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General model of phenotype switching

Here, we detail the mathematical model used in the main text. As mentioned, we
consider two distinct cellular phenotypes A and B, where phenotype A represents the
drug sensitive sub-population and phenotype B represents the drug tolerant
sub-population. We denote the age density of cells with phenotype A at time t as
A(t, a), while B(t, a) represents the density of cells of age a with phenotype B at time t.
The object of clinical interest at time t is unlikely to be the density of cells with a given
age, but rather total number of cells of each phenotype, given by

Ā(t) =

∫ ∞
0

A(t, a)da and B̄(t) =

∫ ∞
0

B(t, a)da. (S1)

Under the assumptions in the main text, A(t, a) and B(t, a) satisfy the non-local PDE

∂tA(t, a) + ∂aA(t, a) = −[dA +RA(Ā(t), B̄(t))]A(t, a)

∂tB(t, a) + ∂aB(t, a) = −[dB +RB(Ā(t), B̄(t))]B(t, a).

}
(S2)

Cellular reproduction is incorporated through non-local boundary conditions.
Specifically, reproduction of cells produces 2 daughter cells with age a = 0 that may not
inherit the parent’s phenotype. As mentioned, we assume that the probability of
changing phenotypes depends on the age of the parent cell: i.e, older cells are more
likely to switch phenotypes during reproduction [1, 2]. We use βij(a) to denote the
probability that a cell with age a and phenotype i will create a cell of phenotype j
during reproduction. Hence, the boundary condition corresponding to (S2) is

A(t, 0) = 2

∫ ∞
0

RA(Ā(t), B̄(t))βAA(a)A(t, a) +RB(Ā(t), B̄(t))βBA(a)B(t, a)da

B(t, 0) = 2

∫ ∞
0

RA(Ā(t), B̄(t))βAB(a)A(t, a) +RB(Ā(t), B̄(t))βBB(a)B(t, a)da.


(S3)

We model the probability that a cell of phenotype A gives birth to two cells of
phenotype A as

βAA(a) = P ∗AA + (PmaxAA − P ∗AA) exp [−σAa] , (S4)

while the probability of a cell of phenotype B producing two cells of phenotype B is

βBB(a) = P ∗BB + (PmaxBB − P ∗BB) exp [−σBa] . (S5)

We note that both βAA(a) and βBB(a) are non-negative decreasing functions of age.
Moreover, as nascent cells are assumed to be restrained to either phenotype A or B, we
necessarily have

βAB(a) = 1− βAA(a) and βBA(a) = 1− βBB(a).

We illustrate a representative form of βii(a) in Fig A A. Using the bistable switch
example, the σi parameters model the decay rate of the molecules that bias the switch.
With σi = 1× 10−2 days−1 (as is the case in our generic parametrization), a cell that
replicates after 1 day will have a roughly 1% smaller probability of phenotypic
inheritance than if the cell had replicated immediately upon birth. However, a precise
value of σi is difficult to identify as there is a trade-off between the decay rate σi and
the difference Pmaxii − P ∗ii. Therefore, we fix σi = 10−2 throughout and included it as a
parameter in our sensitivity analysis.

To complete the initial value problem defined by (S2), we prescribe initial
conditions describing the age distribution of cells at time t = 0

A(0, a) = gA(a) and B(0, a) = gB(a).
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It is natural to enforce that the initial age distributions gA(a) and gB(a) are
non-negative functions. We note that cells with age a > 0 at time t = 0 must have been
born at some time s < 0. However, A(t, 0) and B(t, 0) are only defined for t > 0.
Nevertheless, it is possible to use the initial data of (S2) to define A(−s, 0) and
B(−s, 0) for s ∈ (0,∞) by A(−s, 0) = gA(s) exp([rB + dB ]s) and
B(−s, 0) = gB(s) exp([rB + dB ]s) [3], and we use these definitions when considering the
equivalent renewal equation (S25).

Further, we are only interested in finite populations, so we require that
gA, gB ∈ L1(0,∞). The requirement that gA and gB are integrable ensures that (S2)
has a unique solution in the sense of distributions, and that this solution belongs to
L1(0,∞) [4]. It follows that the quantities Ā(t) and B̄(t) are well-defined for t > 0.
Rather than introducing a maximal age and subsequent mathematical complications in
our simple model, we note that, along the characteristics of (S2) given by a = t− t0,

d

dt
A(t, a) = −[RA(Ā(t), B̄(t)) + dA]A(t, a), and

d

dt
B(t, a) = −[RB(Ā(t), B̄(t)) + dB ]B(t, a).

both A(t, a) and B(t, a) decay exponentially in age. Nevertheless, given the biological
interpretation of a in Eq. (S2), it may be reasonable to enforce a maximal cellular age
amax. However, translating this requirement to solutions of Eq. (S2) is not trivial.

Age structured PDE models similar to (S2) have been used extensively to model
the progression of cells through a reproductive process [3–7], and there is extensive
mathematical theory regarding the use of these age structured models in mathematical
biology (see [8] for a review). As mentioned in the Main Text, other authors have
considered PDEs structured in phenotype with non-local or diffusion terms. However,
to our knowledge, the incorporation of the phenotypic switching in a McKendrick type
equation is new.

Growth dynamics

To complete the mathematical model (S2), we now specify the form of RA and RB . In
what follows, we explore multiple forms of these functions corresponding to different
biological assumptions. We begin with the simplest case: unconstrained exponential
growth which is appropriate in populations with (effectively) unlimited resources such
as those that are continually replated during in vitro experiments. We then remove this
assumption of unlimited resources and consider constrained growth, such as in vitro
experiments that approach total confluence. Finally, we incorporate the effects of
phenotypic cooperation, whereby a larger proportion of a certain phenotype can lead to
increase phenotypic expansion through an Allee effect or frequency dependent fitness
changes [9–13]. By considering the effects of different growth functions, we will explore
the impact of growth stage on establishment of a drug tolerant population.

The simplest case corresponds to unconstrained growth, where there are unlimited
resources in the environment. This surplus of resources allows for exponential, or
Malthusian growth. In this case, we use a constant and phenotype dependent growth
rate

RA(Ā(t), B̄(t)) = rA and RB(Ā(t), B̄(t)) = rB . (S6)

During in vitro experiments, this unconstrained growth corresponds to the early growth
phase of cells in culture or following the replating of an established cell culture into a
nutrient rich environment.

In an environment with limited resources, the early exponential growth of a
population gives way to tempered growth as competition for resources begins. This
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restrained growth is typically modelled as logistic type growth. Thus, in the limited
resource case, we model the growth rates as

RA(Ā(t), B̄(t)) = rA

(
1− Ā(t) + B̄(t)

K

)
and

RB(Ā(t), B̄(t)) = rB

(
1− Ā(t) + B̄(t)

K

)
. (S7)

We note that, as the population reaches the carrying capacity of the environment, the
reproduction rates RA and RB both converge to 0.

Finally, we consider the influence of frequency dependent fitness increases in the B
phenotype. This corresponds to cells of phenotype B gaining fitness as they become
more populous and cooperate. This frequency dependent fitness increase, or Allee effect,
has been observed in cancer [14–19]. To allow for cooperation amongst drug tolerant
cells, we model reproduction as

RA(Ā(t), B̄(t)) = rA

(
1− Ā(t) + B̄(t)

K

)
and

RB(Ā(t), B̄(t)) = rB

(
1− Ā(t) + B̄(t)

K

)
fn(Ā(t), B̄(t)). (S8)

The function fn(Ā(t), B̄(t)) models the increase in relative fitness of drug tolerant
cells and determining a precise formulation of fn(Ā(t), B̄(t)) is difficult [14]. However,
from biological considerations, as the proportion of drug tolerant cells increases, the
relative fitness of these cells should increase. Therefore, fn(Ā(t), B̄(t)) should be
monotonically decreasing in Ā and increasing in B̄. In what follows, we will use the
following frequency dependent growth function

fn(Ā(t), B̄(t)) = 1 +

(
rA − rB
rB

)(
B̄(t)n

Ā(t)n + B̄(t)n

)
(S9)

= 1 +

(
rA − rB
rB

)(
θ(t)n

1 + θ(t)n

)
= fn(θ(t)) for θ(t) = B̄(t)/Ā(t).

The function fn(Ā(t), B̄(t)) is a Hill-type function that ensures that
rBfn(Ā(t), B̄(t))) smoothly interpolates between rB and rA as the proportion of
phenotype B cells in the total population increases between 0 and 1. The parameter n
controls the steepness the sigmoidal curve. As n increases, the smooth sigmoid function
approaches a step function at θ(t) = 1. Throughout the rest of this work, we consider
n = 1, 2, 10 to illustrate the impact of different frequency dependent fitness functions on
population dynamics. In Fig AB, we show f1(Ā(t), B̄(t)), f2(Ā(t), B̄(t)) and
f10(Ā(t), B̄(t)) as a function of θ(t). We conclude by noting that the growth rates given
by Equations (S6), (S7) and (S8) are non-negative functions for non-negative input Ā(t)
and B̄(t).

Generic model of chemotherapy

Treatment necessarily imposes selection pressure against susceptible cells [14, 16, 20–22].
This selection pressure can drastically change population level dynamics and lead to the
development and competitive release of resistant populations. As mentioned, this
resistance can be driven by phenotypic switching [23–25]. Therefore, we include the
effects of cytotoxic treatment in the mathematical model (S2). We emphasize that we
are only attempting to model the qualitative effects of cytotoxic treatment and recall
that, when incorporating therapeutic effects, we have assumed that cells of phenotype A
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Fig A. Phenotypic switching probability and relative fitness gain. Fig A
shows a representative form of the function βii(a) that represents the probability that a
mother cell with phenotype i and age a bequeaths it’s phenotype to the daughter cells.
Fig B shows the frequency dependent fitness increase function fn(θ) for n = 1, 2, 10
used to model fitness increases of the drug tolerant phenotype due to the Allee effect.

are drug sensitive, while cells of phenotype B are drug tolerant and thus resistant to
treatment.

We denote the concentration of a chemotherapeutic at time t as C(t) and assume
that therapy is given intravenously. The time dynamics of C(t) are given by

d

dt
C(t) = I(t)− kelimC(t) (S10)

where I(t) is given by

I(t) =

{
Dose

V ol×Tadmin
if t ∈ (ti, ti + Tadmin)

0 otherwise.

and models the I.V administration of the cytotoxic drug during an injection time of
Tadmin, where V ol is the volume of distribution of the drug and Dose is the size of one
administration. The half life of the drug in question, t1/2, defines the elimination
constant through kelim = log(2)/t1/2.

We assume that chemotherapy increases the death rate of drug sensitive cells
through

dA(t) = dA + (dmaxA − dA)
C(t)

C(t) + C1/2
,

where the half effect concentration is given by C1/2. We note that, in our simple model,
it is the ratio of the drug concentration and the half effect C1/2 that completely
determine the pharmacodynamics of the therapy in question. While using this simple
pharmacodynamic model limits the direct applicability of our work, it allows for the
identification of the crucial aspects in determining the effect of therapy.

Ordinary differential equations for Ā(t) and B̄(t)

The partial differential equation (S2) is difficult to solve numerically. Moreover, we
are primarily interested in the clinically relevant and biologically measurable Ā(t) and
B̄(t). We note that the quantities of interest, Ā(t) and B̄(t), are independent of age.

August 25, 2021 5/39



Therefore, it is reasonable to expect that their dynamics should be determined by a
system of two ODEs. As we will show, the age dependence in the non-local boundary
condition (S3) will necessitate the inclusion of two extra ODEs. As the analysis that
follows is identical for B̄(t), we only show the derivation of the ODE for Ā(t).

To derive the equivalent system of ODEs, we note that the formal solution of (S2)
for A(t, a) during treatment is

A(t, a) = A(t− a, 0) exp

[
−
∫ t

t−a
RA(Ā(s), B̄(s)) + dA + (dmaxA − dA)

C(s)

C(s) + C1/2
ds

]
,

(S11)
with a similar expression for B(t, a). For notational convenience, we denote the total
population of cells at time t, Ā(t) + B̄(t) as N(t).

We begin by using Leibniz’s rule to differentiate (S1) and, after adding
0 = ∂aA(t, a)− ∂aA(t, a), find

d

dt
Ā(t) = −

[
RA(Ā(t), B̄(t) + dA + (dmaxA − dA)

C(t)

C(t) + C1/2

] ∫ ∞
0

A(t, a)da+A(t, 0).

(S12)
The boundary conditions of (S2) give

A(t, 0) = 2RA(Ā(t), B̄(t))

∫ ∞
0

βAA(t, a)A(t, a)da

+ 2RB(Ā(t), B̄(t))

∫ ∞
0

βBA(a)B(t, a)da

= 2RA(Ā(t), B̄(t))NAA(t) + 2RB(Ā(t), B̄(t))

∫ ∞
0

βBA(a)B(t, a)da

where

NAA(t) =

∫ ∞
0

βAA(a)A(t, a)da =

∫ t

−∞
βAA(t− a)A(t, t− a)da

with a similar expression for NBB(t). We note that, as A(t, a) ∈ L1(R+) with the
normal Lebesgue measure, and βAA 6 1, it follows that NAA is finite. Now, we recall
that reproducing cells of phenotype i create either two cells of phenotype i or phenotype
j. Therefore,

βAB(a) = 1− βAA(a) and βBA(a) = 1− βBB(a),

so

2RB(Ā(t), B̄(t))

∫ ∞
0

βBA(a)B(t, a)da = 2RB(Ā(t), B̄(t))

[∫ ∞
0

(1− βBB(a)B(t, a)da

]
= 2RB(Ā(t), B̄(t))

[
B̄(t)−NBB(t)

]
.

Thus, Ā(t) and B̄(t) satisfy a system of differential equations that require the
evaluation of the integral terms NAA(t) and NBB(t), which is, once again, numerically
challenging. Therefore, to implement (S12) numerically, we write NAA(t) and NBB(t)
as the solutions of the differential equations

d

dt
NAA(t) = βAA(0)A(t, 0) +

∫ t

−∞

d

dt
[βAA(t− a)A(t, t− a)] da

= βAA(0)
[
2RA(Ā(t), B̄(t))NAA(t) + 2RB(Ā(t), B̄(t))NBA(t)

]
+

∫ t

−∞
[

d

dt
βAA(t− a)]A(t, t− a)da−

(
RA(Ā(t), B̄(t)) + dI

)
NAA(t)

(S13)
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an

d

dt
NBB(t) = βBB(0)B(t, 0) +

∫ t

−∞

d

dt
[βBB(t− a)B(t, t− a)] da

= βBB(0)
[
2RA(Ā(t), B̄(t))NAB(t) + 2RB(Ā(t), B̄(t))NBB(t)

]
+

∫ t

−∞
[

d

dt
βBB(t− a)]A(t, t− a)da−

(
RB(Ā(t), B̄(t)) + dI

)
NBB(t)

(S14)

where we have used (S11) to write

A(t, t− a) = A(a, 0) exp

[
−
∫ t

a

RA(Ā(s), B̄(s)) + dA + (dmaxA − dA)
C(s)

C(s) + C1/2
ds

]
,

so that

d

dt
A(t, t− a) = −

(
RA(Ā(t), B̄(t)) + dA + (dmaxA − dA)

C(t)

C(t) + C1/2

)
A(t, t− a).

By using the following relationships for βAA(t− a) and βBB(t− a),

d

dt
βAA(t− a) =

d

dt
(P ∗A + (PmaxA − P ∗A) exp[−σA(t− a)]) = −σA (βAA(t− a)− P ∗A)

d

dt
βBB(t− a) =

d

dt
(P ∗B + (PmaxB − P ∗B) exp[−σB(t− a)]) = −σB (βBB(t− a)− P ∗B)

we simplify (S13) to

d

dt
NAA(t) = PmaxAA

[
2RA(Ā(t), B̄(t))NAA(t) + 2RB(Ā(t), B̄(t))

(
B̄(t)−NBB(t)

)]
−
(
RA(Ā(t), B̄(t)) + dA + (dmaxA − dA)

C(t)

C(t) + C1/2

)
NAA(t)

+ σA
(
P ∗AĀ(t)−NAA(t)

)
while (S14) becomes

d

dt
NBB(t) = PmaxBB

[
2RA(Ā(t), B̄(t))

(
Ā(t)−NAA(t)

)
+ 2RB(Ā(t), B̄(t))NBB(t)

]
−
(
RB(Ā(t), B̄(t)) + dB

)
NBB(t)− σBNBB(t) + σBP

∗
BB̄(t).
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Thus, the system of ODEs for Ā(t) and B̄(t) is

d

dt
Ā(t) = −[RA(Ā(t), B̄(t)) + dA + (dmaxA − dA)

C(t)

C(t) + C1/2
]Ā(t)

+ 2RA(Ā(t), B̄(t))NAA(t) + 2RB(Ā(t), B̄(t))
[
B̄(t)−NBB(t)

]
d

dt
B̄(t) = −[RB(Ā(t), B̄(t) + dB ]B̄(t) + 2RA(Ā(t), B̄(t))

(
Ā(t)−NAA(t)

)
+ 2RB(Ā(t), B̄(t))NBB(t)

d

dt
NAA(t) = PmaxAA

[
2RA(Ā(t), B̄(t))NAA(t) + 2RB(Ā(t), B̄(t))

(
B̄(t)−NBB(t)

)]
−
(
RA(Ā(t), B̄(t)) + dA + (dmaxA − dA)

C(t)

C(t) + C1/2

)
NAA(t)

+ σA
(
P ∗AĀ(t)−NAA(t)

)
d

dt
NBB(t) = PmaxBB

[
2RA(Ā(t), B̄(t))

(
Ā(t)−NAA(t)

)
+ 2RB(Ā(t), B̄(t))NBB(t)

]
−
(
RB(Ā(t), B̄(t)) + dB

)
NBB(t)− σBNBB(t) + σBP

∗
BB̄(t).


(S15)

Initial conditions of the ODE model

The ODE (S15) is intrinsically finite dimensional with real valued initial conditions
given by Ā(0), B̄(0), NAA(0) and NBB(0). This contrasts with the infinite dimensional
system of PDEs (S2) with initial data given by gA(a) and gB(a) in the infinite
dimensional space L1(0,∞). To obtain the system of ODEs (S15), we partially solved
the PDE (S2), so it is somewhat unsurprising that the resulting dynamical system is
lower dimensional. We would like solutions of (S2) to correspond to solutions of (S15).
Therefore, it is important to ensure that the initial conditions of the ODE system are
appropriate. For integrable initial data gA(a) and gB(a) from the initial value problem
(S2), it follows from the definition of Ā(t) and B̄(t) that

Ā(0) =

∫ ∞
0

A(0, a)da =

∫ ∞
0

gA(a)da and B̄(0) =

∫ ∞
0

B(0, a)da =

∫ ∞
0

gB(a)da.

We can easily see that the initial conditions of NAA and NBB must satisfy

NAA(0) =

∫ ∞
0

βAA(a)gA(a)da and NBB(0) =

∫ ∞
0

βBB(a)gB(a)da.

By the assumption that gA(a) and gB(a) are integrable and non-negative, these initial
conditions are all finite and non-negative. In practice, it is simplest to assume that
gA(a) and gB(a) are exponentially decaying functions of age so that the above integrals
are simple to compute. This assumption of exponential decay in age is not unreasonable,
both biologically and given the form of (S2). In the following section, we calculate the
intrinsic growth rate of the mixed population, λp, by considering a population in
exponential growth. As we will see, the assumption of exponential growth suggests that
we set

gA(a) = A0 exp(−(rA + dA + λp)a) and gB(a) = B0 exp(−rB + dB + λp)a)

where we use different values of A0 and B0 to study the effects of initial population
composition. We note that these definitions correspond to mapping the initial age

August 25, 2021 8/39



Parameter (unit) Value
rA (1/day) 0.7
rB (1/day) 0.35
dA (1/day) 0.1
dmaxA (1/day) 10
dB (1/day) 0.1

P ∗AA 0.9
PmaxAA 0.95

K (cells) 104

Table A. The generic model parameters The generic model parameters used to
illustrate the impact of phenotypic switching on treatment resistance.

distribution backwards along the characteristic curves [26]. From the definition of gA(a),
we immediately obtain

Ā(0) =
A0

rA + dA + λp
and B̄(0) =

B0

rB + dB + λp
.

It therefore follows that

NAA(0) =

∫ ∞
0

(
P ∗AA + (PmaxAA − P ∗AA)e−σAa

)
A0 exp(−(rA + dA + λp)a)da

= A0

(
P ∗AA

rA + dA + λp
+

PmaxAA − P ∗AA
rA + dA + λp + σA

)
,

and

NBB(0) = B0

(
P ∗BB

rB + dB + λp
+

PmaxBB − P ∗BB
rB + dB + λp + σB

)
.

Generic model parametrization

To study the role of phenotype switching on treatment resistance, we use a variety of
physiologically based parameters rather than fitting the model to specific data. We
assume that phenotype A cells successfully reproduce approximately once per day
–similar to the reproductive time of most cells. Thus, we take rA = 0.7 ≈ log(2)/tA,2.
Further, we assume that the phenotype B cells reproduce at about half the rate of
phenotype A cells to account for the fitness cost of resistance [14, 27], and set rB = 0.35.
Unless otherwise stated, we fix dA = dB = 0.01. We note that, with these parameters,
drug sensitive cells are fitter than drug tolerant cells. We set P ∗AA = 0.9 and
PmaxAA = 0.95. While this parametrization is deliberately generic, we show later that our
results are robust to parameter variation.

Model analysis

The mathematical model (S2) is quite simple and describes the time evolution of cell
densities. In the following analysis, we do not consider the model with treatment, so
C(t) = 0. We begin by demonstrating that solutions of (S2) evolving from non-negative
and integrable initial data remain non-negative, as we would expect for a biological
model.

Proposition A. Let the model parameters be positive. Assume that gA(a) and gB(a)
are integrable and almost-everywhere non-negative for a ∈ (0,∞). Then, the solution of
(S2) is non-negative for all time t > 0 and all growth functions Ri(Ā(t), B̄(t)).
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Proof. Using the method of characteristics, the formal solution of (S2) is

A(t, a) = A(t− a, 0) exp

[
−
∫ t

t−a
dA +RA(Ā(s), B̄(s))ds

]
B(t, a) = B(t− a, 0) exp

[
−
∫ t

t−a
dB +RB(Ā(s), B̄(s))ds

]
.

 (S16)

We note that A(t, a) and B(t, a) preserve the sign of A(t− a, 0) and B(t− a, 0)
respectively, and we recall that A(t− a, 0) = gA(a− t) exp(−[rB + dB ](t− a)) and
B(t− a, 0) = gB(a− t) exp(−[rB + dB ](t− a)) for t < a. Thus, to show that A(t, a) > 0
and B(t, a) > 0, it is sufficient to show that A(x, 0) > 0 and B(x, 0) > 0 for all x > 0.

We consider A(x, 0), as the same argument holds for B(x, 0), and proceed by
contradiction. Assume for contradiction that x∗ is the first time such that A(x∗, 0) < 0
or B(x∗, 0) < 0, so A(s, 0) > 0 and B(s, 0) > 0 for all s < x∗. Now, we must have

Ā(x∗) =

∫ ∞
0

A(x∗, a)da

=

∫ ∞
0

A(x∗ − a, 0) exp

[
−
∫ x∗

x∗−a
RA(Ā(s), B̄(s)) + dAds

]
da > 0,

and

B̄(x∗) =

∫ ∞
0

B(x∗, a)da

=

∫ ∞
0

B(x∗ − a, 0) exp

[
−
∫ x∗

x∗−a
RB(Ā(s), B̄(s)) + dBds

]
da > 0.

Therefore, the functions Ri(Ā(x∗), B̄(x∗)) are non-negative for i = A,B.
Furthermore, βij(a) > 0 from definition. Then, using the definition of A(x, 0) given in
(S3) and the formal solution of (S2), we calculate

A(x∗, 0) = 2

∫ ∞
0

RA(Ā(t), B̄(t))βAA(a)A(t, a) +RB(Ā(t), B̄(t))βBA(a)B(t, a)da

= 2

∫ ∞
0

RA(Ā(x∗), B̄(x∗))βAA(a)A(x∗ − a, 0) exp

[
−
∫ x∗

x∗−a
RA(Ā(s), B̄(s))dAds

]
da

+

∫ ∞
0

RB(Ā(x∗), B̄(x∗))βBA(a)B(x∗ − a, 0) exp

[
−
∫ x∗

x∗−a
RB(Ā(s), B̄(s)) + dBds

]
da

Finally, since x∗ − a < x∗, it follows that A(x∗ − a, 0) > 0 and B(x∗ − a, 0) > 0, so
the integrals∫ ∞

0

2RA(Ā(x∗), B̄(x∗))βAA(a)A(x∗ − a, 0) exp

[
−
∫ x∗

x∗−a
RA(Ā(s), B̄(s))dAds

]
da

and∫ ∞
0

2RB(Ā(x∗), B̄(x∗))βBA(a)B(x∗ − a, 0) exp

[
−
∫ x∗

x∗−a
RB(Ā(s), B̄(s)) + dBds

]
da

are integrals of non-negative functions over a set of positive measure. Thus, A(x∗, 0) is
the sum of two non-negative integrals and must satisfy A(x∗, 0) > 0, a contradiction.
The same argument for B(x∗, 0) yields the claim.
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Turning now to the ODE model for Ā(t) and B̄(t) and having prescribed
appropriate initial data, the theory of ODEs ensures that the initial value problem
(IVP) defined by (S15) has a unique solution. Further, it follows immediately from
Proposition A that solutions of (S15) evolving from non-negative initial data remain
non-negative.

Nonlinear eigenproblem for the Malthusian parameter

To analyse the long term behaviour of the cell population, we search for a stable age
distribution in the population [4, 8]. This stable age distribution is equivalent to finding
the first eigenelements of (S2) where we are considering the linearised version of (S2).
We note that the linearised version of (S2) corresponds to purely Malthusian growth
corresponding to constant RA and RB and effectively unlimited resources. We assume a
solution of the type

A(t, a) = w(a)eλP t, B(t, a) = z(a)eλP t. (S17)

where λP is the Malthusian parameter to be determined [4]. The Malthusian parameter
is an important quantity in population dynamics [5, 28,29], and is typically used as
measure of population fitness [10,30]. Later, we will show that the expected sign
relationship between the Malthusian parameter λP and R0 − 1, where the basic
reproduction number R0 is another classical measure of population fitness, holds in our
model. This result normally follows immediately in most structured population models.
However, the inclusion of phenotypic switching in our model complicates this
relationship.

The unknown functions w(a) and z(a) are the age distributions of A and B
respectively. These functions define a system of ordinary differential equations (ODEs)
from which we will obtain a nonlinear eigenvalue problem with solution λP . For general
λ, inserting the ansatz (S17) into (S2) yields the following system of ODEs

eλt [w′(a) + λw(a)] = −[dA + rA]eλtw(a)

eλt [z′(a) + λz(a)] = −[dB + rB ]eλtz(a),

}
(S18)

with solutions

w(a) = A0 exp [−[dA + rA + λ]a] , z(a) = B0 exp [−[dB + rB + λ]a] . (S19)

We must now ensure agreement with the boundary condition (S3) of the population
PDE (S2), so

eλtA0 = 2

∫ ∞
0

rAβAA(a)w(a)eλt + rBβBA(a)z(a)eλtda

eλtB0 = 2

∫ ∞
0

rAβAB(a)w(a)eλt + rBβBB(a)z(a)eλtda.


Cancelling the eλt terms gives a system of equations for the unknowns λ,A0 and B0

A0 = 2

∫ ∞
0

rAβAA(a)A0 exp (−[dA + rA + λ]a)]da

+ 2

∫ ∞
0

rBβBA(a)B0 exp (−[dB + rB + λ]a) da

B0 = 2

∫ ∞
0

rAβAB(a)A0 exp (−[dA + rA + λ]a) da

+ 2

∫ ∞
0

rBβBB(a)B0 exp (−[dB + rB + λ]a) da.


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This linear system for the unknowns A0, B0 is equivalent to[
A0

B0

]
=

[
M11(λ) M12(λ)
M21(λ) M22(λ)

] [
A0

B0

]
, (S20)

where

M11(λ) = 2

∫ ∞
0

rAβAA(a) exp (−[dA + rA + λ]a) da and

M22(λ) = 2

∫ ∞
0

rBβBB(a) exp (−[dB + rB + λ]a) da.

We note that newly born cells must be of either phenotype A or B, so we have

M21(λ) =

∫ ∞
0

(1− βAA(a)) rA exp (−[dA + rA + λ]a) da =
2rA

dA + rA + λ
−M11(λ)

and

M12(λ) =

∫ ∞
0

(1− βBB(a)) rB exp (−[dA + rA + λ]a) da =
2rB

dB + rB + λ
−M22(λ).

Consequently, the Malthusian parameter λP is the rightmost real solution of the
nonlinear eigenproblem defined by (S20) and must satisfy

det [M(λ)− I] = 0, (S21)

where M(λ) is given by the matrix in (S20). In the case of no phenotypic switching, the
matrix M(λ) is diagonal and this eigenvalue problem is simple. The following
proposition is nearly obvious from the biological interpretation of the problem.

Proposition B. Assume that cells cannot switch phenotype and that the model
parameters are positive. Then, the Malthusian parameter is given by
λP = max[rA − dA, rB − dB ].

Proof. If offspring directly inherit the phenotype of the parent cell, then
Pmaxii = P ∗ii = 1. It follows that M12 = M21 = 0, and the matrix (S20) is given by[

M11(λ) 0
0 M22(λ).

]
The eigenvalues are therefore M11(λ) and M22(λ), which, for Pmaxi = P ∗i = 1, are given
by

M11(λ) =
2rA

λ+ dA + rA
and M22(λ) =

2rB
λ+ dB + rB

.

Then, 1 is an eigenvalue if and only if λ = rA − dA or λ = rB − dB . The Malthusian
parameter is the maximum of these values, so λP = max[rA − dA, rB − dB ].

It follows from the preceding proposition that, if no phenotypic switching can
occur, a population comprised of entirely phenotype A cells has Malthusian parameter
λA = rA − dA and a population with only type B cells has Malthusian parameter
λB = rB − dB . To simplify notation, we will assume, without loss of generality, that
λB 6 λA.

We will now show that allowing for phenotypic switching acts to decrease
population fitness. Namely, if λP is the Malthusian parameter of the switching
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population, then λP ∈ (λB , λA). We begin by removing the restriction that
P ∗ii = Pmaxii = 1, and evaluate (S21). Then, this determinant becomes

0 = (1−M11(λ))(1−M22(λ))

−
(

2rA
dA + rA + λ

−M11(λ)

)(
2rB

dB + rB + λ
−M22(λ)

)
. (S22)

For βii given by (S4) and (S5), we calculate

M11,22(λ) = 2ri

∫ ∞
0

[P ∗ii + (Pmaxii − P ∗ii) exp (−σia)] exp [−(λ+ di + ri)a] da

=
2riP

∗
ii

λ+ di + ri
+

2ri(P
max
ii − P ∗ii)

λ+ di + ri + σi
.

Then, equation (S22) becomes

0 = 1− 4rArB
(dA + rA + λ)(dB + rB + λ)

+

(
2rB

rB + dB + λ
− 1

)[
2rAP

∗
AA

λ+ dA + rA
+

2rA(PmaxAA − P ∗AA)

λ+ dA + rA + σA

]
+

(
2rA

rA + dA + λ
− 1

)[
2rBP

∗
BB

λ+ dB + rB
+

2rB(PmaxBB − P ∗BB)

λ+ dB + rB + σB

]
(S23)

To simplify notation in the following analysis, we set

F (λ) = 1− 4rArB
(dA + rA + λ)(dB + rB + λ)

+

(
2rB

rB + dB + λ
− 1

)[
2rAP

∗
AA

λ+ dA + rA
+

2rA(PmaxAA − P ∗AA)

λ+ dA + rA + σA

]
+

(
2rA

rA + dA + λ
− 1

)[
2rBP

∗
BB

λ+ dB + rB
+

2rB(PmaxBB − P ∗BB)

λ+ dB + rB + σB

]
,

so that roots of F (λ) correspond to solutions of (S23).
It remains to show that (S23) admits at least one real root. While F (λ) may admit

multiple real roots, the Malthusian parameter λP is the rightmost real root by
convention. As we have seen, in models without phenotypic switching, it is typically
fairly straightforward to prove that λ∗ exists and is unique [4, 8]. However, the
phenotypic switching in (S2) results in the off diagonal terms of M(λ) and complicates
the analysis here, as the Malthusian parameter is no longer a strictly monotonic function
of the parameters ri, di. However, F (λ) is eventually monotonic for λ > 0 large enough.

Lemma C. F (λ) is strictly increasing for λ > λA = max(λA, λB).

Proof. To simplify notation in the proof, we write for i = A,B,

gi(λ) =
2ri

di + ri + λ
and hi(λ) =

2riP
∗
ii

λ+ di + ri
+

2ri(P
max
ii − P ∗ii)

λ+ di + ri + σi
,

so
F (λ) = 1− gA(λ)gB(λ) + (gA(λ)− 1)hB(λ) + (gB(λ)− 1)hA(λ).

Then, differentiating F (λ) and regrouping terms gives

F ′(λ) = g′A(λ) (hB(λ)− gB(λ)) + g′B(λ) (hA(λ)− gA(λ))

+ (gA(λ)− 1)h′B(λ) + (gB(λ)− 1)h′A(λ).
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It is clear that g′i(λ) < 0 and h′i(λ) < 0 for λ > −min(rA + dA, rB + dB). Further, for
λ > max(rA − dA, rB − dB), we obtain gi(λ)− 1 < 0 and

hi(λ) 6
2riP

max
ii

ri + di + λ
6

2ri
ri + di + λ

= gi(λ).

Therefore, each of the terms in F ′(λ) is the product of two non-positive functions, with

(gA(λ)− 1)h′B(λ) + (gB(λ)− 1)h′A(λ) > 0.

It follows that F ′(λ) > 0 and F (λ) is strictly increasing for λ > max(rA − dA, rB − dB).

We continue by considering an extremely particular case, where both
sub-populations have the same fitness. Consequently, phenotypic switching does not
affect population fitness.

Lemma D. Let the model parameters be positive. If rA − dA = rB − dB , then
λP = rA − dA = rB − dB is the Malthusian parameter.

Proof. Evaluating (S22) at λ∗ = rA − dA = rB − dB gives

(1−M11(λ∗))(1−M22(λ∗))−
(

2rA
dA + rA + λ∗

−M11(λ∗)

)(
2rB

dB + rB + λ∗
−M22(λ∗)

)
= (1−M11(λ∗))(1−M22(λ∗))− (1−M11(λ∗)) (1−M22(λ∗)) = 0.

Then, since F (λ) is strictly increasing for λ > rA − dA, λ∗ is the rightmost real root of
F , and λP = λ∗ = rA − dA.

We now consider the more general case, where rA − dA 6= rB − dB .

Lemma E. Let the model parameters be positive and assume that
λA > λB > −min[rA + dA, rB + dB ]. Then, there exists a real root λ∗ of (S23) with
λ∗ ∈ (λB ,∞).

Proof. We begin by noting F (λ) is continuous and well-defined for
λ ∈ (−min[rA + dA, rB + dB ],∞). Further,

lim
λ→∞

F (λ) = 1 > 0. (S24)

Now, recall that λB = rB − dB , so rB + dB + λB = 2rB and calculate

F (λB) = 1− 2rA
(dA + rA + λB)

2rB
(dB + rB + λB)

+

(
2rB

rB + dB + λB
− 1

)[
2rAP

∗
AA

λB + dA + rA
+

2rA(PmaxAA − P ∗AA)

λB + dA + rA + σA

]
+

(
2rA

rA + dA + λB
− 1

)[
2rBP

∗
BB

λB + dB + rB
+

2rB(PmaxBB − P ∗BB)

λB + dB + rB + σB

]
= 1− 2rA

dA + rA + λB
+

(
2rA

rA + dA + λB
− 1

)[
P ∗BB +

2rB(PmaxBB − P ∗BB)

λB + dB + rB + σB

]
=

(
1− 2rA

dA + rA + λB

)(
1−

[
P ∗BB +

2rB(PmaxBB − P ∗BB)

λB + dB + rB + σB

])
.
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Now, since σB > 0, λB + dB + rB + σB = σB + 2rB > 2rB and[
P ∗BB +

2rB(PmaxBB − P ∗BB)

λB + dB + rB + σB

]
< PmaxBB 6 1

⇒
(

1−
[
P ∗BB +

2rB(PmaxBB − P ∗BB)

λB + dB + rB + σB

])
> 0.

By the assumption that λB < λA, we have rA + dA + λB < 2rA. It follows that(
1− 2rA

dA + rA + λB

)
< 0.

Thus, F (λB) < 0 and the intermediate value theorem yields the claim.

We now regroup Lemmas C and E to establish the existence of the Malthusian
parameter.

Theorem F. Let the model parameters be positive. Then the Malthusian parameter λP
of the population with phenotypic switching satisfies λP ∈ (λB , λA).

Proof. The existence and lower bound follows immediately from Lemma C and
Lemma E. It only remains to show that λP < λA. Recalling that λA = rA − dA, we
calculate

F (λA) = 1− 2rA
(dA + rA + λA)

2rB
(dB + rB + λA)

+

(
2rB

rB + dB + λA
− 1

)[
2rAP

∗
AA

λA + dA + rA
+

2rA(PmaxAA − P ∗AA)

λA + dA + rA + σA

]
+

(
2rA

rA + dA + λA
− 1

)[
2rBP

∗
BB

λA + dB + rB
+

2rB(PmaxBB − P ∗BB)

λA + dB + rB + σB

]
= 1− 2rB

dB + rB + λA
+

(
2rB

rB + dB + λA
− 1

)[
P ∗AA +

2rA(PmaxAA − P ∗AA)

λA + dA + rA + σA

]
=

(
1− 2rB

dB + rB + λA

)(
1−

[
P ∗AA +

2rA(PmaxAA − P ∗AA)

λA + dA + rA + σA

])
.

From the definition of λA, it follows that λA + dA + rA + σA > 2rA, so(
1−

[
P ∗AA +

2rA(PmaxAA − P ∗AA)

λA + dA + rA + σA

])
> (1− PmaxAA ) > 0.

Moreover, λA + rB + dB = rA − dA + rB + dB > rB − dB + rB + dB = 2rB , so(
1− 2rB

dB + rB + λA

)
> 0.

Thus, F (λA) is the product of two positive terms which ensures that F (λA) > 0. The
intermediate value theorem ensures that there is at least one root λ∗i ∈ (λB , λA).
Finally, Lemma C ensures that F (λ) has no real roots λ > rA − dA. Then, the
Malthusian parameter is the maximum of the possible roots {λ∗i } in the interval
(λB , λA), so λP = max{λ∗i } ∈ (λB , λA).
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The basic reproduction number

As previously mentioned, there typically is a correspondence between the Malthusian
parameter λP and the basic reproduction number. The basic reproduction number is
the spectral radius of the next generation operator [31], and is typically understood as
the expected number of new cells produced by each existing cell. We now recast the
nonlinear eigenproblem (S20) as a renewal type equation from which we derive the basic
reproduction number. In what follows, we use the formal solution of (S2) given by
(S16).

To simplify notation, define

f11(a) = rAβAA(a) exp[−(rA + dA)a], f12(a) = rBβBA(a) exp[−(rB + dB)a],

f21(a) = rAβAB(a) exp[−(rA + dA)a], and f22(a) = rBβBB(a) exp[−(rB + dB)a],

and note that the boundary terms A(t, 0) and B(t, 0) are functions of time. We recall
that we extended the initial conditions gA(a) and gB(a) to define A(t− a, 0) and
B(t− a, 0) for t < a by A(t− a, 0) = gA(a− t) exp(−[rB + dB ](t− a)) and
B(t− a, 0) = gB(a− t) exp(−[rB + dB ](t− a)).

Now, inserting the formal solution (S16) into the boundary condition (S3), we see
that A(t, 0) and B(t, 0) satisfy the renewal equation

A(t, 0) = (A(t, 0) ∗ f11)(t) + (B(t, 0) ∗ f12)(t)
B(t, 0) = (A(t, 0) ∗ f21)(t) + (B(t, 0) ∗ f22)(t).

}
(S25)

Taking the Laplace transform of (S25) gives the linear system[
Â(t, 0)

B̂(t, 0)

]
=

[
f̂11(λ) f̂12(λ)

f̂21(λ) f̂22(λ)

] [
Â(t, 0)

B̂(t, 0)

]
= M(λ)

[
Â(t, 0)

B̂(t, 0)

]
, (S26)

where M(λ) is given by (S20). The untreated next generation operator (NGO) is
therefore given by [31–33]

M(0) =

[
M11(0) M12(0)
M21(0) M22(0)

]
and R0 is the spectral radius of M(0). The eigenvalues of M(0) are

ξ1,2 =
Tr(M(0))±

√
Tr(M(0))2 − 4 det(M(0))

2

=
M11 +M22 ±

√
(M11 −M22)2 + 4M12M21

2
.

In particular, we note that ξ12 are real numbers, and the reproductive number of the
mixed population is

R0 =
M11 +M22 +

√
(M11 +M22)2 − 4M11M22 + 4M12M21

2
.

As each individual cell can only produce a maximum of two daughter cells, we expect
R0 6 2. We now show that this is the case, and that this bound will be reached only if
there is no death.

Lemma G. Let the model parameters be non-negative. Then, 0 6 R0 6 2, and achieves
these bounds if rA = rB = 0, or if dA = dB = 0 respectively.
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Proof. The matrix M(λ) is comprised of non-negative elements Mij(λ), so

0 6
M11 +M22

2
6 R0.

Now, R0 = 0 if and only if

M11 +M22 = 0 and (M11 −M22)2 + 4M12M21 = 0,

which can only be achieved when rA = rB = 0. To show the upper bound, we recall that

M21(0) =
2rA

dA + rA
−M11(0) and M12(0) =

2rB
dB + rB

−M22(0),

so the NGO is given by

M(0) =

[
M11(0) 2rB

dB+rB
−M22(0)

2rA
dA+rA

−M11(0) M22(0).

]
Then, the Gershgorin circle theorem implies that

R0 ∈
{[

2M11(0)− 2rA
dA + rA

,
2rA

dA + rA

]⋃[
2M22(0)− 2rB

dB + rB
,

2rB
dB + rB

]}
,

so

R0 6 max

[
2rA

dA + rA
,

2rB
dB + rB

]
6 2.

with strict inequality if both dA > 0 and dB > 0. Now, assume that dA = dB = 0, so
that M(0)T becomes

M(0)T =

[
M11(0) 2−M11(0)

2−M22(0) M22(0).

]
which has spectral radius 2. Since M(0) and M(0)T are similar, it follows that R0 = 2 if
dA = dB = 0.

Similar to the Malthusian parameter, the basic reproduction number is a measure
of population fitness, where the sign of R0 − 1 determines if cells are expected to replace
themselves through replication. When the birth and death rates are balanced, we now
show that we should not expect population growth.

Lemma H. Let the model parameters be positive and assume that
rA − dA = rB − dB = 0. Then λP = R0 − 1 = 0.

Proof. Since rA = dA and rB = dB , it follows that

2rA
rA + dA

=
2rB

rB + dB
= 1.

Once again using the similarity between M(0) and M(0)T , we compute

M(0)T =

[
M11(0) 1−M11(0)

1−M22(0) M22(0),

]
which clearly has spectral radius 1, so the R0 claim in shown. Further, for F (λ) given
by (S23), it is simple to see that F (0) = 0 when λA = λB = 0. Further, Lemma C
shows that F (λ) is strictly increasing for λ > max(rA − dA, rB − dB) = 0. Therefore, 0
is the rightmost real root of F (λ) and λP = 0.
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Theorem I. If the model parameters are positive, then, sign(λP ) = sign(R0 − 1).

Proof. Consider the spectral radius of M(λ) given by

ξ(λ) =
M11(λ) +M22(λ)

2

+

√
(M11(λ) +M22(λ))2 − 4M11(λ)M22(λ) + 4M12(λ)M21(λ)

2
,

and note that R0 = ξ(0) while the Malthusian parameter λP satisfies ξ(λP ) = 1.
Viewing ξ as a function of Mij for i, j = 1, 2, we compute

∂ξ

∂Mii
=

1

2
+

1

2

(
Mii −Mjj√

(Mii +Mjj)2 − 4M11M22 + 4M12M21

)

=
1

2
+

1

2

(
Mii −Mjj√

(Mii −Mjj)2 + 4M12M21

)
> 0,

∂ξ

∂Mij
=

Mij√
(Mii +Mjj)2 − 4M11M22 + 4M12M21

> 0,

where we have used the non-negativity of Mij to establish the sign of ∂ξ
∂Mij

. Since each

Mij is strictly decreasing in λ, it follows that

dξ(λ)

dλ
=

2∑
i,j=1

∂ξ

∂Mij

dMij

dλ
6 0.

If one of Mij 6= 0, then the above inequality is strict, and ξ is a strictly decreasing
function of λ. Moreover, Mij = 0 for all i, j can only occur when rA = rB = 0.
Therefore, for positive model parameters, ξ(λ) is a strictly decreasing function.

Now, assume that λP > 0, so R0 = ξ(0) > ξ(λP ) = 1. Conversely, assume that
R0 − 1 > 0, so then ξ(0) > 1. As

lim
λ→∞

ξ(λ) = 0,

the intermediate value theorem ensures that λP > 0. Next, assume that R0 = ξ(0) < 1.
Then, as λP must exist from Theorem F, the monotonicity of ξ gives λP < 0. Finally,
assume that λP < 0. It follows that 1 = ξ(λP ) > ξ(0) = R0.

The sign relationship between the Malthusian paramether λP and the basic
reproduction number R0 established in Theorem I allows us to determine if the tumour
population will grow or decay through a number of techniques. As we will show later, it
is sufficient to design a treatment schedule to ensure that R0 < 1, and the sign
relationship established in Theorem I immediately yields that λP < 0 so small tumour
population cannot grow. Conversely, if both λA < 0 and λB < 0, Theorem F implies
that λP < 0, so R0 < 1 from which it follows that the tumour population is decaying.

Stable age distribution and population proportion

Having calculated the Malthusian parameter, we can determine the stable age
distribution. From the non-linear eigenproblem (S20), each value of the Malthusian
parameter λP defines an eigenvector [A0, B0] and corresponding solution to (S18) given
by (S19). At a given time t, these exponential functions model the proportion of cells
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born at time t− a that have not died or reproduced. Perhaps counter-intuitively, a
larger value of λ implies that there are fewer cells for a given age a. However, as nascent
cells are necessarily born with age 0, an accumulation of old cells (large a) is indicative
of a population that is not reproducing.

Finally, after solving the non-linear eigenproblem for the Malthusian parameter, we
can calculate the explicit solution of (S2) under steady state growth using (S17). Then,
it is simple to calculate

Ā(t) = eλP t

∫ ∞
0

A0 exp (−[dA + rA + λP ]a) da =
A0e

λP t

dA + rA + λ

B̄(t) = eλP t

∫ ∞
0

B0 exp (−[dB + rB + λP ]a) da =
B0e

λP t

dB + rB + λ
.

In practice, it is difficult to calculate the age of each cell in a cohort, but relatively easy
to calculate the proportion of different phenotypes. Thus, the ratio

Ā

Ā+ B̄
=

A0/(dB + rB + λP )

A0/(dB + rB + λP ) +B0/(dA + rA + λP )
. (S27)

is likely to be of clinical interest in understanding drug resistance, although the
assumption of Malthusian growth is only appropriate in the case of unlimited resources.
We note that this ratio is dependent on both the Malthusian parameter λP and the
eigendirection corresponding to λP through [A0, B0]. Later, we will show how this ratio
is dependent on the model parameters and growth function RI(Ā(t), B̄(t)). This
dependence on the growth function indicates that the ratio Ā/(Ā+ B̄) will evolve as a
population exhausts available resources. The importance of growth phase on population
make up is well established in E.coli populations that exhibit bet-hedging [21,34,35].

Frequency dependent fitness outperforms Malthusian growth

The ability to calculate the Malthusian parameter relies on the existence of a dominant
exponential type solution. Exponential growth is unrealistic in the case of finite
resources, as growing populations will exhaust available resources. Therefore, we also
consider the dynamics of N(t) for logistic and Allee type growth functions, given by
(S7) and (S8) respectively. To study growth in resource rich environments, we take
N(0)� K, so there are sufficient resources available initially.

In populations dominated by the “fitter” drug sensitive phenotype, it is reasonable
to expect Malthusian growth to dominate resource limited growth, even in the case
N(0)� K. Biologically, this corresponds to the competition for finitely many resources
limiting growth, even for small populations. However, we show in Fig B that it is
possible that cooperation amongst drug tolerant cells can initially out perform
exponential type growth.

In Fig B, we plot the ratio of the resource limited vs unlimited growth, so
Malthusian growth would correspond to a horizontal line at 1. As shown in Fig B A, a
majority drug sensitive initial population can briefly match, or even slightly surpass (due
to a slight Allee effect), Malthusian growth. As the Malthusian parameter falls between
the fitnesses of phenotype A and B, a population initially comprised of exclusively drug
sensitive cells will outperform Malthusian growth of the mixed population until the
effects of phenotypic switching become apparent and the drug tolerant population grows
in size. Moreover, as N(t) increases and cells compete for limited resources, Malthusian
growth overtakes and dominates the finite resource case. As drug sensitive cells are
assumed to be fitter than drug tolerant cells, the presence of less fit drug tolerant cells
both consumes resources and also lowers the average fitness of the population.
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Fig B. A comparison of growth rates for different growth functions fn,
n = 1, 2, 3, 10, against Malthusian growth. The “no Allee” curves correspond to no
frequency dependent fitness increase and fn = 1. Fig A shows the population evolution
from an initial population comprised of 100 drug sensitive cells and one drug tolerant
cell for the generic parameters in Table A obtained by simulating (S15). Fig B shows
the population evolution from an initial population comprised of 1 drug tolerant cell
and 100 drug tolerant cells for the generic parameters in Table A obtained by
simulating (S15).

Conversely, Fig BB presents a much more interesting situation. From an initial
population of one drug sensitive cell and 100 drug tolerant cells, the impact of the Allee
effect drastically changes initial population growth. From this high initial proportion of
drug tolerant cells, the constrained growth model out performs Malthusian growth.
Since the drug tolerant cells receive a substantial increase in fitness due to the Allee
effect, the initial fitness of the population is higher – despite the finite amount of
resources – than the fitness of the total population in the presence of unlimited
resources and no cooperation. However, despite the cooperation induced increased
fitness of drug tolerant cells, the population eventually evolves towards a predominantly
drug sensitive population due to phenotypic switching and the growth rate falls below
Malthusian growth.

Phenotype switching may mitigate fitness differences

In the main text, we showed that the proportion of drug-sensitive cells, Ā/(Ā+ B̄),
initially decreases before reaching a plateau and remaining relatively constant as dA is
increased when resources are limited. This result indicates that the relative fitness
difference between phenotypes is less important than the likelihood of phenotypic
inheritance in the resource limited case. Here, we repeat these calculations with the a
sufficiently large death rate of drug-sensitive cells so that λA < 0, simulate the model
with limited resources for 500 days, and calculate the proportional of drug-sensitive cells
at day 500. In Fig C, we show that, for small PmaxBB , that increasing dA (and thus
decreasing λA) can increase the proportion of drug-sensitive cells in the population,
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Fig C. The proportion of drug-sensitive cells for increasing values of the
sensitive cell death rate. A and B) the proportion of drug sensitive cells in the
limited-resource setting is obtained by simulating the model (S2) for 500 days and
computing of drug sensitive cells at day 500. A) the model predictions for
PmaxBB = 0.05, 0.13, 0.22. B) the model predictions for σB = [1× 10−3, 0.25, 0.5, 0.75]
with PmaxBB = 0.6.

even if λA < 0.

Parameter identifiability during cancer therapy

Thus far, we have shown that the phenotypic switching strategy employed by a
population can lead to different types of therapeutic resistance. Here, we discuss the
difficulties of determining the switching probability based on untreated population data.
We consider in vitro data from the growth of multiple myeloma growth in mice [36], and
numerous different phenotypic switching strategies. After digitizing the data from Fig
1 A of [36] and fixing a phenotypic switching strategy, we fit the tumour growth
parameters rA, rB and dA = dB to the time series by minimizing

Error(rA, rB , dA) =

n∑
i=1

(N(ti)−Datai)
2
. (S28)

The data from [36] is sampled at times {ti}ni=1. For a given phenotypic switching
strategy and parameter set rA, rB and dA = dB , we simulate (S15) and sample the
numerical solution at the times ti. Equation (S28) is then the `2 distance between N(ti)
and the [36] data. In addition to the switch and stay strategies discussed in the Main
Text, we consider 6 additional phenotypic strategies given by the pairs (PmaxBB , P ∗BB) :
(1, 0.25); (1, 0.5); (1, 0.75); (0.9, 0.25); (0.9, 0.5); and (0.9, 0.75).

In Fig D A, we show the fitting results for each of the 8 different switching
strategies to the [36] data. The eight curves are essentially indistinguishable, which
indicates a possible difficulty in translating our results to the clinic. In Fig DB, we
simulate two therapy cycles with maximal death rate dmaxA = 100dA, and the eight
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Fig D. Fitting of the mathematical model to the Dingli et al. 2009 [36]
data for a variety of fitting strategies. Fig A shows the fitting of the
mathematical model (S2) to the Dingli et al. [36] data for the 8 different switching
strategies given in the text. Fig B shows the regrouping of same 8 strategies after 2
applications of therapy. The parameters used in these simulations are given in Table B.

Strategy rA (1/day) rB (1/day) dA (1/day) PmaxBB P ∗BB
1 0.7101 0.6745 0.6255 1 0.25
2 0.6987 0.6637 0.6144 1 0.50
3 0.7008 0.6658 0.6167 1 0.75
4 0.6956 0.6608 0.6116 1 0.95
5 0.6969 0.6089 0.5968 0.9 0.0
6 0.6973 0.6093 0.5971 0.9 0.25
7 0.6989 0.6107 0.5985 0.9 0.5
8 0.6999 0.6115 0.5992 0.9 0.75

Table B. The tumour growth parameters obtained by fitting (S2) to the
Dingli et al. [36] data for the 8 different switching strategies.

previously indistinguishable curves are then separated into two clusters almost
immediately following therapy. The four strategies corresponding to the less responsive
(larger N(t): black, green, red and blue) curves all have PmaxBB = 1, while the four
strategies corresponding to higher response to therapy (lower N(t): purple and other
colors) all have PmaxBB = 0.9. Thus, we see that population response to treatment can
stratify populations by their switching strategy. Therefore, it should be possible to use
treatment response to determine the approximate switching strategy of a tumour biopsy
and use this information to inform therapeutic strategies.

Generic strategy to avoid treatment failure

For the generic tumour growth parameters used thus far, rB/rA = 1/2. While our
results are robust to different values of ε, we illustrate our results with ε = 0.7 in the
threshold ratio ϑ∗ from the Main Text Eq. (5) . To test if this simple threshold ratio is
sufficient to avoid the establishment of therapy, we follow the same periodic dosing as
shown in Main Text Fig 3, but we only administer therapy if the ratio B̄(t)/Ā(t) < ϑ∗

and label this strategy adjustable therapy.
However, it is unrealistic that clinicians will determine the ratio B̄(t)/Ā(t) and

immediately administer therapy. Therefore, to decide if treatment will be applied at
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time t∗, we consider B̄(t∗ − 1)/Ā(t∗ − 1) < θ∗ which corresponds to clinicians taking
one day to complete the phenotype profile of the tumour. We show that adjustable
therapy avoids the establishment of resistance in Fig E. As in the Zhang et al. [22] trial,
the main benefit of this adjustable therapy is, that by avoiding the development of
resistance, therapy with the same drug can continue indefinitely. In particular, the
effectiveness of the adjustable therapy, as measured by disease burden (S29), increases
the longer that therapy is applied. We note that, rather than using the ratio of drug
tolerant to sensitive cells to determine if therapy should be applied, it is possible to use
a cancer specific biomarker [22].

Inspired from the success of adaptive therapy in prostate cancer [16,22], we
developed a simple strategy to avoid the establishment of resistance in Avoiding the
establishment of a drug tolerant population. We show the results from that section here.
It is important to note, once again, that our model is quite coarse, so these results serve
more as a proof-of-concept, rather than a proposed therapeutic strategy. We measure
treatment efficiency by

Burden(S) =
1

T

∫ T

0

N(τ)

K
dτ =

1

T

∫ T

0

Ā(τ) + B̄(τ)

K
dτ. (S29)
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Fig E. The effect of adjustable therapy on a population using either a
switch or stay strategy. The switch population is shown in Figure A) and the stay
population is shown in Figure B). In both cases, treatment is applied between the black
stars on days 20 and 272. The red curve shows the proportion of drug sensitive cells
Ā(t)/N(t) and the blue curve shows the dynamics of N(t). The parameters used in
these simulations are given in Table A.

Figure E demonstrates that the proposed adjustable therapy strategies avoid the
establishment of a dominant resistant phenotype. We compare the results of the
adaptive therapy against periodic treatment in Fig E. Fig E A shows the response of a
population with a switch strategy (PmaxBB = 0.9, P ∗BB = 0) and transient resistance to
adjustable therapy, while Fig E B shows the same effect of adjustable therapy on a
population with a stay strategy and permanent resistance (PmaxBB = 1, P ∗BB = 0.95).
When comparing the effectiveness of the therapy using (S29) over 240 days of treatment,
the adjustable therapy is leads to a disease burden that is 0.2% lower (for the switch
strategy) or 0.03% higher (for the stay strategy) than the periodic therapy in Fig E A
and B, respectively.

If these adjustable strategies are continued for longer than 240 days, there is an
increasingly important decrease in disease burden when compared to the periodic type
treatment resulting from the eventual ineffectiveness of the periodic dosing due to
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therapeutic resistance that occurs when the population is dominated by the resistant
phenotype.

General results are robust to parameter variation

We have thus far shown that changes in phenotypic switching strategy can lead to two
distinct types of therapy resistance for a given parameter set. Here, we confirm that
this qualitative result is robust to parameter variations, and that the results presented
in the main text are representative of model dynamics for a number of different
parametrizations. We continue to enforce dA = dB and explore the possible parameter
combinations by selecting triplets of parameter values from the set

r̃A ∈ {0.7, 1.4, 0.4} r̃B ∈ {0.35, 0.1, 0.035} σA,B ∈
{

1× 10−1, 1× 10−2, 1× 10−3
}
.

(S30)
For a given parameter combination, we simulated the mathematical model with periodic
treatment as described previously.

Each of the 27 possible parameter combinations were tested with both the switch
and stay strategies for the drug tolerant population and each demonstrated transient
resistance and the re-establishment of the wild type phenotype shortly after cessation of
therapy when coupled with a switch strategy, similar to Main Text Fig 3A. Conversely,
when simulated with a stay strategy, each parameter combination demonstrated the
permanent resistance shown in Main Text Fig 3B. Therefore, we consider the
simulations shown to be representative.

As demonstrated, the switch and stay strategies are crucial in determining the
appearance and duration of therapeutic resistance. However, the probabilities PmaxBB

and P ∗BB used to determine the switch and stay strategies are vastly different.
Therefore, we test the robustness of the qualitative results shown in Main Text Fig 3 for
different extremes of the switch and stay strategies. Once again, we consider two
distinct strategies. In the first, we fix PmaxBB = 0.9, as in the switch strategy, and test
different values of P ∗BB from P ∗BB ∈ {0, 0.25, 0.5, 0.75, 0.9}. Then, for each value of P ∗BB ,
we simulate periodic therapy. For P ∗BB ∈ {0, 0.25, 0.5, 0.75}, resistance was transient
and the wild type phenotype was re-established in the population shortly after the end
of therapy. Conversely, for P ∗BB = PmaxBB = 0.9, re-establishment of the wild type
population took over 800 days after treatment cessation, which is effectively permanent
resistance. We note that, if PmaxBB = P ∗BB = 0.9, then reproductive resistant cells are
quite likely to transfer their phenotype to offspring, and this strategy closely resembles
a staying strategy. As a consequence, the correspondence between transient resistance
and a “switch” strategy appears to be robust to parameter changes.

Now, to test if a stay strategy consistently predicts permanent resistance, we fix
the homoeostatic switching probability P ∗BB = 0.9 and vary
PmaxBB ∈ {0.92, 0.94, 0.96, 0.98, 1}. For all values of PmaxBB , periodic therapy led to
resistant phenotype dominance that persisted for over 800 days following the end of
therapy. Once again, in the context of therapeutic scheduling, this resistance is
effectively permanent. Thus, the stay strategy consistently leads to permanent
treatment resistance, and we consider our results in the Main Text to be representative.

Effectiveness of Adjustable Therapy

We also verified the effectiveness of adjustable therapy for the combination of growth
parameters given in (S30). Once again, we tested all 27 possible combinations of
parameters in (S30) for both the switch and stay strategy, while holding the measure of
acquired fitness, ε, fixed at ε = 0.7. For the switch strategy, adjustable therapy
improved upon periodic therapy in 15/27 cases, with 8 of the remaining cases showing
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less than a 0.0001% increase in tumour burden. In the worst case, adjustable therapy led
to an increase in tumour burden by 3%, while in the best case, there was a 2% decrease.

We completed the same test for a population with a stay strategy. There,
adjustable therapy improved upon periodic therapy in 15/27 cases. In the worst case,
adjustable therapy led to an increase in tumour burden by 0.6%, while in the best case,
there was a 0.2% decrease. Therefore, the therapeutic improvement offered by
adjustable therapy appears to be robust to parameter variations. Moreover, the
adjustable schedule consistently avoided the establishment of resistance.

These results differ from the sustained treatment success in for NSCLC in the main
text for an important reason, namely that, for the generic parametrization considered
here, λB > 0. Accordingly, our analysis and derivation of the model informed therapy in
the main text does not apply. Therefore we are not using an optimized dose size, and as
the drug tolerant cells are entirely resistant to therapy, it is not possible to drive R∗0 < 1.

Implementation of the model in Matlab

In general, we simulated the system of ODEs (S15) with the given initial conditions
using the 4th order adaptive Runge-Kutta solver ODE45 in Matlab [37] with relative
and absolute error tolerances of 1× 10−6. We implemented the chemotherapeutic dosing
as a time-dependent indicator function of the set (ti, ti + Tadmin) as written in (S10).

We fit the in vitro data using the Matlab function FMINCON with 15 distinct
initial points. To evaluate the objective function given by the `2 norm between the
model simulations and observed data, we simulated the model using the ODE45 solver
for each parameter set. We then computed the total number of cells, given by N(t), in
the numerical solution of the differential equation at the data sampling time points. To
evaluate the objective function for each candidate set of parameter values, we computed
the sum of squares difference between the model simulation and the observed data.

To calculate the Malthusian parameter, we fixed rA = rB = 0.7 and varied
dA,B ∈ [0.0105, 1.05]. We took 100 evenly spaced samples from the interval [0.0105, 1.05]
for both dA and dB . For these 10 000 pairs, we solved the implicit equation (S23) for
λP using the Matlab script fzero with 5 initial points evenly spaced between λA and λB .
During Malthusian growth, the ratio of the stable age distributions is determined by
(S27) where λP is the Malthusian parameter while A0 and B0 are the entries in the
eigenvector corresponding to eigenvalue 1 of (S20). After calculating the Malthusian
parameter and the corresponding entries of (S20) for λ = λP , we found the
corresponding eigenvector using the Matlab function eigs. When considering population
composition under limited resources, we simulated the model using ODE45 for 500 days
to ensure convergence to equilibrium and calculated A(500)/N(500) directly from the
numerical simulation.

Application to non-small cell lung cancer

Similar to the experiments that identified persisters in bacterial populations [35, 38], the
experimental set up used by Craig et al. [39] begins with a constant environment and a
genotypically homogeneous population of cancer cells. those experiments, Craig et
al. [39] cloned a cell line with an oncogenic Kras, homozygous p53 and heterozygous
Dicer1 loss of function mutations that induces tumours when injected into mice.
Growth of non-small cell lung cancer (NSCLC) tumour spheroids was quantified as
previously described [39,40]. The parental (WT) cell line was derived from KRas-G12D,
p53−/−, Dicer1f/− genotype lung tumours and mutants (M1 and M2) were obtained
through transfection to Dicer1+/+ and Dicer1-/- using CRISPR-Cas9 [40]. It may
therefore be tempting to conclude that the phenotypic heterogeneity present is solely
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Cell Type Drug PmaxBB P ∗BB σA = σB (1/hour) dmaxA (1/hour)
WT Docetaxel 0.93 0.62 1×10−2 0.7025
WT Afatinib 0.95 0.81 1×10−2 0.4828
WT Bortemozib 0.95 0 1×10−2 0.7993
M1 Docetaxel 0.91 0 1×10−2 1.145
M1 Afatinib 0.92 0 1×10−2 1.699
M1 Bortemozib 92 0 1×10−2 0.4491
M2 Docetaxel 0.71 0.09 1×10−2 0.1447

Table C. The switching parameters for WT, M1, and M2 cell lines obtained by fitting
(S2) to the tumour growth data.

due to stochastic phenotype switching. However, the distinction between phenotypic
plasticity, wherein cells change phenotype in response to environmental change, and
truly stochastic phenotype switching is subtle [38]. Moreover, this dichotomic
representation of phenotypic heterogeneity does not account for partially heritable
phenotype, as reported by Yang et al. [41] and considered in our model. Nevertheless,
the NSCLC data offers an initial opportunity to apply our simple mathematical model
to cancer data and explore the role of phenotype switching in treatment resistance.

Parameter fitting

Here, we present the results of the fitting procedure for the WT, M1 and M2 data
from [39]. As mentioned in the Main Text, we fit this data by minimizing the `2 error
between the data and the model simulation. We used the algorithm fmincon [37] with
15 distinct initial points. We show the results of the fitting for the WT, M1 and M2
data in Figs F and G, and give the parameter values in Table C and D. As the data is
collected on a short time frame, we give the parameter estimates in units of 1/hour, but
convert to 1/day when performing longer term calculations.

0 2 4 6 8
Time (days)

-1

0

1

2

3

4

5

6

7

8 104

0 2 4 6 8
Time (days)

0

1

2

3

4

5 104

A B

Time (days) Time (days)

N(
t) 

(C
el

ls)
 

N(
t) 

(C
el

ls)
 

Fig F. Fitting results of Equation (S2) to the WT and M1 data from [39]
treated with docetaxel. The model fits to the WT and M1 data are shown in Figs
A and B, respectively. In all cases, the untreated data is given by the black stars while
the untreated simulation is in solid blue. The docetaxel treated data is given by the
hollow circles and the treated simulation is in dashed blue. The parameters used in
these simulations are given in Tables C and D.
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Fig G. Fitting results of Equation (S2) to the WT, M1 and M2 data
from [39] treated with afatinib and bortezomib. The top row shows the model
fits to the WT, M1, and M2 data treated with afatinib, respectively. The bottom row
shows the model fits to the WT, M1, and M2 data treated with bortezomib,
respectively. The parameters used in these simulations are given in Tables C and D.

Cell Type rA (1/hour) rB (1/hour) dA (1/hour)
WT 0.4827 0.3498 0.4198
M1 0.1646 0.0100 0.1163
M2 0.1114 0.0857 0.0768

Table D. The tumour growth parameters for the WT, M1 and M2 type cells obtained
by fitting (S2) to the tumour growth data.

Treatment induced periodic environment

Most anti-cancer therapies include a recovery period following each treatment where the
drug washes out and the patient recovers from the effects of treatment. Classical
chemotherapy induces an approximately periodic tumour microenvironment with
respect to the concentration of the chemotherapeutic agent, where each treatment cycle
acts as the beginning of a new period. In what follows, we assume that the
chemotherapeutic drug C(t) is administered periodically with a period of T days, and
eliminated according to (S10) with elimination rate kelim. To facilitate the calculation
of the reproduction number during treatment, we derive an estimate for the forced limit
cycle in C(t) during periodic therapy.

Now, let the first dose be given at time t = t0, and assume that the administration
time, Tadmin is negligible, so that each administration of therapy is given as an impulse
at time t0 + nT . Then, for t ∈ (t0, t0 + T ), C(t) = Dose

V ol exp(−kelim(t− t0)). At time

t = T , a second dose is given, so C(T ) = Dose
V ol [1 + exp(−kelim(T − t0))], and the

concentration of the drug decays, for t ∈ (T, 2T ), according to
C(t) = C(T ) exp(−kelim(t− T )). Proceeding inductively, we see that, immediately after
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administering the n+ 1st dose at t = t0 + nT+,

C(t0 + nT+) =
Dose

V ol

n∑
m=0

exp(−kelimmT ) =
Dose

V ol

(
1− exp(−kelim(n+ 1)T )

1− exp(−kelimT )

)
.

Then, for t ∈ (t0 + nT, t0 + (n+ 1)T ), C(t) = C(nT+) exp(−kelim(t−NT )). As
the number of administrations, n, grows, the term exp(−kelim(n+ 1)T ) becomes
increasingly small. Recalling that the half effect of the chemotherapeutic is given by
C1/2, we discard the influence of drug concentrations that are less than ωC1/2 for a
given value of ω � 1. Thus, after

Nω =

⌈
log
(
ωC1/2V ol/Dose

)
−kelimT

⌉
− 1,

administrations, the error induced by discarding the exp(−kelim(Nω + 1)T ) terms is(
Dose

V ol

) ∣∣∣∣1− exp(−kelim(Nω + 1)T )

1− exp(−kelimT )
− 1

1− exp(−kelimT )

∣∣∣∣ 6 ωC1/2

1− exp(−kelimT )
.

Accordingly, for a given value of ω and after the Nω-st administration of the
chemotherapeutic, we consider the drug concentration in the tumour microenvironment
to be in a periodically forced limit cycle given by

C(t) =

(
Dose

V ol

)(
1

1− exp(−kelimT )

)
exp(−kelim(t mod T )). (S31)

R∗
0 in the treated environment

Having derived an estimate for the chemotherapeutic concentration during metronomic
therapy, we study the effect of this therapy on tumour growth. Once again, we are
assuming that the drug tolerant population is not self-sustaining and has a negative
intrinsic growth rate, λB < 0, as in the NSCLC data considered. We assume that the
chemotherapeutic has been administered at least Nω times so that the tumour
microenvironment is roughly periodic and consider the age structured PDE

∂tA(t, a) + ∂aA(t, a) = −[dA(t) +RA(Ā(t), B̄(t))]A(t, a)

∂tB(t, a) + ∂aB(t, a) = −[dB +RB(Ā(t), B̄(t))]B(t, a),

}
(S32)

As in our calculation of the stable age distribution, we once again consider the
linearised version of (S32) corresponding to Malthusian growth. Now, solving (S32)
along the characteristic lines gives

A(t, a) = A(t− a, 0) exp

[
−
∫ t

t−a
dA(s) + rAds

]
B(t, a) = B(t− a, 0) exp [−(dB + rB)a] .

We thus obtain the corresponding renewal equations

A(t, 0) =

∫ ∞
0

2rAβAA(a) exp

[
−
∫ t

t−a
dA(s) + rAds

]
A(t− a, 0)da

+

∫ ∞
0

2rB(1− βBB(a)) exp [−(dB + rB)a]B(t− a, 0)da

B(t, 0) =

∫ ∞
0

2rA(1− βAA(a)) exp

[
−
∫ t

t−a
dA(s) + rAds

]
A(t− a, 0)da

+

∫ ∞
0

2rBβBB(a) exp [−(dB + rB)a]B(t− a, 0)da.
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Taking the Laplace transform of these renewal equations gives the linear system[
Â(t, 0)

B̂(t, 0)

]
=

[
f̂∗11(λ) f̂∗12(λ)

f̂∗21(λ) f̂∗22(λ)

] [
Â(t, 0)

B̂(t, 0)

]
= F̂ (λ)

[
Â(t, 0)

B̂(t, 0)

]
,

The treated NGO is therefore time dependent, due to the drug induced periodicity in
the tumour microenvironment, and given by

(KTh)(t) =

∫ ∞
0

Ψ(t, a)h(t− a)da,

where, recalling that βij(a) = 1− βii(a),

Ψ(t, a) =

 2rAβAA(a) exp
[
−
∫ t
t−adA(s) + rAds

]
2rBβBA(a) exp [−(dB + rB)a]

2rAβAB(a) exp
[
−
∫ t
t−adA(s) + rAds

]
2rBβBB(a) exp [−(dB + rB)a]

 .
Now, it is important to note that periodic therapy does not immediately induce a

periodic environment. However, as shown, for a large number of administrations, the
error induced by assuming that C(t) is given by (S31) and can be made arbitrarily
small. Moreover, we are interested in the asymptotic behaviour of the population of the
tumour population, and therefore make the simplifying assumption that the drug
concentration, and thus the environment, is effectively periodic.

The treated NGO KT acts on the space of T–periodic functions CT (R;R2).
However, this is inconvenient for calculation purposes and we follow [28,42] and pass
the periodicity from the function h to the operator by defining

(K̂T g)(t) =

∫ T

0

ΘT (t, σ)g(σ)dσ

where K̂T acts on C((0, T );R2), and ΘT (t, σ) is a periodic function defined by

ΘT (t, σ) =


∞∑
n=0

Ψ(t, σ + nT ) if t > σ

∞∑
n=1

Ψ(t, σ + nT ) if t < σ.

It follows that the spectral radius of KT equals that of K̂T [28, 42]. After interchanging
the order of integration and summation, the treated basic reproduction number R∗0 is
given by the spectral radius of

M =

[
M11 M12

M21 M22

]
,

where

M11 =

∞∑
n=0

∫ T

0

2rAβAA(a+ nT ) exp

[
−
∫ t

t−a−nT
dA(s) + rAds

]
da

M12 =

∞∑
n=0

∫ T

0

2rB(1− βBB(a+ nT )) exp [−(dB + rB)(a+ nT )] da

M21 =

∞∑
n=0

∫ T

0

2rA(1− βAA(a+ nT )) exp

[
−
∫ t

t−a−nT
dA(s) + rAds

]
da

M22 =

∞∑
n=0

∫ T

0

2rBβBB(a+ nT ) exp [−(dB + rB)(a+ nT )] da

August 25, 2021 29/39



As the drug tolerant cells are immune to therapy, both M12 and M22 are constant
in time, so these infinite series telescope and we immediately see M12 =M12 and
M22 =M22, where Mi2 is defined in the untreated NGO. It remains to calculate the
effects of therapy on M11 and M21. Treatment increases the death rate of drug
susceptible cells via

d̂A(t, a) = dAa+ (dmaxA − dA)

∫ t

t−a

C(s)

C(s) + C1/2
ds,

Using the estimate for C(t) during periodic therapy derived previously, it is possible to

calculate d̂A(t, a) explicitly, and thus calculate R∗0. However, we recall that R0 = 1 is the
threshold between disease growth and decay, and therefore the value of clinical interest.
We now calculate a relationship between dose frequency, T and dose size to ensure that
the treated reproduction number is below this threshold, so R∗0 < 1. Accordingly, if

rA − dA
dmaxA − dA

=
λA

dmaxA − dA
<

∫ t
t−a

C(s)
C(s)+C1/2

ds

a
, (S33)

it follows that

exp

[
−
∫ t

t−a
dA(s) + rAds

]
< exp [−2rAa] and M11 < 1.

Then, we see that

M21 =

∞∑
n=0

∫ T

0

2rA(1− βAA(a+ nT )) exp

[
−
∫ t

t−a−nT
dA(s) + rAds

]
da

<

[ ∞∑
n=0

∫ T

0

2rA exp [−2rA(a+ nT )ds] da

]
−M11 = 1−M11.

From the proof of Theorem I, R∗0 is a strictly increasing function of M21, so it follows
that

R∗0 < ρ(M̂)

where ρ(M̂) is the spectral radius of

M̂ =

[
M11 M12

1−M11 M22

]
.

Using the fact that λB < 0, the Gershgorin Circle Theorem gives

R∗0 < ρ(M̂) < max

[
1,

2rB
rB + dB

]
6 1.

Thus, the condition (S33) is sufficient to ensure that R∗0 < 1. We now use the
estimate for the periodic chemotherapeutic concentration derived in (S31) to derive a
dose size to ensure that (S33) holds and, more importantly, that R∗0 < 1. For notational

simplicity, denote αT =
(
Dose
V ol

) (
1

1−exp(−kelimT )

)
so

C(t) ∈ [αT exp(−kelimT ), αT ].

Now, let C∗ be the solution of

λA
dmaxA − dA

=
C∗

C∗ + C1/2
,
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so

C∗ = C1/2
λA
−λ∗A

,

and a sufficient condition for (S33) to hold is

C∗ < αT e
−kelimT . (S34)

To see that (S34) is necessary for (S33) to hold, first note that if the required dose
C∗ satisfies C∗ > αT , then it is not possible to administer a large enough dose to drive
R∗0 < 1 and (S33) cannot hold. Now, consider the case where that
αT > C∗ > αT e

−kelimT . As C(t) attains the lower bound C = αT e
−kelimT directly

before the subsequent administration, it follows from the assumption C∗ > αT e
−kelimT

that there exists t∗ such that C(t∗) < C∗. As C(t) is continuous and αT > C∗, there
must be an a∗ such that C(t∗ − a∗) = C∗. Then, since C(t) is strictly decreasing
between drug administrations, it follows that C(s) < C∗ for s ∈ (t∗ − a∗, t∗) and∫ t∗

t∗−a∗
C(s)

C(s)+C1/2
ds

a∗
<

∫ t∗
t∗−a∗

C∗

C∗+C1/2
ds

a∗
=

λA
dmaxA − dA

.

Consequently, R∗0 > 1 during the interval (t∗ − a∗, t∗) for each administration period,
and the tumour population may not decay. Thus, we conclude that the dose size must
be chosen such that (S34) holds, which gives the threshold dose size

λA
−λ∗A

αT = Dose∗. (S35)

For a given chemotherapeutic agent, both C1/2 and kelim are fixed. Thus, the

attending clinician can control the quantity e−kelimT /C1/2 by varying treatment
frequency and intensity.

Limiting cooperation of drug tolerant cells

It may be tempting to increase the amount of chemotherapeutic administered, and
indeed (S35) appears to supports the usage of maximally tolerated dosing of anti-cancer
drugs. However, this maximal dose size may allow for the competitive release of a
drug-tolerant phenotype and the resulting resistance to therapy, which was not
considered in the preceding analysis. Thus, therapy must be designed to balance the
need to ensure R∗0 < 1 while guarding against the evolution of resistance. We
incorporated the Allee effect and cooperation of drug tolerant cells in the mathematical
model through the function fn(θ). Naively including cooperation, the fitness of the drug
tolerant population is given by

rBfn(θ)− dA = rB − dA + (rA − rB)
θn

θn + 1
.

Thus, the threshold ratio θ∗ must ensure rBfn(θ)− dA < 0. Using the definition of
fn(θ) and re-arranging gives

θn

θn + 1
<
−λB

rA − rB
=

−λB
λA − λB

.

Then, a simple calculation gives the ratio θ∗ defined in the main text.
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Parametrization of chemotherapeutic pharmacokinetics

Docetaxel has an effective half life of roughly 86 hours [43], so we set
kelim = log(2)/86/24 days−1 in our simple pharmacokinetic model, and an in vitro
half-effect concentration of 4ng/mL [44], which is orders of magnitude less than the

achievable plasma concentrations. Using the common dose size of 100mg/m
2
, and

volume of distribution 74L/m
2

[45], the ratio of Dose/V ol for half-maximum effect is
roughly 104. We used the dmaxA value calculated from the parameter fitting in the
Methods to complete the pharmacodynamic model of docetaxel. To simulate the fixed
therapy schedule, we set T = 7 days and fixed C1/2 = 0.5. For V ol = 74L/m

2
, the dose

size during the fixed therapy schedule was calculated by satisfying
Dose/V ol/C1/2 = 104. As previously mentioned, it is this ratio and the value of dmaxA

that determines the pharmacodynamics in our simple model.
To simulate the administration of afatinib, we set t1/2 = 37 hours [46,47] . Afatinib

is administered daily as an 40 mg oral capsule with Cmax = 25.2ng/mL [46,47]. The
steady state concentration of daily afatinib is roughly 2.11× Cmax [47]. As we do not
update the model for C(t) to be specific for oral administration of drug, we can use the
approximation for the steady state concentration of C(t) to calculate

2.11× Cmax =
Dose/V ol

C1/2

(
1

1− e−kelimT

)
.

Then, once again we can calculate the ratio of Dose/C1/2, which along with the
elimination constant kelim determines the pharmacokinetics and pharmacodynamics of
afatinib.

To simulate the fixed periodic administration of bortezomib, we set t1/2 = 40 hours,
and take T = 3 days to account for the minimum 72 hours between intravenous
administrations [48]. Bortezomib has a large volume of distribution, between 498–1884
L/m2, so we take V ol = 850 L, while [48] report Cmax = 162 ng/mL following multiple
I.V administrations. Thus, we once again use the approximation for the steady state
concentration of C(t) to calculate the value of Dose.

Model informed therapy for other therapeutics

We implemented the model informed therapeutic strategy for afatinib and bortemozib
in the WT and M1 cells and show the results in Figs H and I. We note that the
parameter estimates for the M2 population do not satisfy rB < dB , so the model
informed therapy cannot be applied. For WT and M1 treated with afatinib and
bortezomib, the increased effectiveness of the model informed therapy over 100 days of
therapy is shown in Table E.

We note that the model informed therapy for WT cells with afatinib does not lead
to population extinction. For WT cells treated with afatinib,
rA − dmaxA = −6.0842× 10−05. It follows that it must be the case that C(t)� C1/2 if
(S34) is to be satisfied. Accordingly, C(t) decays too slowly between doses to inhibit the
establishment of a drug tolerant population. This is illustrated in Figs GB and D.
Thus, the model informed therapy, while outperforming periodic dosing, does not drive
tumour extinction.
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Cell Type Drug Treatment Effectiveness
WT Afatinib 0.9587
WT Bortemozib 0.7640
M1 Afatinib 0.4308
M1 Bortemozib 0.4397

Table E. The effectiveness of model informed therapy when compared to periodic
dosing over 150 days of therapy
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Fig H. Comparing model informed therapy and periodic dosing for afatinib.
Figures A and C compare model-informed therapeutic strategy with T = 3 against
periodic treatment with afatinib for the WT and M1 populations, respectively. The
total tumour populations under periodic or model-informed therapies are given in
dashed grey or in solid blue, respectively. The drug sensitive (Ā(t)) and drug tolerant
(B̄(t)) sub-populations under model informed therapy are shown in dot-dashed orange
or dotted purple. The beginning of treatment on day 50 is denoted by a black star. The
inset figure in Figure C shows the rapid decay of the M1 tumour population during
therapy. Figures B and D show the ratio θ(t) = B̄(t)/Ā(t) during model-informed
therapy in solid orange and the threshold ratio θ∗ in dashed orange. Figure E illustrates
the model-informed therapy where θ(t) is used to decide if therapy is given or not. The
model parameters used in this simulation are given in Tables C and D.
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Fig I. Comparing model informed therapy and periodic dosing for
bortezomib. Figures A and C compare model-informed therapeutic strategy with
T = 3 against periodic treatment with bortezomib for the WT and M1 populations,
respectively. The total tumour populations under periodic or model-informed therapies
are given in dashed grey or in solid blue, respectively. The drug sensitive (Ā(t)) and
drug tolerant (B̄(t)) sub-populations under model informed therapy are shown in
dot-dashed orange or dotted purple. The beginning of treatment on day 50 is denoted
by a black star. The inset figure in Figure C shows the rapid decay of the M1 tumour
population during therapy. Figure B and D show the ratio θ(t) = B̄(t)/Ā(t) during
model-informed therapy in solid orange and the threshold ratio θ∗ in dashed orange.
Figure E illustrates the model-informed therapy where θ(t) is used to decide if therapy
is given or not. The model parameters used in this simulation are given in Tables C and
D.
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