were downloaded from 
(http://www.mcgill.ca/genepi/adipogen-consortium). Data filtering involved the removal of SNPs 
for which summary statistics were unavailable and SNPs that were tested in less than half of the 
maximal number of samples in meta-analysis. 

CARDIOGRAM 
Data on coronary artery disease/myocardial infarction have been contributed by 
CARDIoGRAMplusC4D investigators and CARDIoGRAM Exome investigators, and have been 
downloaded from www.CARDIOGRAMPLUSC4D.org. For two studies3,4, SNPs that were not 
present in more than half of the samples or had Cochran’s Q test P ≤ 0.0001 were removed. For 
the CARDIoGRAMplusC4D Consortium (2015) study only the threshold for Cochran’s Q test P > 
0.0001 was applied. 

CHARGE 
GWAS summary statistics for several fatty acids5-8 were collected from consortium web site 
(http://www.chargeconsortium.com/main/results). SNPs were filtered based on heterogeneity test 
P-value ≥ 0.0001 and presence in more than half of the cohorts. 

CKDGen 
GWAS meta-analysis summary statistics for kidney-related functions9,10 were collected from 
http://fox.nhlbi.nih.gov/CKDGen/. SNPs not present in at least half of the maximum number of 
samples in meta-analysis were filtered out. 

CONVERGE 
GWAS summary statistics for major depression11 were downloaded from 
https://www.med.unc.edu/pgc/files/resultfiles/. No filters were available and applied. 

DIAGRAM 
GWAS meta-analysis summary statistics for type 2 diabetes12,13 were collected from 
http://diagram-consortium.org/downloads.html. We removed SNPs that were not present in more 
than half of the samples in the meta-analysis. 
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EAGLE 
GWAS meta-analysis summary statistics for eczema14 and preschool internalizing problems15 
were collected from https://data.bris.ac.uk/data/dataset/28uchsdpmub118uex26ylacqm and 
http://www.tweelingenregister.org/fileadmin/user_upload/EAGLE/Internalizing.zip. SNPs not 
present for at least half of the maximum number of European cohorts or having Cochran’s Q test 
P ≤ 0.0001 were filtered out. 

EGG 
GWAS summary statistics for childhood growth phenotypes16-23 were collected from http://egg-
consortium.org/. If sample sizes were available in the summary statistics files, we included SNPs 
which were tested in more than half of the samples. 

GABRIEL 
GWAS meta-analysis summary statistics for asthma24 were collected from 
http://www.cng.fr/gabriel/results.html. SNPs not present in at least half of the maximum number 
of samples in meta-analysis or having Cochran’s Q test P ≤ 0.0001 were filtered out. 

GEFOS 
Whole-genome sequencing, whole-exome sequencing, and deep imputation of genotype data 
based meta-analysis summary statistics for bone density traits from Zheng et al25 were collected 
from http://www.gefos.org/?q=content/data-release-2015. SNPs not tested in at least half of 
cohorts in meta-analysis (3 out of 5) were filtered out. 

Acknowledgements 

We thank GEFOS-seq consortia for making these data available for research use. 

GIANT 

GWAS meta-analyses summary statistics for BMI26,27, hip and waist circumference28, and height29 
were downloaded from 
http://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files. All 
SNPs were filtered based on their presence in more than half of the samples in meta-analysis or, 
if available, presence in more than half of the cases and controls in the meta-analysis. 

GLGC 

GWAS meta-analyses summary statistics for lipid traits30 were collected from 
http://csg.sph.umich.edu//abecasis/public/lipids2013/. As results were already sample-size 
filtered (N>50,000 in GWAS and N>20,000 in Metabochip datasets), we did not apply any 
additional filters to these data. Additional summary statistics31 were collected from 
http://csg.sph.umich.edu/abecasis/public/lipids2010/. In this dataset, we included only SNPs that 
were present in at least half of the cohorts included in the meta-analysis. 

GPC (The Genetics of Personality Consortium) 
GWAS meta-analyses summary statistics for several personality traits32-34 were collected from 
http://www.tweelingenregister.org/GPC/. All SNPs not tested in more than half of the samples 
were filtered out. 
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GUGC 
GWAS meta-analysis summary statistics for serum urate and gout35 were collected from 
http://metabolomics.helmholtz-muenchen.de/gugc/. Data was not filtered as all reported SNPs 
were already present in at least 75% of all the samples in meta-analysis. P-value after genomic 
control was used. 

HemGen 
GWAS meta-analyses for red blood cell traits36 summary statistics were downloaded from 
European Genome-phenome Archive study accession EGAS00000000132 (public access 
dataset: access provided by EGA HelpDesk). SNPs were filtered based on the presence in at 
least half of the studies in the meta-analysis. 

HRgene consortium 

GWAS summary statistics for heart rate37, fat percentage38 and leptin39 were downloaded from 
the website of the HRgene consortium/Loos lab (https://walker05.u.hpc.mssm.edu/). SNPs were 
filtered based on presence in at least half of the samples in the meta-analysis and a heterogeneity 
test P-value ≥0.0001 (if reported). 

IGAP 

GWAS meta-analysis summary statistics for Alzheimer’s disease40 were collected from 
http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_download.php. 

Data was not filtered as sample-size and heterogeneity information was not available, and meta-
analysis consisted of only the SNPs that were genotyped or imputed in at least 40% of both, cases 
and controls. 
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report. IGAP was made possible by the generous participation of the control subjects, the patients, 
and their families. The i–Select chips was funded by the French National Foundation on 
Alzheimer's disease and related disorders. EADI was supported by the LABEX (laboratory of 
excellence program investment for the future) DISTALZ grant, Inserm, Institut Pasteur de Lille, 
Université de Lille 2 and the Lille University Hospital. GERAD was supported by the Medical 
Research Council (Grant n° 503480), Alzheimer's Research UK (Grant n° 503176), the Wellcome 
Trust (Grant n° 082604/2/07/Z) and German Federal Ministry of Education and Research (BMBF): 
Competence Network Dementia (CND) grant n° 01GI0102, 01GI0711, 01GI0420. CHARGE was 
partly supported by the NIH/NIA grant R01 AG033193 and the NIA AG081220 and AGES contract 
N01–AG–12100, the NHLBI grant R01 HL105756, the Icelandic Heart Association, and the 
Erasmus Medical Center and Erasmus University. ADGC was supported by the NIH/NIA grants: 
U01 AG032984, U24 AG021886, U01 AG016976, and the Alzheimer's Association grant ADGC–
10–196728. 

IIBDGC (International Inflammatory Bowel Disease Genetics Consortium) 
GWAS meta-analysis summary statistics for European cohorts41 were downloaded for IBD, 
ulcerative colitis and Crohn’s disease (http://www.ibdgenetics.org/downloads.html). All files were 
filtered to include SNPs tested in at least half of the datasets in meta-analysis and having 
heterogeneity test P-value > 0.0001. 
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Immunobase 
GWAS summary statistics for several autoimmune diseases were collected from Immunobase 
(http://www.immunobase.org/; accessed 26 April 2016). The following traits were downloaded: 
ulcerative colitis42, multiple sclerosis43,44, systemic lupus erythematosus45, primary biliary 
cirrhosis46,47, celiac disease48,49, narcolepsy50, juvenile idiopathic arthritis51, rheumatoid 
arthritis52,53, type 1 diabetes54 and psoriasis55. 

MAGIC 
Several GWAS meta-analysis summary statistics for glucose and insulin traits56-63 have been 
contributed by MAGIC investigators and have been downloaded from 
http://www.magicinvestigators.org. No additional filters were available and applied to these data. 
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Data on glycemic traits have been contributed by MAGIC investigators and have been 
downloaded from www.magicinvestigators.org. 

MAGNETIC 
GWAS summary statistics for metabolites from64 were downloaded from 
http://www.computationalmedicine.fi/data. SNPs were filtered by the presence in at least half of 
the samples in the meta-analysis. 

Metabolomics 
Metabolomics GWAS summary statistics65 were downloaded from http://mips.helmholtz-
muenchen.de/proj/GWAS/gwas/gwas_server/shin_et_al.associations.tar.gz. As this study was a 
meta-analysis incorporating only two cohorts, we did not apply any filters based on number of 
cohorts in the meta-analysis or heterogeneity test P-value. 

PGC (Psychiatric Genomics Consortium) 
Publicly available GWAS meta-analyses summary statistics for several personality and cognitive 
traits66-72 were downloaded from https://www.med.unc.edu/pgc/results-and-downloads.  

Interim results for autism spectrum disorder are cited as follows: 

Autism Spectrum Disorder Working Group of the Psychiatry Genomics Consortium. Dataset: 
PGC-ASD summary statistics from a meta-analysis of 5,305 ASD-diagnosed cases and 5,305 
pseudocontrols of European descent (based on similarity to CEPH reference genotypes) (March 
2015). (available at: http://www.med.unc.edu/pgc/results-anddownloads) 

No additional filters were applied to these datasets. 

Project MinE 
GWAS summary statistics for ALS risk from73 were downloaded from 
http://databrowser.projectmine.com. Summary statistics from mixed linear model analysis were 
used, and no additional filters were available. 
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ReproGen 
GWAS meta-analysis summary statistics for age of menopause74 and age of menarche75 were 
collected from (http://www.reprogen.org/data_download.html). No additional filters were available 
and applied to these data. 

SSGAC 
GWAS meta-analysis summary statistics for several social science outcomes76-80 were collected 
from http://www.thessgac.org/#!data/kuzq8. No additional filters were available or applied to these 
data. 

TAG 
GWAS meta-analysis summary statistics on smoking behavior81 were collected from 
https://www.med.unc.edu/pgc/results-and-downloads. No additional filters were available or 
applied to these data. 

Gieger et al., 2011 
GWAS summary statistics for platelet phenotypes82 were acquired through communication with 
Prof. Soranzo. We excluded SNPs that were tested in less than half of the individuals in the 
analysis. 
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We thank Prof. Nicole Soranzo for her help in providing these summary statistics. 

Hyde et al., 2016 
GWAS summary statistics for major depressive disorder were curated from the supplementary 
material of original publication1. This data involved only the 10,000 most significant SNPs (P 
<5.3×10-5).  

Orrù et al., 2013 
GWAS summary statistics for immune cell traits from the paper83 were acquired from 
http://www.irgb.cnr.it/facsdataexplorer. No additional filters were applied to these data. 
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We thank Mr. Luiz Fernando Pereira for his help in downloading these summary statistics. 

Roederer et al., 2015 
GWAS summary statistics from immune cell traits84 were downloaded from ftp://twinr-
ftp.kcl.ac.uk/ImmuneCellScience/2-GWASResults/. The same filters were applied as in the 
original study: Hardy-Weinberg disequilibrium test P-value < 0.0001, MAF>0.05 and call rate > 
95%. 

Full summary statistics datasets from GRASP website  
Exome-chip-based full summary statistics for platelet traits85, white blood cell counts86 and red 
blood cell counts87 were downloaded from the GRASP 2.0 website 
(https://grasp.nhlbi.nih.gov/FullResults.aspx)88. No additional SNP filters were available and 
applied.  
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Supplementary Methods 

Conditional cis-eQTL analyses 
Summary statistics based conditional analysis 
For the 14,115 samples profiled with Illumina expression arrays, we applied summary-statistics-
based conditional analysis on meta-analyzed Z-scores. The analysis strategy was modified from89 
performing joint effect estimation from equation (5) and conditional analysis from equation (19) of 
the aforementioned paper.  

We used standardized Z-scores re-calculated using only cohorts of European descent and the 
formula: Z / √n. 

For each Illumina probe and chromosome, the following steps were taken: 

1. Reference genotype data from 1kG EUR was used. After standardizing the genotypes to 
mean zero and variance 1, correlation matrix C was calculated. To avoid overestimation 
of the correlations, we used a shrinking parameter of 1 - λ, with λ = 2 / √n and n being the 
sample size in the reference panel. If alleles did not match, the sign of Z was swapped. 

2. We removed SNPs for which N < (Ntotal× 0.9), SNPs that were missing from reference 
panel and SNPs for which the study-specific allele frequency deviated from reference 
panel for more than 0.05.  

3. We selected the top SNP (denoted as B1), by choosing the SNP with the largest absolute 
standardized effect size. 

4. We conditioned all remaining SNPs on this top SNP(s) (denoted as B2): B2cond = B2 − B1 
C11−1 C12 

5. We removed B2 SNPs that have |C12| > 0.9 

6. We ranked the B2 SNPs according to decreasing absolute B2cond and select top SNP. 
Include this SNP to B1 SNPs. 

7. We calculated joint effect sizes: B1joint = B1 C11
-1. Only keeping B1 SNPs that had (|B1joint| 

× √n) > 4, n being the sample size in the reference panel. 

8. We repeated steps 3 to 7 until no additional SNPs were identified to have |Z| > 0.4 (lowest 
Z corresponding to FDR < 0.05). 

9. We calculated joint effect sizes for B1 SNPs, then converted the joint effect sizes to joint 
Z statistics. 

Iterative conditional analysis 
For individual datasets profiled by RNA-seq and Affymetrix arrays, we applied iterative conditional 
cis-eQTL mapping. First, cis-eQTL mapping was conducted using the same settings as the 
discovery cis-eQTL mapping analysis. For all significant (FDR<0.05) cis-eQTL effects, the most 
significant SNP effect for each gene was regressed out from the gene expression matrix. The 
next round of cis-eQTL mapping analysis was conducted on the adjusted expression matrix while 
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testing only genes that had any significant cis-eQTL effect prior regression. The analysis was 
performed iteratively until no significant (FDR<0.05) effects remained for a given gene. 

Sample size estimation for Framingham Heart Study 
Being a family-based cohort, the Framingham Heart Study was the only dataset in the analysis 
that did not consist of unrelated individuals. Although the analysis strategy took family relationship 
into account, we needed to determine the effective sample size to use proper weight for this 
dataset in the weighted Z-score meta-analysis. To do so, we selected 20 random genes and used 
eQTL effects for genome-wide SNPs to estimate effective sample size (+,--), based on the 
formula: 

+,-- =
∑ [012(3) − 267(1 − 67)$7

9]/[267(1 − 67);7
9]<

7=>

?
	

Where 012(3) is the variance of the phenotype, 6 is the minor allele frequency of the SNP, β is 
the estimated SNP effect on the expression level of the gene, S is the corresponding standard 
error of β, and ? is the number of genome-wide SNPs. 

As the effective sample size was not dramatically different when compared to the real one (mean 
+,--	over all 20 genes was 4,793; median +,-- = 4,844, as compared to real + = 5,075; 
Supplementary Table 19) and thus will not influence the results of the combined meta-analysis 
considerably, we opted to use the real sample size as a weight in the meta-analysis. 

Removal of cross-mapping artefacts from trans-eQTL results 
When a trans-eQTL gene has similar paralogous genes in close proximity (< 5Mb) of a given 
eQTL SNP, the apparent trans-eQTL effect may actually reflect a much stronger cis-eQTL effect. 
This might be caused by non-unique binding of the array probe (probe binds with several similar 
mRNA molecules) or some non-unique read mapping in case of RNA-seq (read is assigned to 
several similar regions in the genome). While both scenarios should be corrected by filtering out 
multi-mapping Illumina array probes and by not counting the RNA-seq reads assigned to multiple 
genomic features, there might still be some non-detected cases. 

To remove such false positive trans-eQTLs, we created sets of 35 bp "reads" from the human 
reference genome (ENSEMBL v71) for each significant (FDR<0.05) trans-eQTL gene. To span 
the gene sequence, we used a shifting window approach, with each consecutive window shifting 
2bp, while also generating reads spanning exon-exon boundaries. We created 10Mb sequences 
centered around each significant trans-eQTL SNP. Then, we mapped the reads generated for the 
gene to the 10Mb SNP region using BWA-mem v0.7.1590 for each trans-eQTL SNP-gene pair. 
Finally, for each trans-eQTL, we summed the fractions of aligned base pairs over all the reads 
generated for given gene and divided this by the number of reads for a given gene, resulting in a 
proportion of the gene mapped within 5Mb of the SNP. 

As trans-eQTLs with high proportions of genes mapping within the SNP region are more likely to 
actually be cis-eQTL effects, we reasoned that those should show nominal replication 
(uncorrected P<0.05) in many GTEx v6p tissues. Based on visual inspection of diagnostic plot 
(Supplementary Figure 14A), we opted to use 5% of gene mapping to the vicinity of a SNP as 
a threshold to declare a trans-eQTL to be potentially caused by cross-mapping. This strategy 
flagged 8,984 (12.2%) out of 73,298 significant trans-eQTLs as potentially cross-mapping. After 
re-calculating the FDR after SNP pruning, 59,786 (81.6%) effects remained significant 
(FDR<0.05). 
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26 trans-eQTLs showing very low cross-mapping (<5%), yet high nominal replication rate in GTEx 
tissues (>30% of tested tissues with P<0.05, >10 tissues tested for each trans-eQTL), were further 
investigated by forest plots (Supplementary Figure 14B). 8 out of the 26 trans-eQTLs showed 
strong and unidirectional effects for the majority of RNA-seq and array platforms, suggesting that 
these are not caused by cross-mapping. The remainder of the trans-eQTLs were tested mainly 
or exclusively in RNA-seq datasets. However, investigation of regions near the eSNP in the UCSC 
browser (https://genome.ucsc.edu/, most up-to-date hg38 build) did not identify any genomic 
features that are likely to be paralogous with its trans-eQTL gene (e.g. pseudogenes of the trans-
eQTL gene). Likely cross-mapping trans-eQTLs had generally higher effect sizes in most different 
cell-type-specific datasets (Supplementary Figure 14C) as well as individual RNA-seq-based 
LCL replication datasets, but not in Illumina array dataset ALSPAC (Supplementary Figure 14D). 
Considering that the effect sizes of cis-eQTLs are generally stronger than trans-eQTLs, these 
data suggests that we have removed the large majority of trans-eQTL effects which were actually 
caused by cross-mapping with cis-eQTL loci. 

Quality control of the meta-analyses 
For quality control of the overall meta-analysis results, MAFs for all tested SNPs were compared 
between eQTLGen and 1000G p1v3 EUR (Supplementary Figure 15), and the effect direction 
of each dataset was compared against the meta-analyzed effect (Supplementary Figure 16A-
C). 

Conditional trans-eQTL analyses 
We aimed to estimate how many trans-eQTL SNPs were likely to drive both the trans-eQTL effect 
and the GWAS phenotype. The workflow of this analysis is shown in Supplementary Figure 17. 
We used the discovery trans-eQTL analysis results as an input, confined ourselves to those 
effects that were present in the datasets we had direct access to (BBMRI-BIOS+EGCUT; 
N=4,339), and showed nominal P<8.3×10-06 in the meta-analysis of those datasets. This P-value 
threshold was the same as in the full combined trans-eQTL meta-analysis and was based on the 
FDR=0.05 significance threshold identified from the analysis run on the pruned set of GWAS 
SNPs after removal of cross-mapping effects. We used the same methods and SNP filters as in 
the full combined trans-eQTL meta-analysis, aside from the FDR calculation, which was based 
on the full set of SNPs instead of the pruned set of SNPs. 

For each significant trans-eQTL SNP (FDR<0.05), we defined the locus by adding a ±1 Mb 
window around it. Next, for each trans-eQTL gene, we ran iterative conditional trans-eQTL 
analysis using all loci for a given trans-eQTL gene. We then evaluated the LD between all 
conditional lead trans-eQTL SNPs and lead cis-eQTL SNPs using a 1 Mb window and R2>0.8 
(1kG p1v3 EUR) as a threshold for LD overlap. 

cis-eQTL - trans-eQTL interaction analyses 
We aimed to identify local cis-eQTL genes that affect the trans-eQTL effect by changing its 
strength or direction and might therefore serve as potential mediators. We used a G × E 
interaction model to test this: 

t = $0 + $1 × s + $2 × m + $3 × s × m 

where t is the expression of the trans-eQTL gene, s is the trans-eQTL SNP, and m is the 
expression of a potential mediator gene within 100kb of the trans-eQTL SNP. We omitted trans-
eQTL SNP locating to HLA region from those analyses because of the complex structure of this 
region. On top of the gene expression normalization that we used for discovery analyses, we used 
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a rank-based inverse normal transformation to enforce a normal distribution before fitting the 
linear model. This is identical to the normalization used by Zhernakova et al91 in their G × E 
interaction eQTL analyses. We fitted this model separately to each of the cohorts that are part of 
the BIOS consortium and to EGCUT. We transformed the interaction P-values to Z-scores and 
used the weighted Z-score method92 to perform a meta-analysis of 4,339 samples. The Benjamini-
Hochberg procedure93 was used to limit the FDR to 0.05. The plots in Supplementary Figure 18 
were created with the default normalization, and the regression lines are the best-fitting lines 
between the mediator gene and the trans-eQTL gene, stratified by genotype. 

Cell-type-composition effects of trans-eQTLs and eQTS 

Dataset 
We used data from a subset 3,831 BIOS individuals to which we had direct access. We further 
narrowed our sample set down to 1,858 individuals for whom the measured cell metric data was 
available for at least ⅔ of measured cell metrics. All samples were part of discovery meta-
analyses. 

Measured cell metrics 
Several cell types were counted in peripheral blood from each of the BIOS cohort participants, 
but cohorts differed in the availability. Cells were counted as an absolute number in a liter of blood 
(white blood cell count, red blood cell count, platelet count), or as a percentage of the white blood 
cell count (neutrophil percentage, lymphocyte percentage, etc.). Out of 24 cell metrics, we 
excluded eight (LUC, LUC%, RBC, RDW, MCH, MPV, MCHC, MCV) because these 
measurements were not available for the large fraction of samples, hindering the estimation of 
the combined effect of measured cell metrics on trans-eQTLs and eQTS. All measured cell 
metrics are summarized in Supplementary Table 20. 

Estimated cell counts 
We estimated the cell counts of 33 different cell types using Decon-cell, part of the Decon2 
method94. Decon-cell was trained using information from the independent 500FG cohort, which 
includes detailed cell type measures as well as RNA-seq expression profiles95. Next, the 
prediction model was used to impute cell proportions based on the BIOS gene expression matrix. 
Predicted cell metrics are summarized in Supplementary Table 20. 

Cell type interaction analyses 
Here we used data from a subset of up to 1,858 BIOS Consortium samples for which 49 measured 
and predicted cell type metrics were available. For these analyses we tested only effects where 
the SNP had a MAF>0.05 in each BIOS cohort. 

All 49 cell metrics were transformed by inverse normal transformation prior to analyses. For gene 
expression, we used the same preprocessing as in the discovery meta-analyses, including 
correction for expression PCs and regression of cis-eQTL effects. In addition to the standard 
preprocessing, the expression of each gene was transformed using inverse normal 
transformation. 

For multivariate linear models, analyses were conducted using R v3.4.4, data.table v1.12, 
tidyverse v1.2.1, broom v0.5.1 and the pheatmap v1.0.12 packages. For each BIOS cohort, linear 
models were fitted for each trans-eQTL identified in meta-analysis (FDR<0.05), using lm() 
function from R. For eQTS analyses, PGS was used instead of SNP. 
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Three different interaction models were fitted for each trans-eQTL and eQTS: 

t = $0 + $1 × s 

t = $0 + $1 × c1 + $2 × c2 + … + $49 × c49 + $50 × s 

t = $0 + $1 × c1 + $2 × c2 + … + $49 × c49 + $50 × c1 × s + … + $99 × c49 × s + $100 × s 

where t is the expression of trans-eQTL/eQTS gene, c is cell-type metric, and s is a dosage of 
trans-eQTL SNP or scaled value of polygenic score. P-values from each term of the linear model 
(main effects and interaction effects) were converted to signed Z-scores and effects were meta-
analyzed by weighted Z-score method, using the square root of per-cohort sample size as weight. 

To determine the effect of cell-type composition on trans-eQTLs, we applied models and 
assessed the SNP main effect. Here we used the same significance thresholds as determined by 
the permutation-based FDR in the discovery meta-analyses. 

To determine the likely cell types where trans-eQTLs or eQTSs can manifest, we applied the third 
model with the difference that no PCs were removed from gene expression data prior to analysis 
and queried the individual interaction term for each cell metric. A Benjamini-Hochberg FDR93 

across all interaction P-values was used to determine significance in this analysis. 

Identifying cell types correlating with polygenic scores 
To identify the cell types that are most affected by genes associated with the polygenic scores for 
autoimmune diseases (Supplementary Figure 13D), we investigated scRNA-seq data96. Since 
each disease is represented using multiple GWAS P-value cutoffs, we first opted to calculate an 
average Z-score per gene, averaging over the P=0.01, P=0.001, P=1×10-4, P=1×10-5, and 
P=5×10-8 thresholds. For this purpose, we made use of the non-PC-corrected eQTS results, since 
this dataset is likely to still contain major effects of cell-type-composition differences. From the 
resulting Z-score vector, approximately 5,000 significant genes were selected, as determined 
from the average Z-scores. We then calculated correlations between the Z-scores for the selected 
genes and gene expression levels from a scRNA-seq dataset consisting of ~25,000 peripheral 
blood mononuclear cells isolated from 45 individuals96. We then repeated this analysis in the 10 
permuted eQTS datasets, and calculated an empirical FDR threshold that was used to investigate 
individual traits. From this analysis we observed that eQTS signatures for systemic lupus 
erythematosus, ulcerative colitis and celiac disease showed significantly (FDR<0.05) increased 
or decreased expression in at least 10 cells. 

Enrichment analyses 

Overview of enrichment analyses 
The table below includes enrichment analyses that were performed in the study, and describes 
for each analysis the method, the tested annotations, the test set, the background set and the null 
hypothesis. 
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Enrichment 
analysis 
 

Method 
 

Tested 
annotations 
 

Test set 
 

Background 
 

Null 
hypothesis 
 

TF enrichment 
analysis for 
rs17087335 
trans-eQTL 
genes. 
 

One-sided 
Fisher’s exact 
tests as 
implemented in 
GeneOverlap. 
 

TF targets as 
determined by 
CHiP-X. 
Downloaded 
from Enrichr 
web site. 
 

trans-eQTL 
genes. 
 

All 19,942 
genes tested in 
trans-eQTL 
meta-analysis. 
 

There is no 
overrepresenta
tion of TF 
targets among 
trans-eQTL 
genes for 
rs17087335. 
 

TF and miRNA 
target site 
enrichment 
analyses for 
hub trans-
eQTL SNPs. 
 

One-sided 
Fisher’s exact 
tests as 
implemented in 
GeneOverlap. 
 

TF targets as 
determined by 
CHiP-X, 
putative TF 
targets based 
on TRANSFAC 

and JASPAR 
PWMs. miRNA 
targets from 
TargetScan 
and 
MirTarBase. 
Downloaded 
from Enrichr 
web site. 

trans-eQTL 
genes. 

All 19,942 
genes tested in 
trans-eQTL 
meta-analysis. 

There is no 
overrepresenta
tion of TF or 
miRNA targets. 

Gene Ontology 
(GO) 
enrichment for 
co-localizing 
cis-eQTL and 
trans-eQTL 
effects. 
 

One-sided 
Fisher’s exact 
tests as 
implemented in 
GeneOverlap. 
 

GO gene sets 
(2018. year 
version). 
Downloaded 
from Enrichr 
web site. 
 

cis-eQTL 
genes, 
showing co-
localization 
(R2>0.8) with 
any trans-
eQTL gene. 
 

All 16,987 
genes 
significant in 
cis-eQTL meta-
analysis. 
 

There is no 
over-
representation 
of GO 
annotation for 
trans-eQTL 
genes co-
localizing with 
cis-eQTL 
genes. 
 

Gene Ontology 
(GO) 
enrichment for 
per-phenotype 
trans-eQTL 
genes. 

One-sided 
Fisher’s exact 
tests as 
implemented in 
GeneOverlap. 

GO gene sets 
(2018. year 
version). 
Downloaded 
from Enrichr 
web site. 

trans-eQTL 
genes, 
stratified by 
GWAS 
phenotype. 

All 19,942 
genes tested in 
trans-eQTL 
meta-analysis. 

There is no 
overrepresenta
tion of GO 
terms for any 
phenotype. 

Gene Ontology 
(GO) 
enrichment for 
per-phenotype 
eQTS genes. 

One-sided 
Fisher’s exact 
tests as 
implemented in 
GeneOverlap. 

GO gene sets 
(2018. year 
version). 
Downloaded 
from Enrichr 
web site. 

eQTS genes, 
stratified by 
GWAS 
phenotype. 

All 19,942 
genes tested in 
eQTS meta-
analysis. 

There is no 
overrepresenta
tion of GO 
terms for any 
phenotype. 

Gene Ontology 
(GO) 
enrichment for 

One-sided 
Fisher’s exact 
tests as 

GO gene sets 
(2018. year 
version). 

eQTS genes. All 19,942 
genes tested in 
eQTS meta-

There is no 
overrepresenta
tion of GO 
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all eQTS 
genes. 

implemented in 
GeneOverlap. 

Downloaded 
from Enrichr 
web site. 

analysis. terms for 
eQTS genes. 

TF enrichment 
for all eQTS 
genes. 

One-sided 
Fisher’s exact 
test as 
implemented in 
GeneOverlap 

TF information 
from 
FANTOM5 
(Abugessaisa 
 et al., 2016) 

eQTS genes. eQTS genes 
and TF targets. 

There is no 
overrepresenta
tion of TFs 
among eQTS 
genes. 

TF enrichment 
of cis-trans 
gene pairs. 
 

Two-sided 
Fisher’s exact 
test. 
 

TF information 
from 
Regulatory 
Circuits 
(Marbach et 
al., 2016). 
 

Trans-eQTLs 
converted to 
gene pairs. 
 

Gene-gene 
combinations 
and TF-target 
pairs. 
 

There is no 
enrichment of 
TF-target gene 
pairs among 
trans-eQTLs. 
 

PPI 
enrichment of 
cis-trans gene 
pairs. 
 

Two-sided 
Fisher’s exact 
test. 
 

InWeb protein-
protein 
interactions (Li 
et al., 2017). 

Trans-eQTLs 
converted to 
gene pairs. 
 

Gene-gene 
combinations 
and TF-target 
pairs. 

There is no 
enrichment of 
interacting 
proteins 
among trans-
eQTLs. 
 

Co-regulation 
of cis-trans 
gene pairs. 
 

Two-sided 
Fisher’s exact 
test. 

Co-regulation 
as derived 
from eQTLGen 
summary 
statistics. 

Trans-eQTLs 
converted to 
gene pairs. 
 

Gene-gene 
combinations 
and TF-target 
pairs. 

There is no 
enrichment of 
Co-regulation 
genes among 
trans-eQTLs. 
 

Hi-C contact 
between cis-
trans gene 
pairs. 
 

Two-sided 
Fisher’s exact 
test. 
 

Hi-C contacts 
10kb 
resolution, 
(Rao et al, 
Science 2014). 

 

Trans-eQTLs 
converted to 
gene pairs. 
 

Gene-gene 
combinations 
and TF-target 
pairs. 

There is no 
increased 
contact 
between the 
genomic 
locations of 
trans-eQTL 
genes and 
SNPs 
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TF and microRNA target enrichment analyses for hub SNPs 
Hub SNPs were defined as SNPs having more than 10 trans-eQTL genes. TF target genes and 
microRNA target genes were downloaded from the Enrichr web site 97,98. These included TF 
targets as assayed by ChIP-X experiments from ChEA99 and ENCODE projects100,101, putative TF 
targets based on positional weight matrices (PWMs) from TRANSFAC102,103, JASPAR104 and 
Genome Browser; predicted microRNA targets from TargetScan105,106 and experimentally 
supported microRNA targets from miRTarBase107. 

A one-sided Fisher’s exact test was applied to the downstream genes for all trans-eQTL SNPs 
with >10 trans-eQTL effects (1,050 gene sets), using the Bioconductor package GeneOverlap 
and 19,942 genes tested in the trans-eQTL analysis as a background of the analysis. Multiple 
testing correction was performed over all gene sets and SNPs using the Benjamini-Hochberg 
method. To prioritize TFs and miRNAs that are more likely to cause the trans-eQTL effects, we 
required the location of the gene encoding the TF or microRNA to be <1 Mb from the trans-eQTL 
SNP. Coordinates of genes encoding each TF were downloaded from Ensembl v75 and genomic 
coordinates of microRNAs were downloaded from miRBase v21108. 

Enrichment analyses for trans-eQTL and eQTS genes 
We downloaded curated Gene Ontology gene sets (2018 version)109 from the Enrichr web site97. 
Gene Ontology gene set over-representation analyses were conducted per each phenotype which 
had ≥10 downstream genes using one-sided Fisher’s exact tests as implemented in GeneOverlap 
while using all 19,942 genes tested in the trans-eQTL analysis as a background of the analysis. 
Multiple testing correction was performed over all gene sets, using the Benjamini-Hochberg 
method. 

For per-phenotype enrichment analyses, all trans-eQTL genes and eQTS genes (FDR<0.05 in 
discovery analysis) were stratified by corresponding GWAS phenotype prior analysis. 

Separate Gene Ontology enrichment analysis was also conducted to the combined set of 2,568 
significant eQTS genes (FDR<0.05 from discovery eQTS analysis), to test general enrichment for 
transcriptional regulation related GO terms. 

Transcription factor enrichment analyses for eQTS genes 
Human transcription factor annotations were downloaded from FANTOM5 SSTAR110. All eQTS 
genes (FDR<0.05 in discovery analysis) were tested for enrichment by one-sided Fisher’s exact 
test as implemented in GeneOverlap. 

PPI overlap analyses for eQTS genes 
To test whether eQTS genes (FDR<0.05 from discovery analysis) had more PPI partners than 
the rest of the genes, we used the protein-protein interaction (PPI) data from InWeb111. We first 
intersected all eQTS genes to include only those which were available in PPI dataset. We then 
counted the interaction partners for each gene and compared the number of partners between 
eQTS genes and the rest of the genes by Wilcoxon rank sum test, as implemented in R v3.4.4. 

LD overlap analyses between cis-eQTLs and trans-eQTLs 
In order to evaluate the potential co-localization of association signal from two analyses which 
share samples, we determined the LD between the lead SNPs from both analyses. Cis-eQTL 
data from 31,684 blood samples and locus-wide conditional trans-eQTL analysis data from the 
subset of 4,339 samples (BIOS and EGCUT) were used to evaluate the potential colocalization 
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between cis-eQTL and trans-eQTL signals. We declared the cis- and trans-eQTL signals as co-
localising when primary cis-eQTL and conditional trans-eQTL lead SNPs were in high LD (R2>0.8; 
1000G p1v3 EUR). 
We downloaded curated Gene Ontology gene sets (2018 version)109 from the Enrichr97 web site 
(https://maayanlab.cloud/Enrichr/#stats). Those gene sets were used to conduct over-
representation analyses (one-sided Fisher exact test) as implemented in R package 
GeneOverlap, while using 16,987 genes under significant cis-eQTL effect as a background. 

Biological mechanisms explaining trans-eQTLs 

Conversion of trans-eQTL results to trans-eQTL gene × gene P-value 
matrices 
To better understand the biological mechanisms underlying the trans-eQTLs, we performed a 
number of enrichment analyses. We wanted to use transcription factor (TF)-target pairs, gene co-
regulation, and protein-protein interaction for these enrichments. For that reason, we needed to 
transform the trans-eQTLs into a gene-by-gene matrix filled with trans-eQTL P-values. We 
converted the trans-eQTL results into three matrices (corresponding to the three columns in 
Supplementary Figure 9): one based on the Pascal method112 (strategy described in 
Supplementary Figure 10), one based on trans-eQTL SNPs that also had cis-eQTL effect, and 
one based on the combination of these two. 

Pascal method to construct gene × gene matrix 

For each gene, we selected those SNPs that mapped within 50kb of the transcription start site 
(TSS) or transcription end site (TES). To then determine whether that set of SNPs is significantly 
affecting one of the 19,942 genes, we used the Pascal method to sum the effects of the different 
tested variants within this 50kb window while accounting for LD using the European 1000G phase 
3 samples. 

eQTL method to construct gene × gene matrix 

To construct the gene × gene matrix while including eQTL information, we performed exactly the 
same steps as in the Pascal method explained above, with the exception that we only included 
SNPs with a cis-eQTL for each gene, instead of the SNPs in a 50kb window.  

Combined method to construct gene × gene matrix 

In the combined method we use all SNPs in a 50kb window as well as cis-eQTL SNPs. In our 
analysis, cis-eQTL SNPs can be up to 1 Mb away from the center of the gene. Therefore, the 
combined matrix includes information on more gene pairs than either the Pascal matrix or the 
eQTL matrix. 

Gene co-regulation matrix based on eQTLGen expression data 

To calculate the gene co-regulations we first needed to calculate the co-expression between 
genes. For that, we concatenated the 10 permuted trans-eQTL Z-score matrices, and filtered the 
list to a set of 4,586 unlinked SNPs (LD R2<0.1), yielding a matrix of 19,942 unique genes × 
45,860 independent and identically distributed variables. Since Z-scores are standardized under 
the null, we calculated the inner product per gene-pair in order to get the true co-expression 
correlation of that gene-pair. We then performed a PCA over this co-expression matrix and 
extracted the first 500 eigenvalues to use for the co-regulation calculation. The co-regulation of 
two genes was calculated by correlating the 500 eigen coefficients of the two genes, this was 
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done for all gene pairs to create the co-regulation matrix. This co-regulation matrix was used to 
perform the enrichment analyses described below. 

Enriched overlap with set of transcription factor - downstream target gene-
pairs 
We used the above-mentioned trans-eQTL gene-by-gene matrices to ascertain the overlap with 
established sets of gene pairs. We first studied the overlap with a set of TF-downstream target 
gene-pairs, downloaded from RegulatoryCircuits.org113. We used the TF-target gene pairs 
predicted in lymphocytes, myeloid_leukocytes, lymphocytes_of_b_lineage, and 
myeloid_leukemia. 

To calculate whether there is any enrichment, we compared how many of the tested trans-eQTL 
gene pairs are known TF-target pairs, and how many of the TF-target pairs are significant trans-
eQTL gene pairs. This results in a contingency table that we use as input for a two-sided Fisher 
exact test to calculate the odds ratio and P-value of the enrichment. Analysis strategy is depicted 
in the Supplementary Figure 10. 

Next, we expanded the TF-target matrix by including genes that were highly co-regulated with the 
target gene (row 2 in Supplementary Figure 9), genes that were highly co-regulated with the 
TF (row 3 in Supplementary Figure 9), or both (row 4 in Supplementary Figure 9). 

Enriched overlap with co-regulated genes 
We also ascertained whether the trans-eQTL gene × gene matrices showed any enrichment for 
gene co-regulation patterns. The co-regulation was calculated based on the permutations (see 
section Conversion of trans-eQTL results to trans-eQTL gene × gene P-value matrices 
above). We calculated enrichment for each of the three trans-eQTL gene × gene matrices using 
a contingency table as described above (row 4 in Supplementary Figure 9). 

Enriched overlap with protein-protein interactions 
Next, we calculated enrichment of protein-protein interaction, using information from InBio106, 
downloaded from 
https://www.intomics.com/inbio/map/api/get_data?file=InBio_Map_core_2016_09_12.tar.gz 
(row 5 in Supplementary Figure 9). 

Enriched overlap with Hi-C contacts 
Last, we investigated if there was any enrichment of physical contact (as measured by Hi-C data) 
within the trans-eQTL gene × gene matrix. We used both inter- and intrachromosomal data 
derived from LCL samples (GM12878, GEO accession GSE63525)114. We looked at a resolution 
of 10 kb, applied KR normalisation115 using the supplied information and only took contacts with 
a mapping quality of ≥ 30 (MAPQGE30). We converted this matrix into a gene × gene matrix by 
assigning the 10 kb blocks to all 19,942 genes if they overlapped (part of) the gene or the 50 kb 
window around each gene. The gene-gene matrix was filled with the maximum Hi-C contact value 
noted for the blocks assigned to this gene-gene combination. For testing the enrichment, we 
divided the gene-gene Hi-C matrix into two states: ‘no contact’ if the value was 0 ‘contact’ if it was 
>0 to generate another contingency table (row 6 in Supplementary Figure 9). 
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Supplementary Results 

Meta-analyses on local and distal gene expression 

eQTLs and eQTS are concordant between platforms 
Our consortium contains 37 datasets profiled using different expression profiling platforms, 
including several Illumina and Affymetrix expression array versions (Affymetrix HuEx 1.0-ST and 
Affymetrix U219) and RNA-seq, making a direct meta-analysis impossible. We therefore made 
use of co-regulation patterns between genes to assign the best-matching expression probe from 
each expression array type to each gene (Methods). After applying this method, we meta-
analysed the different expression profiling platforms on gene-level. We then performed eQTL and 
eQTS discovery and replication analyses between each combination of platforms. Because the 
different platforms had variable sample sizes, which resulted in differences in replication power, 
replication rates varied from 86.3% (among cis-eQTLs in the largest replication dataset) to 13% 
(among trans-eQTLs in the smallest replication dataset) (Supplementary Figure 1A-C). 
However, effects that were replicated (FDR<0.05) showed consistent allelic directions for cis-
eQTLs (average over all comparisons 93.23%), trans-eQTLs (average over all comparisons 
99.2%) and eQTS (average over all comparisons 99.4%). This demonstrates that our integration 
method enabled us to combine different expression profiling platforms and, importantly, that the 
eQTLs and eQTSs identified by our approach are replicable between different whole blood 
datasets (Supplementary Figure 1A-C). Therefore we continued with the combined meta-
analysis. 

Multiple testing correction 
As our analysis tested nearly 20,000 genes, our study required a strategy to correct for multiple 
testing. Bonferroni correction is overly stringent for eQTL analysis due to many correlating genes 
and extensive linkage between genetic variants. Instead, permutation-based approaches91,116,117 
or Benjamini-Hochberg FDR93,118,119 are often used for multiple testing correction in eQTL studies. 
Here, we adopted a permutation-based strategy91,116,120 where each cohort performed the regular 
analyses and 10 permutations in which the links between gene expression and genotypes were 
shuffled in each permutation (Methods). As with the non-permuted results, we meta-analyzed the 
results from each permutation and compared the P-value distributions across all tests between 
the non-permuted and permuted data to determine an FDR estimate for each association 
(methodology varies slightly between cis-eQTL, trans-eQTL and eQTS analyses, see details in 
Methods). We have previously shown that these FDR estimates stabilize after only a few 
permutations, demonstrating that 10 permutations is sufficient116. By evaluating the FDR 
estimates over all tests performed, our approach yields an analysis-wide estimate of FDR (i.e. 
genome-wide for cis-eQTLs), rather than a specific FDR estimate per gene, which would require 
many more permutations. For all the discovery analyses, we observed that our strategy was more 
conservative than Benjamini-Hochberg FDR and less stringent than the Bonferroni method 
(Supplementary Figure 2). Because users of our resource may require different levels of 
stringency, we provide both permutation-based FDRs and Bonferroni-corrected P-values for all 
the reported effects. 
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Correction for unknown confounders 

In all the analyses, we accounted for unknown technical confounders (such as batch effects) and 
biological confounders (such as inter-individual differences in cell-type-composition) by correcting 
the expression data per cohort for up to 25 expression principal components (PCs) that were not 
associated with genetic variation (Methods). This correction adjusted for the majority of cell-type-
composition effects in a subset of samples from the BIOS cohort (N up to 3,831, Supplementary 
Figure 3, see details in “Cell-type-composition effects of trans-eQTLs and eQTS“). Nevertheless, 
we acknowledge that our dataset may still include residual cell-type-composition effects. 

Power analyses 
We performed power calculations using the pwr v1.3-0 package available for R version 4.0.0. 
First, we assumed that all variants and genes were present in all datasets, giving a sample size 
of 31,684. Next, we determined the power to detect an effect size in our discovery meta-analysis. 
We varied the effect size between 0 and 0.5 in steps of 0.001, and calculated the statistical power 
using the pwr.r.test function, using significance thresholds corresponding to an FDR<0.05 in the 
cis-eQTL (P<2.0×10-5), trans-eQTL (P<8.3×10-6) and eQTS (P<3×10-6) analyses. 

We then determined the minimal effect size (r=0.024, r=0.025, and r=0.028 for cis-eQTLs, trans-
eQTLs and eQTS, respectively), median effect size (r=0.124, r=0.033, and r=0.037) and maximal 
effect size (r=0.91, r=0.541 and r=0.225) at the FDR<0.05 significance level (Supplementary 
Figure 8A, E and I). The observed minimal effect sizes were comparable to the effect sizes at a 
power of 80%, given the sample size of 31,684: 0.029 and 0.03 for cis-eQTLs and trans-eQTLs, 
respectively. For eQTS sample size of 28,158 the corresponding effect size was 0.033 
(Supplementary Figure 8B, F and J). At the minimal effect sizes, we observed reasonable levels 
of power: 50.8% for cis-eQTLs, 49.9% for trans-eQTLs, and 49.9% for eQTS. Median and 
maximal effect sizes all had a power > 90%. 

Next, we determined the minimal sample size required to detect the minimal, median and maximal 
effect sizes identified in the discovery meta-analysis at the FDR<0.05 significance thresholds. At 
a power of 80%, the sample sizes required to detect the median effect size observed in our 
discovery meta-analysis was 1,685 for cis-eQTLs, 25,407 for trans-eQTLs, and 22,595 for eQTS 
(Supplementary Figure 8C, G and K). We note that at stricter significance thresholds (e.g. when 
using the Bonferroni correction), these sample sizes will be higher. 

The datasets we included for replication purposes all had a smaller sample size (N=1,480 for 
CD14+ cells) than our discovery analysis, either because they were from purified cell types, they 
were from single cell studies, or because they were from tissues that are harder to investigate 
than whole blood. Considering the relatively small size of the effects observed in our discovery 
meta-analysis, and the relatively small sample sizes of the replication datasets, we expected that 
many of the effects identified in our meta-analysis would not replicate significantly. To quantify 
this, we determined the number of cis-eQTLs, trans-eQTLs and eQTS effects that we would 
expect to be able to replicate at a power of 80% (Supplementary Figure 8D, H and L). We used 
the effect sizes r and FDR<0.05 significance thresholds as detected in the discovery cis-eQTL, 
trans-eQTL and eQTS meta-analysis, and calculated the power to detect each of the effects using 
the replication dataset sample size. For the cis-eQTLs, we expected to be able to detect at least 
20% of the effects detected in the meta-analysis, and at most 47% at a power of 80% (when not 
accounting BIOS methylation data which formed the subset of discovery analaysis samples). For 
the trans-eQTLs, expected replication was markedly lower, due to the smaller median sample 
size: we expected at least 0.08% to be replicated, and at most 1.29%. Finally, for eQTS 
associations, we expected at least 0%, and at most 3.36% to replicate at a power of 80%. 
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We note however, that these power calculations are hypothetical, and assume no bias on the 
effect sizes introduced by biological and technical confounders that are often present in eQTL 
datasets (either in the discovery meta-analysis or the replication datasets), including possible 
tissue or cell type effects. Consequently, while this analysis may indicate that a certain replication 
dataset has statistical power to replicate a given effect, this does not guarantee that this effect 
will be detectable in that replication dataset. Nevertheless, these results indicate that trans-eQTL 
and eQTS effects are generally smaller than those observed for cis-eQTLs, and thus require 
larger sample sizes for formal replication. 

Local genetic effects on blood gene expression 

Capture Hi-C overlap for cis-eQTLs 
To assess whether cis-eQTL lead SNPs overlapped with chromosomal contact as measured by 
Hi-C data we used promoter capture Hi-C data downloaded from ChiCP121 
(https://www.chicp.org/) and investigated whether lead cis-eQTL SNPs overlap with Hi-C contacts 
more than expected by chance (Methods). 

Both, long-range (>100kb) and short-range (<100kb) cis-eQTLs were significantly enriched for Hi-
C contacts (>100kb: real overlap 27.8%, flipped overlap 13.6%, test of equal proportions 
P=3.3×10-12; <100kb: real overlap 17.0%, flipped overlap 12.9%, test of equal proportions 
P=9.1×10-16). We observed that long-range cis-eQTLs were more strongly enriched for Hi-C 
overlap (2.0-fold for >100kb versus 1.3-fold for <100kb). 

One third of trait-associated variants have distal effects 

Setup of the trans-eQTL analysis 
An alternative strategy to gain insight into the molecular functional consequences of disease-
associated genetic variants is to ascertain trans-eQTL effects. Genome-wide eQTL analyses 
would have imposed an extensive computational burden on participating cohorts with additional 
logistic challenges which would arise from the need to share 37 very large summary statistics files 
(~20,000 genes times ~11M SNPs) with central site. Therefore, we constrained our analyses to 
a subset of 10,317 variants that have previously been associated with complex phenotypes 
(Methods, Supplementary Table 3). 

Effects of measured and predicted cell metrics on trans-eQTL effects 
We aimed to distinguish trans-eQTLs caused by intracellular molecular mechanisms from eQTLs 
induced by blood cell type-composition. To do so, we investigated a subset of up to 1,858 whole 
blood samples from the BIOS Consortium for which 49 measured and predicted blood cell metrics 
were available (Supplementary Methods, see details in Supplementary Comment). We first 
reasoned that if a trans-eQTL is intracellular (i.e. not driven solely by cell-type-composition), the 
main trans-eQTL effect should remain after correcting for cell-type-composition differences. We 
constructed a linear model incorporating all 49 available cell metrics (Methods) and tested 
whether a residual main effect remained for each trans-eQTL. We were able to test 55,311 trans-
eQTLs in this subset (minor allele frequency (MAF) >0.05 in each BIOS cohort) and found that 
4,241 (7.67%) were below the P-value threshold (P<8.3×10-6, threshold determined in discovery 
meta-analysis) in a linear model without any cell type metrics. Out of these, 2,952 (69.6% of 4,241 
effects) trans-eQTLs remained below the significance threshold when all 49 cell metrics were 
included in the model (Supplementary Figure 19; Supplementary Data 6). Here we need to 
acknowledge that cell-type-composition may lead to false positive trans-eQTL effects, but we also 
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note that large-scale cell count measures were not available for many included cohorts, which 
precluded us from drawing definite conclusions about this issue. We next reasoned that, if a trans-
eQTL is generic (i.e. it has similar effect sizes within each individual cell type), the main trans-
eQTL effect would also remain after correcting for cell-type-composition differences and their 
interactions with the trans-eQTL SNP. When we included all the interaction terms between cell-
type metric and genetic variant in the model, only 33 (0.06%) out of 4,241 trans-eQTLs remained 
below the P-value threshold (P<8.3×10-6), suggesting that most trans-eQTLs have variable effect 
sizes in different blood cell types (Supplementary Methods; Supplementary Figure 19). We 
also aimed to assign each of the trans-eQTLs to the cell type it most likely manifests in by testing 
the interaction between genotype and each cell metric (Supplementary Methods). However, no 
individual interaction effects were below the FDR threshold (Benjamini-Hochberg FDR>0.05; 
smallest P=1.37×10-7; Supplementary Data 7), likely due to the extensive multiple testing burden 
and limited power. 

Trans-eQTL replication analyses in purified cell types, cell lines, and 
methylation data 
Our replication analyses between different expression platforms suggest that trans-eQTLs are 
replicable between blood datasets (Supplementary Figure 1B) but cannot identify cell-type-
composition effects. To estimate the fraction of trans-eQTLs that constitute intracellular trans-
eQTLs, we performed replication analyses in bulk RNA-seq datasets derived from specific cell 
types: lymphoblastoid cell lines (LCL), induced pluripotent cells (iPSCs) and several purified blood 
cell types (CD4+, CD8+, CD14+, CD15+/CD16+, CD19+, monocytes and platelets). Additionally, 
we used blood DNA methylation QTL data to support the validity of trans-eQTLs. In total, 4,018 
(6.7% of the total) trans-eQTLs showed replication in at least one cell type (Benjamini-Hochberg 
FDR<0.05; 93.3% with same allelic direction, on average) or were supported by the methylation 
data (Benjamini-Hochberg FDR<0.05; meQTL effect direction supporting the discovery eQTL 
effect, see Methods, Supplementary Figure 5, Supplementary Data 2). 

Trans-eQTL replication analyses in post-mortem tissues 
We then investigated whether trans-eQTLs are shared across tissues from GTEx117,122. We 
repeated our discovery meta-analysis while excluding whole blood samples from GTEx, 
performed replication analyses in all GTEx tissues, and observed that the replication rate was 
very low (0.07% of trans-eQTLs replicated in any non-blood tissue, 0.09% in blood, Benjamini-
Hochberg FDR<0.05). However, the allelic concordance of significant effects was, on average, 
66% in non-blood tissues and 100% in blood (Supplementary Data 3). Despite these low 
replication rates, trans-eQTLs showed an inflation of replication signal in the majority of tissues 
(Supplementary Figure 6A), most notably in whole blood, esophagus muscularis, liver, heart 
atrial appendage and non-sun-exposed skin. 

Trans-eQTL replication analyses in scRNA-seq data 
Ideally, replication of individual trans-eQTLs should be performed using single-cell (sc)RNA-seq 
eQTL datasets, since such datasets are less impacted by the cell-type-composition differences 
present in bulk eQTL datasets. Currently available scRNA-seq eQTL datasets are still relatively 
small, but by meta-analysing two different PBMC-based scRNA-seq cohorts using the 10X 
Chromium platform (OneK1K, N=982 and 1M-scBloodNL, N=157), we were able to perform trans-
eQTL replication analysis in B-cells, CD4+ T-cells, CD8+ T-cells, classical monocytes, non-
classical monocytes, dendritic cells, natural killer (NK) cells and plasma cells from up to 1,139 
individuals (up to 3.6% of the discovery sample size, see further information in Replication 
Datasets and Supplementary Comment). For each of the 59,786 discovery trans-eQTLs, we 
tested the association within each cell type, but only if the trans-eQTL gene was sufficiently 
expressed (i.e. had a missing sample fraction of at most 20% in the larger OneK1K dataset). We 
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did this because the expression of only a few thousand genes per cell were quantified in scRNA-
seq data. 

Since scRNA-seq eQTL data is noisier than bulk RNA-seq data, fewer eQTLs can be identified 
when using the same number of samples123. Moreover, trans-eQTLs in eQTLGen were identified 
using 31,684 samples, while the single-cell replication cohort was limited to 1,139 individuals. 
Therefore, since the statistical power to formally replicate trans-eQTLs was limited, we first 
studied whether there was any inflation of replication test statistics. For 7 out of the 8 cell types 
examined, we observed inflation of signal (Supplementary Table 5, Supplementary Figure 6A; 
for the least abundant cell type, plasma cells (Figure 3A), no inflation of signal was observed) 
and greater than expected allelic concordance with the discovery analysis (Figure 3A; 
Supplementary Table 5; two-sided binomial test P<0.05). Similarly, by correlating the effect sizes 
of independent trans-eQTLs using the rb method (Methods)124, we observed that blood trans-
eQTL effect sizes correlate significantly with replication effects in the scRNA-seq data (Figure 
3A; Supplementary Table 5; two-sided P<0.05) for 4 out of 8 cell types (classical monocytes 
(P=3.36×10-8, rb=0.514, S.E.=0.093), NK cells (P=3.24×10-4, rb=0.185, S.E.=0.051), CD8+ 
lymphocytes (P=3.41×10-3, rb=0.454, S.E.=0.155) and B cells (P=5.98×10-3, rb=0.049, 
S.E.=0.018)). More abundant cell types showed higher trans-eQTL effect size correlations with 
whole blood (Figure 3A, Pearson R2=0.53, two-sided P=0.04). When conducting rb analysis on 
the bulk expression profiles from purified blood cell types (Supplementary Figure 7; average 
rb=0.55), we observed rb metrics similar to scRNA-seq data for several cell types, demonstrating 
that there is concordance between scRNA-seq and bulk expression data from specific cell types. 

These correlations and inflations of signal show that some of the trans-eQTLs identified in blood 
are also present in the cell types in our scRNA-seq data, although it remains challenging to 
prioritize individual effects. Still, we aimed to formally replicate individual trans-eQTLs. Depending 
on the cell type, we could reliably test between 1,917 and 27,582 of the trans-eQTLs identified in 
the discovery analysis (Figure 3A). We replicated 35 trans-eQTLs at FDR<0.05 (Supplementary 
Table 4), with two effects appearing in more than one cell type. For trans-eQTLs which replicated, 
the allelic concordance between the discovery and the replication analysis was very high (97% 
concordance), providing additional support for valid replication of these eQTLs. 

Lastly, to increase the statistical power to replicate individual trans-eQTLs in the noisy scRNA-
seq data, we combined the summary statistics from 8 cell types by averaging the Z-scores per 
trans-eQTL over the available cell types. When confining the analysis to the 729 trans-eQTLs with 
an absolute average Z>1.96 (corresponding to a nominal P<0.05, Supplementary Table 4), we 
observed a relatively high concordance of 84% (Figure 3A, Supplementary Table 5, two-sided 
binomial test; P=1.25×10-84) suggesting that many of these trans-eQTLs represent effects that 
are independent of cell-type-composition. Among the 729 trans-eQTLs, we observed a strong 
enrichment for genes involved in cytokine-mediated signalling (hypergeometric test from 
ToppGene125, P=3.3×10-12, Benjamini-Hochberg FDR<0.05). 

The overlap between cis- and trans-eQTLs 
To evaluate which trans-eQTL SNPs also have cis-eQTL effects, we conducted locus-wide trans-
eQTL analyses in a subset of samples (N=4,339; EGCUT and BIOS cohorts; Supplementary 
Figure 17; Supplementary Methods). For this analysis, we focused on trans-eQTLs identified in 
the discovery meta-analysis. We extracted the trans-eQTL SNPs that showed significant effect in 
this subset of samples (P<8.3×10-6; P-value threshold estimated using discovery trans-eQTL 
meta-analysis) and constructed 12,911 trans-eQTL loci (SNP - trans-eQTL gene combination; ±1 
Mb from tested GWAS SNP) (Methods, Supplementary Figure 17). We then performed iterative 
conditional trans-eQTL analyses to identify independent lead trans-eQTL SNPs for each locus 
(Supplementary Table 21). For each of these lead trans-eQTL SNPs, we then calculated linkage 
disequilibrium (LD) with lead cis-eQTL SNPs identified in the discovery meta-analysis. Out of 
12,911 trans-eQTL loci, 3,786 (29.3%) were in LD with at least one lead cis-eQTL SNP (R2>0.8 
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between cis-eQTL and trans-eQTL lead SNPs, 1kG p1v3 EUR, Supplementary Tables 22-23). 
Since the discovery cis-eQTL and trans-eQTL analyses were performed in the same set of 
samples, we note that this estimated proportion might be somewhat biased. However, 
corresponding cis-eQTL genes were strongly enriched for having transcription factor (TF) activity 
(“RNA polymerase II regulatory region sequence-specific DNA binding (GO:0000977)”; one-sided 
Fisher’s exact test P=9.15×10-6, Benjamini-Hochberg FDR=0.043; Supplementary Figure 20). 

Interaction analyses between cis- and trans-eQTLs 
These LD-based lead-SNP-overlap analyses identify loci where two association signals likely 
overlap. We next formally tested whether local genes within 100kb of the trans-eQTL SNP affect 
the expression of the trans-eQTL gene, limiting the analysis to non-HLA trans-eQTLs detected in 
the discovery meta-analysis. We used a subset of 4,339 samples from the BIOS and EGCUT 
cohorts and included the local gene in a linear model as a gene-environment (G × E) interaction 
term. We considered trans-eQTLs with a Benjamini-Hochberg FDR<0.05 for an interaction term 
to be driven by the expression of a cis-acting gene. We observed interaction effects for 615 out 
of 201,106 SNP–cis–trans–gene combinations tested (Supplementary Table 24), reflecting 585 
trans-eQTLs. For instance, for rs7045087 (associated to red blood cell counts126), we observed 
that the expression of the interferon gene DDX58 (mapping 38bp downstream from rs7045087) 
interacted with trans-eQTL effects on HERC5, OAS1, OAS3, MX1, IFIT1, IFIT2, IFIT5, IFI44, 
IFI44L, RSAD2 and SAMD9 (Supplementary Figure 18), most of which are involved in interferon 
signaling. These results indicate that trans-eQTL effects can be affected by the expression of 
local genes, but comprehensive characterization of such interaction effects requires larger sample 
sizes. 

Biological mechanisms leading to trans-eQTLs 
We studied the biological nature of the trans-eQTLs we identified. To do this, we assessed 
whether trans-eQTLs were enriched for TF - downstream target pairs, co-regulated genes, 
protein-protein interactions (PPI) and inter-chromosomal contacts. To perform these analyses, 
we converted the trans-eQTL SNP-gene matrix into three trans-eQTL gene × gene matrices 
(Supplementary Methods). 

We observed that there is significant enrichment of TF - downstream target pairs113 among our 
three trans-eQTL matrices with odds ratios (ORs) up to 1.40 for the combined trans-eQTL matrix 
(Supplementary Figure 9, row 1). 

We observed stronger and highly significant enrichments when increasing the list of TF-
downstream target gene pairs with genes co-regulated with known TFs (OR=1.38, P=5.8×10-72, 
Supplementary Figure 9, row 3), or with known TF-target genes (OR=3.57, P<1×10-308, 
Supplementary Figure 9, row 2), or with both (OR=4.37, P<1×10-308, Supplementary Figure 9, 
row 4). 

When using co-regulation to predict relationships between genes based on expression patterns 
we observed an overlap with 797 significant trans-eQTL gene pairs, reflecting a 22.3-fold 
enrichment (P<10-308, Supplementary Figure 9, row 5). 

Significant trans-eQTL gene-pairs are also enriched for interactions among proteins: 584 protein-
protein interactions (from a total of 799,176 protein-protein interactions that were derived from 
InWeb111) overlapped with our trans-eQTLs (P<10-17, Supplementary Figure 9, row 6). Some of 
these pairs consist of genes that encode subunits of the same protein complex (e.g. POLR3H 
and POLR1C). 

Lastly, there was a highly significant enrichment (P=2.4×10-153) for inter- and intra-chromosomal 
contacts when using Hi-C data114: the OR was 1.47 for the combined trans-eQTL matrix. 
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These enrichments show that cis-eQTLs are informative for understanding trans-eQTLs, but that 
including blood-derived cis-eQTLs do not capture all locally informative effects. In most of these 
analyses, we found stronger enrichments in the combined trans-eQTL matrix (third column in 
Supplementary Figure 9), as compared to the matrix created by only including local SNPs 
(Pascal method, first column in Supplementary Figure 9) or by only including cis-eQTL SNPs 
(second column in Supplementary Figure 9). Putative mechanisms for each of the 59,786 trans-
eQTLs are listed in the Supplementary Data 4. 

Per-phenotype enrichment analyses for trans-eQTLs 
Next, for each GWAS phenotype, we interrogated whether trans-eQTL genes were enriched for 
Gene Ontology (GO) terms. In total, we observed 347 enriched GO terms for 208 out of 345 (60%) 
traits (one-sided Fisher’s exact test, Benjamini-Hochberg FDR<0.05; Supplementary Table 12). 
We observed that several of the enriched GO terms were relevant for the tested trait. For example, 
trans-eQTL SNPs associated with celiac disease and inflammatory bowel disease showed the 
strongest enrichments for GO terms associated with response to cytokine stimulus (e.g. celiac 
disease: “cellular response to cytokine stimulus”, FDR=1.06×10-5), platelet count was enriched 
for “platelet degranulation” (FDR=2.6×10-10), and heart rhythm traits were most enriched for 
cholesterol-related terms (e.g P-wave duration was enriched for “regulation of cholesterol 
biosynthetic process”, FDR=4.6×10-14). 

Examples of trans-eQTLs 
In the following examples we highlight trans-eQTLs where the eQTL SNP influences the gene 
expression level through various mechanisms. 

Some trans-eQTLs can influence genes strongly expressed in tissues other than blood. 
For example, rs17087335 (dbSNP 137, associated with coronary artery disease127) affects the 
expression of 88 genes in trans (FDR<0.05, Bonferroni corrected P<0.05 for 39 genes; Figure 4, 
Supplementary Table 25) that are highly expressed in brain (one-sided Fisher’s exact test, 
ARCHS4 database, Benjamini-Hochberg FDR=6.43×10-14; Figure 4). Eighty-five out of the 88 
(96.6%) trans-eQTL genes were upregulated by the minor allele of rs17087335 and strongly 
enriched for the targets of REST (RE-1 silencing transcription factor; one-sided Fisher’s exact test 
for ENCODE100,128 project REST ChIP-seq, Benjamini-Hochberg FDR=8.84×10-38, Figure 4). 
While the minor allele of rs17087335 was associated with lower expression of REST, it was not 
in LD (R2<0.2, 1kG p1v3 EUR) with the lead cis-eQTL SNP (rs13353552; dbSNP 137). A SNP in 
high LD with rs17087335, rs3796529 (R2=0.91, 1kG p1v3 EUR; dbSNP 137), is a missense 
variant for REST, suggesting that these trans-eQTLs could also arise from a post-transcriptional 
mechanism of action. Because REST is a TF that downregulates the expression of neuronal 
genes in non-neuronal tissues129,130, we speculate that the observed trans-eQTLs reflect the 
impact of genetic variation on the effectiveness of downregulation, although experimental follow-
up is required to confirm this hypothesis. Nevertheless, this example illustrates that blood trans-
eQTL effects can help to prioritize the putatively causal cis-eQTL gene among multiple genes in 
a locus (here REST). 

Combining cis- and trans-eQTL effects can pinpoint the genes acting as drivers of trans-
eQTL effects. For example, the age-of-menarche-associated SNP rs1532331131 (dbSNP 137) is 
in high LD (R2>0.8, 1kG p1v3 EUR) with the lead cis-eQTL effect for a gene encoding transcription 
factor ZNF131. Cis-eQTL and trans-eQTL lead SNPs for this locus were in high LD (R2>0.8, 1kG 
p1v3 EUR) for 25 out of the 75 distal downstream genes (Supplementary Figure 11A). In a 
recent short hairpin RNA knockdown experiment of ZNF131132, three separate cell isolates 
showed downregulation of four genes that we identified as trans-eQTL genes: HAUS5, 
TMEM237, MIF4GD and AASDH (Supplementary Figure 11A). ZNF131 has been hypothesized 
to inhibit estrogen signaling133, which may explain how the SNP in this locus contributes to altering 
the age of menarche. 
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Trans-eQTLs extend insight for loci with multiple cis-eQTL effects. In the FADS1/FADS2 
locus, rs174574 is associated with lipid levels5 and affects 17 genes in trans (Supplementary 
Figure 11B). The strongest cis-eQTLs modulate the expression of FADS1, FADS2 and 
TMEM258, with the latter being in high LD with GWAS SNP (R2>0.8, 1kG p1v3 EUR). From those 
genes, FADS1 and FADS2 have been implicated5 since these encode fatty acid desaturases, and 
consistent with their biological function, trans-eQTL genes from this locus are highly enriched for 
triglyceride metabolism (P<4.1×10-9, GeneNetwork134 REACTOME pathway enrichment). Since 
this locus has extensive LD, variant and gene prioritization is difficult: conditional analyses in the 
subset of 4,339 BIOS and EGCUT samples showed that each of cis-eQTL gene is influenced by 
more than one SNP, but none of these are in high LD with rs174574 (R2<0.8, 1kG p1v3, EUR; 
dbSNP 137). As such, our trans-eQTL analysis results are informative for implicating FADS1 and 
FADS2, whereas cis-eQTLs are not. 

Trans-eQTLs can shed light on loci with no detectable cis-eQTLs. rs1990760 (dbSNP 137) 
is associated with multiple immune-related traits (type 1 diabetes (T1D), inflammatory bowel 
disease (IBD), systemic lupus erythematosus (SLE) and psoriasis41,135-137). For this SNP we 
identified 17 trans-eQTL effects, but no detectable gene-level cis-eQTLs in blood 
(Supplementary Figure 11C). However, the risk allele for this SNP causes an Ala946Thr amino 
acid change in the RIG-1 regulatory domain of MDA5 (encoded by IFIH1 - Interferon Induced With 
Helicase C Domain 1), outlining one possible mechanism which might lead to the observed trans-
eQTLs. Connection between MDA5 and T1D has been previously described138. MDA5 acts as a 
sensor for viral double-stranded RNA, activating interferon I signalling among other antiviral 
responses. All the trans-eQTL genes were up-regulated relative to risk allele to T1D, and 9 (52%) 
are known to be involved in interferon signaling (Supplementary Table 26). 

Trans-eQTLs can reveal cell type composition effects of the trait-associated SNP. Trans-
eQTL effects can also show up as a consequence of a SNP that alters cell-type composition. For 
example, the asthma-associated SNP rs721638924 (dbSNP 137) has 14 cis-eQTL effects, most 
notably on IKZF3, GSDMB, and ORMDL3 (Supplementary Figure 11D), making it difficult to 
identify most likely causal gene. However, 94 out of the 104 trans-eQTL genes were up-regulated 
by the risk allele for rs7216389 and were mostly expressed in B cells and natural killer cells96 
(Supplementary Figure 11D). IKZF3 is part of the Ikaros transcription factor family that regulates 
B-cell proliferation96,139, suggesting that a decrease of IKZF3 leads to an increased number of B 
cells and concurrent trans-eQTL effects caused by cell-type composition differences. 

Trans-eQTLs identify pathways not previously associated with a phenotype. Some trans-
eQTLs suggest the involvement of pathways which are not previously thought to play a role for 
certain complex traits: on chr 4q12 (Supplementary Figure 11E), height-associated SNP 
rs1311351829 (dbSNP 137) is in high LD (R2>0.8, 1kG p1v3 EUR) with the top cis-eQTL SNP for 
CLOCK. The upregulated TF CLOCK forms a heterodimer with TF BMAL1, and the resulting 
protein complex regulates circadian rhythm140. Out of seven trans-eQTL genes, three were known 
circadian rhythm genes (TEF, NR1D1 and NR1D2) and showed increased expression for the trait-
increasing allele, suggesting a possible mechanism for the observed trans-eQTLs through binding 
of CLOCK:BMAL1. Two out of four remaining trans-eQTL genes (C10ORF116 and 
RP1196C23.8) showed increased expression and two (ATP1A1 and KLRB1) showed decreased 
expression. TEF is a D-box binding TF whose gene expression in liver and kidney is dependent 
on the core circadian oscillator and it regulates amino acid metabolism, fatty acid metabolism and 
xenobiotic detoxification141. NR1D1 and NR1D2 encode the transcriptional repressors Rev-ErbA 
alpha and beta, respectively, and form a negative feedback loop to suppress BMAL1 
expression142. NR1D1 and NR1D2 have been reported to be associated with osteoblast and 
osteoclast functions143, revealing a possible link between circadian clock genes and height. 
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eQTSs identify potential driver genes for polygenic traits 

Effect of GWAS P-value threshold on eQTS detection 
When calculating PGSs, the P-value threshold for including the SNPs that corresponds to most 
explained variation is likely to be trait-dependent. We therefore calculated PGSs using clumped 
GWAS lead SNPs at five significance levels (P<0.01; 1×10-3; 1×10-4; 1×10-5; 5×10-8). While we 
could detect the majority of eQTSs (70.5%) at the most conservative threshold (P<5×10-8), the 
total number of results was higher than for each P-value threshold separately (Supplementary 
Table 27), suggesting that our analysis captured different genetic architectures. Unsurprisingly, 
we identified more eQTSs for GWAS with larger sample sizes (Spearman r=0.42–0.59 at different 
P-value cut-offs). Traits with few eQTS associations typically also had lower average (Spearman 
r=0.42–0.72) and maximum eQTS effect sizes (Spearman r=0.69–0.85; Supplementary Table 
28). 

eQTS cross-platform replication analyses 
As in the previous analyses, the cross-platform replication rates showed high allelic concordance 
between blood datasets (average concordance rate was 99.2% for effects reaching FDR<0.05 in 
replication dataset, Supplementary Figure 1C), although the replication rates were quite low in 
the platforms with fewer samples (21.35-26.4% of tested effects reached FDR<0.05 in 1,549 FHS 
samples, Supplementary Figure 1C). 

Effects of measured and predicted cell metrics on eQTS effects 
Similar to our analysis of trans-eQTLs, we investigated whether eQTS could be driven by 
interindividual differences in cell-type-composition. We fitted linear models with and without cell-
type metrics as covariates in a subset of 1,858 samples (Supplementary Methods). Out of 
18,210 eQTSs, 2,313 (12.7%) were below the P-value threshold in the original model (P<3.02×10-

6, threshold determined by discovery meta-analysis). When all 49 cell metrics were included, 618 
(3.39%) out of 2,313 eQTSs remained below the P-value threshold (Supplementary Table 29, 
Supplementary Figure 19). Twenty-one (3.4%, affecting 7 genes) replicated in at least one of 
our replication datasets. However, the majority of replicating effects originated from PGSs of 
erythrocyte- and platelet-related GWAS traits, while also affecting several blood-related genes 
such as HBG1 and HBG2. This suggests that some strong cell-type-composition effects might 
still be detectable after correcting the data for all the main effects. When including all interaction 
terms between cell-type metric and PGS, only two eQTSs (0.01%) remained below the P-value 
threshold (P<3.02×10-6), demonstrating the cell-type-specific nature of eQTSs. In line with the 
trans-eQTL effects, none of the eQTS effects could be reliably assigned to any of the cell-type 
metrics when testing individual PRS-cell metric interaction effects (Supplementary Methods, 
Benjamini-Hochberg FDR>0.05; smallest P=1.31×10-6; Supplementary Table 30). 

eQTS replication analyses in cell lines and post-mortem tissues 
We next ascertained to what extent eQTS associations can be replicated in independent datasets 
by studying 1,460 LCL samples, 762 iPSC samples and all GTEx tissues117. We were able to 
replicate 10 eQTSs in the LCL dataset, and 9 out of 10 (FDR<0.05) had the same effect direction 
as in the discovery dataset (Supplementary Figure 12A, Supplementary Data 5). Seventy-eight 
eQTSs replicated in the iPSCs dataset (FDR<0.05), with 71 (91%) showing the same direction of 
effect (Supplementary Figure 12B, Supplementary Data 5). Since polygenic risk scores can 
differ substantially between populations, we performed GTEx replication analyses while confining 
ourselves to Europeans and identified 19 replicating eQTSs with FDR<0.05 and same direction 
of effect (eQTS discovery performed without GTEx; 66 replicated when also including non-
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European samples, Supplementary Data 6-7). We observed the inflation of replication signal in 
some tissues, primarily in blood (Supplementary Figure 6B).  

Because only a few eQTS associations were replicated, there was no strong replication signal in 
non-blood tissues, and the majority of identified eQTS associations were observed for blood-
related traits (Extended Data Figure 3, Supplementary Data 5), we speculate that these effects 
are highly tissue- or cell-type-specific. However, as suggested by the power analyses, the limited 
replication in other tissues could also be a result of the small effect size of eQTS effects (median 
r=0.037; Supplementary Figure 8I) causing a lack of statistical power in the replication datasets 
due to their small sample size, or because of variability in PGS estimates caused by differences 
in sample characteristics (e.g. age, sex, socio-economic status, etc) of the included datasets144. 

Features of eQTS genes 
We took 2,568 significant eQTS genes (FDR<0.05) and conducted over-representation analysis 
(one-sided Fisher’s exact test) for Gene Ontology (GO) categories (Supplementary Table 14). 
While we observed 51 (1.08%) significant GO terms (Benjamini-Hochberg FDR<0.05), none 
implicated transcriptional regulation (e.g. “RNA polymerase II core promoter sequence-specific 
DNA binding”, FDR=0.52). Some of the most significant terms were associated with cellular 
secretion (e.g. “secretory granule lumen”, FDR=2.2×10-8), blood cell traits (“platelet 
degranulation”, FDR=3.4×10-6, “regulation of B cell proliferation”, FDR=5.8×10-4) and intercellular 
signalling (“pattern recognition receptor signaling pathway”; FDR=5.2×10-4). 

Similarly, we tested for enrichment of 1,672 known TFs from the FANTOM5 database and did not 
observe any enrichment (one-sided Fisher’s exact test; unadjusted P=0.99, OR=0.56): out of 
2,568 eQTS genes, 140 (5.45%) overlapped with known TFs. 

To test whether eQTS genes have relatively more interaction partners in protein–protein 
networks, we used the protein-protein interaction (PPI) data from InWeb111. After intersecting the 
dataset with genes tested in eQTLGen (19,942), 13,355 remained, in which 2,132 were eQTS 
genes (FDR<0.05 in the discovery meta-analysis). We compared the numbers of PPI interaction 
partners between eQTS genes and non-eQTS genes using the Wilcoxon-Mann-Whitney test and 
observed that non-eQTS genes had significantly more interaction partners (two-sided Wilcoxon-
Mann-Whitney test, P=1.98×10-5; average 69.38, median 25.00) than eQTS genes (average 
58.41, median 20). 

These analyses suggest that eQTS genes are not enriched by TF targets or protein–protein hubs 
and that such genes may have variety of mechanisms for regulation. 

Per-phenotype enrichment analyses for eQTS genes 
When stratifying eQTS effects by GWAS phenotype, we identified 90 phenotypes showing 
enrichment with any GO term (one-sided Fisher’s exact test, Benjamini-Hochberg FDR<0.05; 
Supplementary Table 31), and these often reflected the known biology. For instance, eQTS 
genes for platelet count showed the strongest enrichment for the process “platelet degranulation” 
(FDR=6×10-17), monocyte count for “neutrophil degranulation” (FDR=4.7×10-16) and eQTS genes 
for total lipids in large HDL for “cholesterol metabolic process” (FDR=1.6×10-6). 

Examples of eQTSs 
In the next sections we highlight several eQTSs demonstrating the insights that can be gained 
from eQTS analysis. 

eQTS analysis identified genes relevant for non-blood traits. As an example, the association 
of GPR15 (P=3.7×10-8, FDR<0.05; Supplementary Figure 13A) with the trait ‘ever versus never 
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smoking’81. GPR15 is a biomarker for smoking145 that is overexpressed and hypomethylated in 
smokers146. We observe strong GPR15 expression in lymphocytes (Supplementary Figure 
13A), suggesting that the association with smoking could originate from a change in the proportion 
of T cells in blood147. As GPR15 is involved in T cell homing and has been linked to colitis and 
inflammatory phenotypes, it is hypothesized to be involved in the systemic inflammation induced 
by tobacco smoking147. 

The PGS for another non-blood trait, educational attainment80, correlated significantly with the 
expression of 21 genes (FDR<0.05; Supplementary Figure 13B, Supplementary Table 32). 
Several of the strongly associated genes are known to be involved in neuronal processes 
(Supplementary Figure 13B, Supplementary Table 32) and show expression in neuronal 
tissues (GTEx v7, Supplementary Figure 13C)148. STX1B (strongest eQTS P=1.3×10-20) is 
specifically expressed in brain (Supplementary Figure 13C), and its encoded protein, syntaxin 
1B, participates in the exocytosis of synaptic vesicles and synaptic transmission149. Another gene 
highly expressed in the brain, LRRN3 (leucine-rich repeat neuronal protein 3; strongest eQTS 
P=1.7×10-11), was negatively associated with the PGS for educational attainment, and has been 
associated with autism susceptibility150. The downregulated NRG1 (neuregulin 1; strongest eQTS 
P=4.5×10-7), encodes a well-established growth factor involved in neuronal development and has 
been associated with synaptic plasticity151. NRG1 was also positively associated with the PGS for 
monocyte levels86 (strongest eQTS P=1.5×10-7), several LDL cholesterol traits (e.g. medium LDL 
particles30; strongest eQTS P=6.2×10-8), coronary artery disease127 (strongest eQTS P=1.5×10-6) 
and body mass index in females27 (strongest eQTS P=9.2×10-12). 

We next evaluated 6 immune diseases for which sharing of loci has been reported previously, 
and also observed sharing of downstream eQTS effects for these diseases (Supplementary 
Table 33). For example, the interferon gene STAT1 was significantly associated with T1D, celiac 
disease (CeD), inflammatory bowel disease (IBD) and primary biliary cirrhosis (PBC) PGSs. 
However, some of these genes are also marker genes for specific blood-cell types, such as 
CD79A, which showed a significant correlation with type I diabetes (T1D) and PBC. To test 
whether disease-specific eQTS gene signatures are reflected by blood cell proportions, we 
investigated single-cell RNA-seq data96 (Methods; Supplementary Figure 13D). For ulcerative 
colitis (a subtype of IBD), we observed a significant depletion of expression in megakaryocytes. 
SLE eQTS genes were enriched for antigen presentation (GeneNetwork134 P=1.3×10-5) and 
interferon signaling (GeneNetwork P=1.4×10-4), consistent with the well-described interferon 
signature in SLE patients153,153. Moreover, the SLE genes were significantly enriched for 
expression in myeloid dendritic cells, whose maturation depends on interferon signaling154. For 
CeD, we observed strong depletion of eQTS genes in monocytes and dendritic cells, and a slight 
enrichment in CD4+ and CD8+ T cells. The enrichment of cytokine (GeneNetwork P=1.6×10-15) 
and interferon (GeneNetwork P=7.8×10-13) signaling among the CeD eQTS genes is expected as 
a result of increased T cell populations. 
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Supplementary Equations 
Here we theoretically evaluate the potential correlation between polygenic score PGS and 
expression of a gene A, using the model and notation from the Liu/Li/Pritchard 2019 “LLP19” Cell 
paper155. The polygenic score for individual B	will be defined as the C(D7 − DE|G7) where D7 is the 
phenotype of individual B and DE is the mean phenotype, and G7 is the genotype of individual B. 
Under the LLP19 model, the expected phenotype depends on the expression levels of core genes 
as follows: 

HG;7 = C(D7 − DE|G7) =IJKLM7,K − M̅KP
Q

K=>

(1) 

where R is the number of core genes, M7,K is the expression level of gene A	in individual B and M̅K 
is the corresponding mean for gene A, and JK measures the effect of expression of gene A on the 
phenotype. Note that here we consider an idealized score assuming perfect information about 
SNP effects on expression; the computed polygenic score is presumably proportional to this with 
additional error. Then we want to compute 

ST2UM7,K, HG;7V =
ST0UM7,KHG;7V

;WUM7,KV;W[HG;7]
(2) 

where variances and covariances are computed across individuals (B), with respect to a specified 
gene A. 

The numerator is 

ST0UM7,K, HG;7V = C XI$Y,KLZ7,Y − 26YP
[

Y=>

\ × XIIJ^$Y,^LZ7,Y − 26YP
[

Y=>

Q

^=>

\ (3) 

where $Y,K is the effect of SNP & and gene A;	Z7,Y ∈ 0, 1, 2 is the genotype of individual B and SNP 
& and 26Y is the mean genotype at SNP &; and where & indexes across all ; SNPs that are cis- or 
trans-eQTLs for any core gene. We set $Y,K= 0 for SNP-gene combinations that are not eQTLs. 
(Note that this is a minor change in notation from LLP19 where we used different SNP indexing 
for each gene, and listed cis- and trans-eQTLs separately.) Then if A is a core gene, this can be 
rewritten as 

ST0UM7,K , HG;7V = IJ^S(A, c)
Q

^=>

																																[A	dTe	Bd	fT2'	&'e] (4) 

ST0UM7,K , HG;7V = JKhK
9 + I J^S(A, c)

Q
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We have the denominator from LLP19 as follows: 

l12UM7,KV = hK
9 + hK,m

9 (6) 

where hK9 and hK,m9  are the genetic and environmental variances in expression of gene A, and 
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l12[HG;7] = IJ^9h^9 +
Q

^=>
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Putting this together, in the case where A is in the cores set we have 

ST2UM7,K , HG;7V =
JKhK

9 + ∑ J^S(A, c)Q
^jK

UhK
9 + 	hK,m

9 V
>
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Q
^=>

Q
^=> V

>
9

(8) 

The denominator is a bit of a mess, but we can get a sense of this for special cases: 

Suppose that core genes are uncorrelated (S	 = 	0), that the Js and hs are all equal, and that 
hK,m
9 = 0. Then the PGS:expression correlation is 1/√R. More realistically, the nongenetic 

variance hK,m9 may be considerable. In this case the PGS:expression correlation is hK9/

tLhK
9 + hK,m

9 PR which can be rather smaller. 

If the correlations are large in the sense that ∑S ≫ h9 then (again with the Js and hs all equal, 

and hK,m9 = 0) we have that the correlation is √S/tLhK9 + hK,m9 P which can be nontrivial: for example 

if the average genetic covariances between A and all other core genes are 1/100th as large as the 
total variance of gene A, then the PGS:expression correlation could be as large as 0.1. It is 
important to note that noncore genes that covary genetically with core genes would also be 
correlated with PGS under this model. 

Note that various factors likely reduce the measured correlation substantially below these 
idealized predictions: inaccuracies in the PGS estimate; the measured tissue is not an ideal proxy 
for the tissues/cell types/cell conditions that are most relevant for disease; and as noted above, 
nongenetic variance in expression of the target gene. 

In summary, under the LLP19 model, we expect correlations between the PGSs and the 
expression of core genes (and co-regulated peripheral genes). In idealized settings, these 
correlations can be fairly large, but various practical factors will reduce the observed signals below 
the perfect-data expectations. 
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Supplementary Comment 

Cell type composition effects 

Blood tissue is a mixture of cells consisting of a variety of blood cell subpopulations. The amount 
and composition of individual cell types in blood is affected by genetic126. In blood eQTL and eQTS 
analyses, we have correlated genetic variation and polygenic risk with gene expression measured 
from the bulk RNA. If the expression of a gene or gene set is considerably higher or lower in a 
particular cell type as compared to the average expression in blood, it is possible that the trans-
eQTL or eQTS effect we observe, actually reflects the correlation between genetics and the 
amount or proportion of specific blood cell type (ccQTL, cell type composition QTL). This is 
different from a real distal eQTL effect where genetics affect the expression of a distal gene 
through an intracellular molecular pathway (intracellular eQTL). 

In principle, cell type composition effects could also influence cis-eQTL analysis, but that would 
require that a blood-cell-specific gene to map within 1 Mb from the blood-trait-related SNP. For 
trans-eQTLs and eQTSs, on the other hand, each blood-trait-related SNP or eQTS could lead to 
many ccQTL effects from all over the genome. As such, this mechanism could potentially account 
for a significant portion of reported trans-eQTL and eQTS effects. In fact, these cell type 
composition effects could potentially be present in any study conducting trans-eQTL or eQTS 
analyses in heterogeneous tissues. 

Here, we outline various strategies we used to account for cell type composition effects and to 
prioritise the effects which are likely not caused by cell type composition. In the discovery cis-
eQTL, trans-eQTL and eQTS analyses, we corrected for non-genetic variation caused by 
unknown biological and technical factors in each cohort. For that, we calculated first 20 (or 25 for 
the large BIOS Consortium dataset) gene expression-based principal components (PCs) and, 
prior any analyses, regressed out from each expression matrix those PCs which were not under 
genetic regulation. This strategy is in line with previous studies in blood91,116, and is comparable 
to using PEER factors156 for describing and correcting for structure in expression data. The 
advantage of such methods is that we do not need comprehensive information about technical or 
biological covariates to account for them, and that is crucial when working with 37 cohorts that 
each have measured different covariates. We acknowledge that, whereas this strategy should 
take care of the majority of cell type composition effects, it is not perfect. Our choice of not 
removing PCs under genetic regulation is meant to limit the removal of real eQTL effects, and 
differs in that aspect from the choice of removing a fixed number of PCs or PEER factors as has 
been done in GTEx studies117. It is possible that a PC correlates strongly with a specific cell type 
(e.g. platelet levels). If there is a SNP that also strongly affects platelet levels126, we would not 
remove this particular PC. As a result, we could observe trans-eQTLs on genes which are more 
highly or lowly expressed in platelets compared to other cell types in blood. 

Here, we used a subset of the eQTLGen consortium data as well as newly generated single cell 
RNA-seq data to further investigate the effect of blood cell type composition on the trans-eQTL 
and eQTS analyses. 

Evaluation of PC correction of gene expression 
To determine the consequences of interindividual cell count differences on trans-eQTLs, we 
focused on the whole-blood RNA-seq BIOS dataset, consisting of 3,831 individuals, for which the 
expression data was corrected for the first 25 PCs. 
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We first determined whether the PCs correlates with cell counts, and observed that the first 25 
PCs are indeed strongly correlated to cell counts (Supplementary Figure 3; maximal Spearman 
R2= 0.521; minimal two-sided uncorrected P<1.1×10-308). For example, in this dataset, PC2 
correlated (FDR<0.05) with 48 out of 57 available cell-type metrics. We also studied PCs 26 to 
50 in order to determine whether we actually should have corrected for these components as well. 
PCs 26-50 showed significant correlation with some cell-type metrics (most significant at 
P=9.34×10-39 was between PC39 and CD14+CD16+ intermediate monocytes). However, 
although these correlations were significant, the proportion of explained variance was rather small 
(maximum Spearman R2=0.043; 10 PCs showed nominally significant correlation (uncorrected 
P<0.05) with any cell metric). Considering the weak correlation between cell metrics and PCs 26-
50 (which we had not used to correct the expression data), we reasoned that the 25 PCs that we 
had used for correction were selected appropriately for this dataset. Consequently, for the other 
datasets in the meta-analysis, most of which have smaller sample size than our in-house dataset, 
we expect that by adjusting for the first 20 PCs, most of the variation in gene expression levels 
caused by differences in inter-individual cell type abundances have been adjusted appropriately. 

We do note that we did not adjust for PCs which were associated with genetic variants. As a 
result, 7 out of the first 25 components were not included in the regression in the BIOS dataset. 
Out of these PCs, we observed the strongest correlation between PC18 and eosinophil 
percentages (Supplementary Figure 3; Spearman R2=0.23; P=2.7×10-106). 

Hence, while the majority of cell type composition effects were likely removed from our meta-
analysis by PC correction, we cannot exclude the possibility that some cell-type composition 
effects remain. 

Finding cell type composition effects using blood RNA-seq data 
To investigate this further, for each discovery trans-eQTL and eQTS, we constructed linear 
models by using (1) all measured and predicted cell type metrics as covariates or (2) all cell 
metrics and their interaction terms with genetic variant (or PGS) as covariates. 

For those analyses, we used a subset of samples for which 49 cell metrics (out of 56) were 
available (n=1,858). We had to remove some of the abovementioned cell metrics (LUC_Perc, 
RBC, RDW, MCH, MPV, MCHC, MCV) and 1,973 samples (out of 3,831) from these analyses 
due to missingness. We note that two of those cell metrics correlated with PCs which were 
removed from expression data (e.g. RBC and PC3, Spearman R2=0.177; MPV and PC1, 
Spearman R2=0.32), suggesting that those two cell type effects were adjusted for during PC 
adjustment stage. As BIOS consists of multiple cohorts, we ran all the analyses per cohort 
separately, and then conducted a meta-analysis using a weighted Z-score method. Due to limited 
power to detect distal effects in only the BIOS cohort, we were able to identify 4,241 significant 
trans-eQTLs (7.67% of discovery results) when using only PC-corrected expression and not 
applying any additional corrections. 

We next evaluated whether the addition of 49 cell metrics rendered the remaining SNP or PGS 
main effect non-significant (significance threshold P<8.3×10-6, determined by discovery meta-
analysis). We corrected the gene expression for all 49 cell-type metrics (on top of PC correction) 
and performed the meta-analysis again. We observed that the majority of the trans-eQTLs (2,952; 
5.34% of discovery) remained significant (Supplementary Figure 19, Supplementary Data 6). 
For the other cohorts we did not have extensive cell-count measures available, and therefore 
were unable to perform this correction uniformly. However, these results suggest that the gene 
expression correction procedure (i.e. correcting for 20 expression PCs) that we employed has 
been quite effective to control for cell-type-composition differences. 

This analysis also permitted us to determine to what extent trans-eQTLs are cell-type specific. 
We reasoned that if a trans-eQTL is generic (i.e. having similar effect sizes within each individual 
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cell-type), the main trans-eQTL effect should remain when correcting the gene expression of a 
trans-gene for cell-type composition differences as well as it’s interaction with the trans-SNP (i.e. 
analogous to91). After applying this procedure, we observed that for only 33 trans-eQTLs a 
significant main effect remained (P<8.3×10-6), which suggests that trans-eQTLs are highly cell-
type specific. We also aimed to assign each of the trans-eQTLs to the cell type it most likely 
manifests in by testing the interaction between genotype and each cell metric. However, likely 
due to the extensive multiple testing burden and limited power, no individual interaction effects 
gained significance (Benjamini-Hochberg FDR>0.05; smallest P=1.37×10-7; Supplementary 
Data 7). 

For eQTS effects, we observed 2,313 (12.7% of discovery results, Supplementary Table 29) 
significant effects (significance threshold P<3.02×10-6, determined by discovery analysis) in BIOS 
before cell type composition correction, while 618 (3.4% of discovery) remained significant when 
adjusting for 49 cell type metrics. When expanding the model to include interaction terms between 
cell metric and PRS, two eQTS remained significant, demonstrating the cell-type-specific nature 
of eQTSs. In line with the trans-eQTL effects, none of the eQTS effects could be assigned to any 
of the cell type metrics when testing individual genotype-cell metric interaction effect (Methods, 
Benjamini-Hochberg FDR>0.05; smallest P=1.31×10-6; Supplementary Table 30). 

Prioritizing trans-eQTLs based on bulk transcriptome replications 
To further estimate what fraction of identified trans-eQTLs constitute intracellular trans-eQTLs, 
we performed thorough replication analyses in bulk gene expression datasets derived from blood 
and other tissues. As blood-based datasets, we investigated lymphoblastoid cell lines (LCL), 
induced pluripotent cells (iPSCs), several purified blood cell types (CD4+, CD8+, CD14+, 
CD15+/CD16+, CD19+, monocytes and platelets), and blood DNA methylation QTL data. In total, 
4,018 (6.7% of the total) of trans-eQTLs showed replication in at least one cell type (FDR<0.05; 
same allelic direction) or were supported by the methylation data (FDR<0.05; meQTL effect 
direction supported the discovery eQTL effect); Supplementary Figure 5, Supplementary Data 
2). 

We then investigated whether trans-eQTLs are shared across tissues from GTEx. We repeated 
our discovery meta-analysis while excluding GTEx, and observed that the replication rate was 
very low (0.07% of trans-eQTLs replicated in any non-blood tissue, 0.09% in blood, FDR<0.05, 
same allelic direction; Supplementary Data 3), possibly due to low sample size. However, the 
allelic concordance of significant effects was, on average, 66% in non-blood tissues and 100% in 
blood (Supplementary Data 3). Despite these low replication rates, trans-eQTLs showed an 
inflation of replication signal in the majority of tissues (Supplementary Figure 6A), most notably 
in whole blood, esophagus muscularis, liver, heart atrial appendage and non-sun-exposed skin. 

Single cell RNA-sequencing replication 
While the aforementioned results were based on small replication sets, the replication in purified 
cells and inflation in non-blood tissues indicates that a considerable fraction of the trans-eQTL 
effects are not due to cell-type composition effects. However, as we outlined in the section 
‘Evaluation of PC correction of gene expression’, it is conceivable that the gene expression 
data has not been corrected for cell-type composition differences entirely. 

The best strategy to determine the cell type specificity of trans-eQTLs is to use single-cell eQTL 
data instead of bulk RNA-seq eQTL data. However, single-cell RNA-seq data on a substantial 
number of individuals, necessary in order to have sufficient statistical power, did not yet exist 
when we submitted our original manuscript. To resolve this, we have spent substantial efforts to 
generate single-cell RNA-seq data on PBMCs from 1,139 unrelated individuals in two cohorts: 
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OneK1K (N=982) and 1M-scBloodNL (N=157) using the 10X Chromium platform. Details on 
quality control, normalisation and cell type classification for these datasets are provided in the 
Supplementary Methods and follow the procedures that we employed before in an earlier single-
cell eQTL pilot study using 45 individuals91. Once we had generated data on the two cohorts, we 
performed trans-eQTL replication in B-cells, CD4+ T-cells, CD8+ T-cells, classical monocytes, 
non-classical monocytes, dendritic cells, natural killer cells and plasma cells. 

For each of the 59,786 discovery trans-eQTLs, we tested the association within each of these cell 
types, but only if the trans-eQTL gene was sufficiently expressed (i.e. had a missing sample 
fraction that was at most 20% in the large OneK1K dataset). This was due to the fact that in single-
cell RNA-seq data, the expression of only a few thousand genes per cell were quantified. 

Since single-cell RNA-seq eQTL data is noisier than bulk RNA-seq, fewer cis-eQTLs can be 
identified when using the same number of samples as we previously observed when studying 45 
individuals14. Moreover, since trans-eQTLs in eQTLGen had been identified using a sample size 
of 31,684 and our single-cell replication cohort was limited to 1,139 individuals, statistical power 
was not sufficient to replicate many trans-eQTLs. We therefore first studied whether inflation of 
test statistics was observed. This indeed was the case for 7 out of the 8 cell-types studied 
(Supplementary Table 5; no inflation of signal was observed for the least abundant plasma 
cells). 

Cell type 
Number of tested 
trans-eQTLs 

Lambda 
inflation 

Nr. significant 
(FDR < 0.05) 

CD4+ T-Cells 27582 1.14 4 

CD8+ T-Cells 26216 1.14 4 

Dendritic cells 4125 1.09 0 

Plasma cells 1917 1.00 0 

Classical monocytes 9211 1.12 0 

Non-classical monocytes 5981 1.04 4 

B cells 19319 1.10 0 

NK cells 21122 1.17 25 

Lambda inflation and replication numbers for trans-eQTLs per scRNA-seq cell type.  

We subsequently attempted replication of trans-eQTLs per cell-type: we observed that we could 
significantly replicate 35 trans-eQTLs after correction for multiple testing (i.e. using a false 
discovery rate; FDR<0.05). The table above and Supplementary Table 5 sums to 37 trans-
eQTLs, which is due to the fact that 2 trans-eQTLs significantly replicated in two different cell-
types. Except for one trans-eQTL, the allelic direction of all other significantly replicating trans-
eQTLs was consistent with the allelic direction that was observed in the discovery dataset (97% 
concordance), providing an additional measure of support that these trans-eQTLs replicate. 

Since single-cell data is very noisy, we combined the summary statistics of the 8 cell-types to 
increase statistical power to replicate trans-eQTLs. Since we had replication Z-scores on at most 
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8 cell-types for each trans-eQTL, we combined this information by averaging the Z-scores per 
trans-eQTL over the different cell-types. We then selected those trans-eQTLs with an absolute 
average replication Z-score of at least 1.96 (which corresponds to a nominal P<0.05). This 
resulted in the replication of 729 trans-eQTLs (Supplementary Table 4). Although the 
significance threshold selected here is somewhat arbitrary, we reasoned that, among this list of 
replicating trans-eQTLs, the allelic concordance with the discovery dataset should be high. This 
indeed was the case: for 614 of these trans-eQTLs (84.2%), the averaged replication Z-score had 
the same allelic direction as the discovery dataset, which is much higher than what is expected 
by chance (i.e. expected allelic concordance by chance is 50%, two-sided binomial test 
P=3.63×10-83). 

These results indicate that a substantial fraction of the trans-eQTLs discovered in eQTLGen 
replicate with the same effect direction in single-cell eQTL data. We therefore conclude that at 
least these trans-eQTLs are not caused by cell-type composition differences, but instead reflect 
intracellular regulatory effects and that, due to the limited statistical power of the single-cell 
replication data, it is likely that this also holds true for many other trans-eQTLs. 

Among the 729 replicating trans-eQTLs, we observed a strong enrichment for genes involved in 
cytokine-mediated signaling (hypergeometric test from ToppGene126; P=3.3×10-12, Benjamini-
Hochberg FDR<0.05), with effects on AIM2, ANXA1, BCL2, CD300LF, CD36, CD74, CISH, 
CSF3R, CXCL8, CXCR1, CXCR2, CXCR5, CXCR6, EDAR, FCGR1A, FOS, FYN, GBP1, H3C1, 
HLA-B, HLA-DQA1, HMOX1, IFIT1, IL18RAP, IL1B, IL2RB, IL4R, IL6ST, LTA, MX1, OAS3, 
PIK3R1, PPBP, STAT1, TNFRSF13B and TNFRSF14. The SNPs that affect these genes are 
enriched for immune-mediated diseases and SNPs that affect cell-type composition.  
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