
We are very grateful to all reviewers for their thoughtful comments, enthusiasm, and detailed reading of
the manuscript. In what follows, we have bolded the reviewer comments and written our response in plain
text. We have included quotes directly from the updated manuscript in italicized text and changes from
the initial submission are bolded in the revised manuscript.

Reviewer 1

The authors have developed a stochastic model that tracks phenotypic switching of cells be-
tween their drug-resistant and drug-sensitive states, and demonstrate how this switching can
in�uence the timescale of emergence and maintenance of drug tolerance in a phenotypically
heterogeneous population. Based on �tting their simulation pro�les to in vitro data, they also
identify therapeutic strategies that can lead to sustained decay of tumor size without exhibit-
ing long-term resistance. The study is well-done overall and caters to the emerging theme of
non-genetic heterogeneity in enabling drug resistance/tolerance. I have the following request
for authors to clarify some of their model assumptions and interpretations:

We are very grateful to the reviewer for their support and detailed reading of the manuscript. In particular,
we appreciate their comments regarding the motivation of some of our model assumptions and formulation,
which we feel have improved the manuscript.

1. If I understood correctly, the authors allow for phenotypic switching only at cell division,
right? They should include a schematic as Fig 1 to explain more clearly their modeling
framework. Also, is one of the inherent assumptions that both drug-tolerant and drug-
sensitive cells have equal switching rate (or propensity in a continuum framework) to one
another? Also, the authors should explain the existence of terms RA(A(t), B(t)) and RB(A(t)
in equation (3).

The reviewer is correct that we only allow for phenotypic switching at division and assume that phenotypes
are �xed at birth. It would be possible to allow for cells to change phenotype throughout their lifetime but
this would considerably complicate the model. We do not assume that drug tolerant and drug sensitive cells
are equally likely to switch phenotype upon reproduction. Rather, we model the probability that a mother
cell with phenotype i and age a produces two daughter cells with phenotype i as βii(a). We updated the
manuscript to read on page 5:

The probability of a cell with phenotype A and age a producing two daughter cells with the same phenotype
is given by

βAA(a) = P ∗AA + (Pmax
AA − P ∗AA) exp (−σAa) ,

while the probability of a cell of phenotype B with age a producing two cells of phenotype B is

βBB(a) = P ∗BB + (Pmax
BB − P ∗BB) exp (−σBa) .

In both cases, Pmax
ii and P ∗ii are the maximal and minimal probabilities that a cell with phenotype i produces

a cell with the same phenotype, respectively, but are speci�c to each phenotype.

We have included a cartoon schematic of the model as Figure 1 in the revised manuscript to add further
clarity.

2. In their modeling framework, is the role of �age� similar to that of lineage tracing/barcoding
a cell, i.e. counting for how many simulation time steps has an individual cell been around? Is
age the only parameter that in�uences the switching rate/propensity? What is the connection
of age with permanent vs. temporary resistance in the framework?

In our model framework, cellular age represents the chronological age of the cell, or the time since birth.
While it would be possible to included other epigenetic factors to bias phenotype inheritance, this would
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severely complicate the model. We have updated the manuscript to explicitly de�ne �age� and explain it's
use as a cipher for other epigenetic factors:

The structure variable a in (2) corresponds to chronological cellular age which we use as a cipher for
a number of epigenetic factors. It would be possible to include these epigenetic factors by including a
non-constant ageing velocity as in other structured models of physiological processes [3, 4]. However, it
is di�cult to determine how these epigenetic factors accumulate throughout a cell's lifespan and during
treatment. Consequently, including a non-constant ageing velocity would severely complicate the formulation,
parametrization, and analysis of (2) and would limit the utility of our simple model. Consequently, we only
consider chronological age here.

In this framework, there is no explicit link between cellular age and treatment resistance. However, as we
use cellular age to in�uence the likelihood of phenotype inheritance, there is an indirect link between the
age of a reproducing cell and the likelihood that the o�spring will retain the parent cell's sensitivity to
treatment. This indirect link between age and resistance is illustrated in our results regarding permanent
and transient resistance to treatment in Figure 4. However, this relationship is a result of the model rather
than an assumption.

3. How are age and �memory� related? Do the authors de�ne �memory� of a cell as its ability
to maintain a phenotype upon cell division? Usually, the concept of �cell memory� is invoked
upon to indicate hysteresis in a given system (Jolly and Celia-Terrassa, J Clin Med 2019).

We are grateful to the reviewer for making this important point. Hysteresis is an important aspect of
any system that exhibits switching between states [2]. Most of our existing modelling work has considered
phenotypic memory as the result of an explicit bi-stable chemical switch [14, 15]. Here, we aimed to
relax the assumption of an explicit switch by replacing it with the functions βii. These functions act to
bias the likelihood of daughter cells inheriting the phenotype of the mother cell rather than acting as an
all-or-nothing event, with the model parameters Pmax

ii , P ∗ii and σi acting as an analogue of the speci�c
switching mechanism. This biased phenotypic inheritance represents the interaction between cellular age
and memory of the mother's phenotype. Given how changes in inheritance strategies impact the model's
response to therapy via the presence of bi-stability (as shown in Fig. 4), investigating the impact of
hysteresis, via di�erent functional forms of β, on model predictions would be an interesting extension of
this work. However, it would come at the cost of analytical tractability.

4. The authors should clarify how many di�erent parameters were �tted to the experimental
data, and how many time points and conditions are needed to identify those number of
parameters, without over�tting?

We are grateful to the reviewer for raising this point. As described in theMethods, there are �ve parameters
to be �t to experimental data. Indeed, we show in the SI that these parameters need not be identi�able as,
for a given switching strategy, there is a set of growth parameters that allow the model to �t experimental
data. However, we also show that the switching strategy becomes apparent following therapy. Accordingly,
when �tting experimental data, we simultaneously consider treated and untreated data. We have added
the following text to the Methods section to emphasize this point:

The parameters remaining to be �t control either population growth (rA, rB, and dA), or the probability of re-
taining the drug-tolerant phenotype (P ∗BB and Pmax

BB ). Thus, there are 5 parameters to be �t to experimental
data.

We show in the Supporting Information that these parameters may not be identi�able for untreated data. In
particular, for a given pair (P ∗BB, P

max
BB ), it is possible to �t the parameters rA, rB and dA can be chosen to �t

experimental data equally well in the absence of treatment. However, the role of the parameters (P ∗BB, P
max
BB )

becomes evident once therapy is administered and the previously indistinguishable curves become distinct.

5. The authors claim using ref 44 and 45 that with age, the rate of switching increases.
However, both ref 44 and 45 do not seem to show this directly. Also, both of them are in
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bacterial systems, not cancer cells. Can the authors provide stronger evidence for this key
assumption in their model? Also, the authors provide the results for �stay� strategy using
values of PBB and PBBmax close to one another as well as close to 1; what happens for values
say 0.45, 0.5?

The reviewer raises an excellent point regarding using experimental results from bacterial cells as evidence
of phenotypic switching in cancer. There is evidence of phenotype switching in cancer drug resistance (see
for example [7, 10, 17, 21, 23]). In particular, [22] demonstrated the heritability of rare gene expression
patterns that are associated with treatment resistance in melanoma [21] which corresponds to phenotypic
memory in our modelling formulation. However, the precise mechanism underlying phenotype switching
has not yet been elucidated, despite the work by Yang et al. [28] that demonstrated that inheritance of
p53 and mitogen-induced cyclin D1 acts to bias human mammary epithelial cells towards a proliferative or
quiescent phenotype. As cyclin D1 is an unstable protein, increased duration of mother cell's life span may
induce a bias toward quiescent daughter cells. In fact, [13] showed that a mild increase in the duration of
the cell cycle induces a bias towards quiescent daughter cells in an immortalized non-transformed human
epithelial cell line, MCF10A. Experimental work has shown that cells who enter the quiescent stage are
likely to have mother cells who had a longer intermitotic time, which corresponds to an older mother cell
in our modelling framework [1, 24, 26]. Here, it is likely the decreased degradation of cyclin D1 that biases
the proliferation-quiescent switch, rather the increased intermitotic time. However, we use the increased
intermitotic time, and thus older mother cells, to act as a cipher for these signalling factors. We have
emphasized this in the text on page 5 which now reads:

We assumed that the probability of changing phenotypes depended on the age of the parent cell (i.e., older
mother cells are more likely to have daughter cells that switch phenotypes [1, 26], where we recall that we
are using chronological age as a surrogate for the degradation of cellular signalling pathways [8, 13, 18, 28])

Finally, our work indicates that the mechanisms of phenotypic switching (via di�erent memory strategies)
manifest themselves as observable population level behaviours in response to environmental change (i.e.
treatment). In this perspective, our model can be viewed as a hypothesis that makes testable predictions
and, thus, could prove useful for identifying model cancers/cell lines which exhibit switching and memory
in the future. This would help identify cell lines that exhibit phenotypic memory and possibly contribute
to the elucidation of the mechanisms underlying phenotypic memory in cancer cell systems.

If the value of Pmax
BB is much smaller than one, then daughter cells are unlikely to have the same phenotype

as mother cells so the strategy is more �switch� than stay. However, for P ∗BB = 0.45, 0.5, the switching
strategy is similar to the �switch� strategy illustrated in the text, and so are the results.

6. The authors should comment on similarities and di�erences of their model formulation
and key results with other recent e�orts - Sahoo et al. bioRxiv 2021, Gunnarsson et al. J
Theor Bio 2020).

We have added the following sentence to the discussion:

In this sense, our work addresses similar questions to [9, 20] although via a di�erent and complementary
axis, particularly in our analytical results and the development of the model-informed treatment.

and the following phrase to the introduction:

Recent modelling e�orts used gene-regulatory networks or branching-type formulations to investigate the
role of phenotypic switching on treatment resistance[9, 20], while other authors have used Markov processes
to illuminate the role of stochastic phenotypic switching in treatment resistance [10, 17, 25].
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Reviewer 2

The authors propose a mathematical model to investigate the role of phenotypic plasticity
in treatment resistance, and to investigate treatment strategies to avoid establishment of
drug-resistant phenotypes. It is shown that a model-informed therapy could drive tumor to
extinction while preventing the risk of development of resistance. The paper is very well
written and the mathematics is elegant and impressive. The model is simple but e�ective
to illustrate important biological mechanisms. I only list very minor details below, that the
authors may or may not take into account.

We are very grateful to the reviewer for their enthusiasm and detailed reading of the manuscript.

- Supplementary vs Supplemental throughout the text.

We have made this change and now use Supporting Information throughout.

- Line 105: could be worth to explain the overline notation here already; another minor
comment is that it could be worth to mention how reproduction is intended, i.e., that at rate
RA cells die and two daughter cells are born.

We agree with the reviewer so we have introduced the bar notation at the beginning of the results in
Equation (1) and have added the following text to explain how reproduction is included in our model:

As dividing cells necessarily have age a > 0, cellular reproduction results in the the disappearance of the
mother cell, which accounts for the negative sign on the RHS of (2). As cellular division results in the
production of 2 daughter cells with age a = 0, these reproducing cells re-enter the model through the boundary
condition for A(t, 0) and B(t, 0). Accordingly, we model cellular reproduction through the non-local boundary
conditions given in (3). These boundary conditions account for the production of daughter cells with age
a = 0 from all dividing mother cells with age a > 0 through the integration in a.

We have also included a cartoon representation of the model in Figure 1 to further clarify this point.

- Line 114: maybe mention that n is a parameter that describes the type of response

We are grateful to the reviewer for spotting this omission and added the following sentence to the text

We use a Hill function formulation of fn(Ā(t), B̄(t)) with Hill coe�cient n that modulates the type of Allee
e�ect

- Eq (3): may be clearer to use brackets to isolate the argument of the integral.

We agree with the reviewer and have made this change.

- P. 4, before the de�nition of betaAA, I would �nd it clearer to use �is assumed to be� rather
than �given by�, to make it clear that this is a model assumption. Also, please mention that
sigma are positive parameters (incidentally I was curious why P ∗ is not denoted by Pmin, but
not necessary to change)

We agree with the reviewer and have changed the sentence to use �is assumed to be� and have mentioned
that the σi are strictly positive parameters. We use P ∗ to denote the long-term probability of inheriting
the phenotype and have mentioned this on page 5.

- I �nd Figure 1 little informative, considering that the shown behavior is quite intuitive.
Maybe some extra explanation to stress what you want to show?

In the revised manuscript, we now show the Malthusian parameter as a function of λA and λB for three
di�erent switching strategies, including the stay and switch strategies considered later. By considering the
isoclines, we see how di�erent switching strategies in�uence how increases in the �tness of a sub-population
impact the �tness of the mixed population. We have updated the �gure caption to highlight this relationship
and have added the following text to the manuscript:
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We �rst note that the population level �tness is an increasing function of the �tness of the subpopulations,
λA and λB, as we would expect. Further inspection of Fig. (2) illustrates how the di�erent switching
strategies in�uence the role of �tness increases in each constituent sub-population on �tness of the entire
population. In particular, we note that in the stay strategy, �tness increases in the drug tolerant population
are more impactful on the entire population than the drug sensitive population, while the opposite is in true
for the stay strategy.

- Fig 2 caption: isn't this for increasing values of the SENSITIVE cell death rate? In the
legend, I �nd 11/30 and 19/30 less intuitive to interpret as the decimal notation, I'm not
sure if there was a reason for this but it is unclear; it may be worth to use the same scale in
vertical axis in panels A-B and panels C-D

We are very grateful to the reviewer for catching the typo in the caption. We have corrected this mistake
in the revised manuscript. We now list the decimal values for each parameter curve and have plotted all
the �gures on the same vertical axis.

- Line 184-186: how is the σB �xed?

We �x σB = σA = 10−2 throughout. We discuss this choice (on page 1 of the SI) and perform sensitivity
analysis on this choice of parameter on page 22 of the Supporting Information.

- Line 187: ... of the POPULATION carrying capacity K (in order to also de�ne K).

We have made this change.

- Line 194: I am not familiar with the term �objective response rate�

The objective response rate is the proportion of patients whose tumour burden decreased during therapy
and is often used in evaluating cancer treatments [11, 12, 19]. We added the following text to the manuscript
on page 9:

objective response rate, or proportion of patients with tumour reduction following therapy, ...

- Line 207: �the drug-tolerant population became dominant�: this sentence is unclear to me,
as the left panel shows that the proportion of drug tolerant cells is only 20%, hence it doesn't
seem to me to be dominant. Maybe clarify what you mean?

We are grateful to the reviewer for pointing out this inaccurate sentence. We meant that the drug-tolerant
population was dominant during therapy and have updated the sentence to read:

For both the switch and stay strategies, the tumour population eventually developed resistance as the drug-
tolerant phenotype became dominant during treatment

- Line 208: in the switch population in Fig 3A, sensitive cells seem to remain above 40% (not
just above 20%)

The reviewer is correct and we have made this change.

- Figure 3 (and results): it is unclear at this stage what parameters are used for the drug-
sensitive population (βAA). May be useful to include a table?

We are grateful to the reviewer for catching this. We have added Table S1 with the parameters used for
this �gure. The �gure caption now indicates that the parameters used in this �gure are given in Table S1.

- Eq (5): is n the same parameter de�ning the Allee e�ect? If so, it may be useful to brie�y
recall it.

We have made this change and the text now reads

To accomplish this, the ratio of drug-tolerant to drug-sensitive cells, B̄/Ā, must not exceed the threshold
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ratio ϑ∗ε which is given by

ϑ∗ε =

[
εrA − rB
rA(1− ε)

]1/n
, (0.1)

where we recall that the parameter n determines the strength of the Allee e�ect.

- Line 434 �Generic model of chemotherapy�: I think this section would better be located
before the �Numerical simulation of phenotypic switching model�, as it de�nes the variable
C(t) and related quantities, which are otherwise not de�ned in the ODE system presented at
p. 15. I would also specify that this describes the standard PERIODIC treatment mentioned
in the results.

We agree with the reviewer and have moved the generic model of chemotherapy to the Results section. We
have also emphasized that we are using this model when simulating treatment.

We are very grateful to the reviewer for identifying these typos. We have corrected them (and others).

- Line 167: that -> than.

- Table 1, seventh entry: Ratio B/A (rather than A/B)? last entry: �such that λB(θ) < 0�,
add: for θ < θ∗

- Line 127: leads to THE following.

- Line 270: a approximately -> an approximately.

- Line 384: it's -> its.

- Equation after (9): bracket is missing from interval.

- Lines 465 and 467: �rA� is listed twice in the two lists � typo?.

In the Supplementary Material:

- P. 1 line 39: �after 1 day will HAVE�

- P. 2 line 76, �nutrient� (typo)

- P. 3 line 77 �carrying�

- Four lines after (S8): relative �tness OF these cells

- Equation after (S10): a closing bracket is missing in the interval

- P. 5, three lines after de�nition of NAA : not sure if �either� is in the correct position in the
sentence

- Equation after (S14): RI should be RA ?

- P. 7 second line of the equation for NAA in (S15): there is an argument �ts� (typo)

- P. 25 last equation: comma rather than full stop

- P. 28, line 4: fN → fn

- P. 19 line 371: extra closing bracket

In the Supplementary Material:

After (S5), �As expected� sounds strange as I thought this was the assumption leading to
the choice of the beta functions

We agree with the reviewer and have erased this phrase from the sentence.

- P. 9 line 166: an stable -> a stable (typo). You should also probably mention that the
eigenproblem is studied for the linearization of (S2), or alternatively for constant growth
rates rA and rB ?
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We have corrected this typo and added the following sentence emphasizing that we are working with the
linearized version of S2:

This stable age distribution is equivalent to �nding the �rst eigenelements of (S2) where we are considering
the linearised version of (S2). We note that the linearised version of (S2) corresponds to purely Malthusian
growth corresponding to constant RA and RB and e�ectively unlimited resources.

- P. 24, line after (S32): are you here assuming unconstrained growth Ri = ri?

The reviewer is correct and we have added the following sentence to emphasize this point:

As in our calculation of the stable age distribution, we once again consider the linearised version of S32
corresponding to Malthusian growth.

Reviewer 3

Summary
The authors propose a novel treatment model that incorporates two di�erent populations,
one which undergoes phenotypic switching and one which does not. Their results show
di�ering types of resulting resistance and how di�erent optimal treatment regimens would
be required. This paper highlights clearly how understanding the presence of phenotype
switching and applying the appropriate treatment for such populations is fundamental to
optimising treatment. This was a really nicely written paper with an interesting discussion
of phenotypic switching and an elegant underlying model. The implications and utility of
the model are well discussed by the authors. The paper is only held back by some minor
issues in communication, particularly as the paper reads as if written in a di�erent order
and rearranged/reduced without enough consideration for clarity. It is worth noting that
their supplementary materials are extremely clear but some of this information still needs
moving into the main text and some concepts need to be introduced before certain variables
are reported or plotted. Furthermore, the code used for the modelling/production of graphs
in this paper must be published in line with PlosCB requirements.

We are very grateful to the reviewer for their enthusiasm about the manuscript, in particular, their comments
and detailed reading identi�ed areas for improvement in presentation and communication.

Main general points:

In general the symbols in equations are not de�ned early enough in the text, they are only
de�ned in the materials and methods. An earlier statement of the de�nitions of all variables
is required and would improve readability. Many of the speci�c points below relate to this
general issue.

We suggest that a schematic diagram/cartoon of the model early in the paper with all pa-
rameters and key equations de�ned would signi�cantly improve the impact and readability
of this paper.

We re-wrote the Phenotypic switching model section of the results in the updated manuscript. In particular,
we state the model variables and parameters before they appear in the equations on page 4. We included the
generic chemotherapy model in the Phenotypic switching model section to introduce the parameters Dose
and C1/2 before their appearance later in the manuscript. We have also included a cartoon representation
of the model in Fig. 1.

Additionally, �gure captions and the text often do not address the �gures in enough detail.

We have re-written the �gure captions in the updated manuscript.

Adding the points we have suggested will allow much easier reading and immediately address
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initial questions a reader will have.

The code used for the modelling in this paper must be published in line with PlosCB require-
ments.

Portions of the code were written while TC was employed at the Los Alamos National Laboratory (LANL).
Accordingly, LANL must approve the release of source code which requires approval from a number of
internal and external organizations including the U.S. Department of Energy and the U.S. National Nuclear
Security Administration. We have begun the export control process which is expected to take several
months.

The current manuscript was submitted March 1st, 2021 while the PLOS CB requirements for code sharing
only apply to manuscripts submitted after March 31st, 2021. However, in the interest of reproducibility, we
will release the source code upon approval from LANL and will link the source code from personal websites.
The released code will be available at https://github.com/lanl/phenotype-switching. In the interim, we
have added a section to the Supporting Information discussing the implementation of the model in Matlab.

Speci�c points

In the de�nition of equation (1) all of the terms are negative, we believe this is due to the
production of new daughter cells at time t with age a=0, although this point is mentioned
in the supplementary some of this explanation should ideally be moved to the main text to
explain to the reader at �rst sight how/why this general form di�ers from classical ODE/PDE
models.

We agree that this may be confusing and have added the following explanation of the negative terms to the
main text:

As dividing cells necessarily have age a > 0, cellular reproduction results in the the removal of the mother
cell, which accounts for the negative sign on the RHS of (2). As cellular division results in the production of
2 daughter cells with age a = 0, these reproducing cells re-enter the model through the boundary condition for
A(t, 0) and B(t, 0). Accordingly, we model cellular reproduction through the non-local boundary conditions
given in (3). These boundary conditions account for the production of daughter cells with age a = 0 from
all dividing mother cells with age a > 0 through the integration over the age variable a.

We emphasized this point in the caption of Fig. 1 to explain why the RHS of (2) is negative. We have also
added the following discussion regarding di�erences between ODE and PDE models:

While the distinction between disappearance of mother cells and the appearance of daughter cells is natural
in age-structured populations such as (2) [3, 16], it results in a strictly negative RHS of (2). Since general
ODE models consider a homogeneous population of cells without accounting for cellular age, there is no
distinction made between the division (and subsequent removal) of a mother cell and the appearance of
daughter cells. Accordingly, ODE models only include the net population gain due to reproduction, i.e. each
mother cell producing two daughter cells, which typically results in a non-negative term and di�ers from the
distinction made between division of a mother cell and production of daughter cells in the age structured
model (2). This fundamental di�erence results from the inclusion of biological information, such as cellular
age, and the resulting population heterogeneity in structured PDE models which is generally not possible in
the ODE framework.

The fact that Ā and B̄ are the total number of each phenotype should be stated at �rst
appearance in line 105.

The de�nition of Ā and B̄ is now in equation (1) and reads:

The object of clinical interest at time t is unlikely to be the density of cells with a given age, but rather total
number of cells of each phenotype, given by

Ā(t) =

∫ ∞
0

A(t, a)da and B̄(t) =

∫ ∞
0

B(t, a)da. (0.2)
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In what follows, the total number of cells is denoted by N(t) = Ā(t) + B̄(t).

Between lines 127-128 the line numbers are missing, however the key point in this section is
that in this paragraph σA and σB are not de�ned.

We have added the following de�nition of σi to the main text on page 5:

The parameter σi represents the decay rate of intracellular signalling factors and modulates how ageing
impacts the probability of daughter cells retaining the mother cells phenotype. We enforce σi > 0

In Fig 1 the authors should adjust the plot area so that it is square, this adjustment will
emphasise the result that the plot is symmetric. The authors should also reproduce the scale
bar so that the accompanying labels are not stretched. The addition of isoclines would also
improve this �gure.

In the revised manuscript, we now show the Malthusian parameter as a function of λA and λB for three
di�erent switching strategies, including the stay and switch strategies considered later. Following the
reviewers suggestion to include the isoclines, we see how di�erent switching strategies in�uence how increases
in the �tness of a sub-population impact the �tness of the mixed population. Finally, each subplot is square.
We have updated the �gure caption to highlight this relationship and have added the following text to the
manuscript:

We �rst note that the population level �tness is an increasing function of the �tness of the subpopulations, λA
and λB, as we would expect. Further inspection of Fig. (2) illustrates how the di�erent switching strategies
in�uence the role of �tness increases in each constituent sub-population on �tness of the entire population.
In particular, we note that in the stay strategy, �tness increases in the drug tolerant population are more
impactful on the entire population than the drug sensitive population, while the opposite is in true for the
stay strategy.

There is a discontinuity in the second derivative in Fig 2B. The authors should check that this
discontinuity is real and if so, discuss this discontinuity. The axes and legend labels should
be larger for readability.

We have re-generated the �gures so that the axis labels and legends are legible. We have also re-written
the caption to better contextualise the �gures.

Upon further inspection, the discontinuity in the second derivative of Fig 2B was an arti�act of the numerical
root �nding technique used to calculate the stable age distribution. In essence, the stable age distribution
is calculated from the eigenvector v that solves the eigenvalue problem M(λP )v = 1v as we show in
Section Stable Age Distribution and Population Proportion on page 17 of the SI (where the eigenvalue is 1
since λP is the Malthusian parameter). We initially calculated the stable age distribution by solving the
equivalent system of equations (M − 1I)v = 0. The discontinuity in Fig 2B resulted from the root �nding
algorithm calculating v = 0 (to numerical precision) as a solution of the system of equations. However, this
solution is not an eigenvector and so does not de�ne the stable age distribution. In the revised version,
we speci�cally solve the Eigenvalue-Eigenvector formulation derived in the SI using established numerical
techniques rather than the mathematically equivalent root �nding problem. We regret this error.

Fig 3 is partly cropped on both sides in the print format of the article. Labels should be
increased in size. The blue line, N(t) is actually plotted as a proportion of the carrying
capacity, this should be stated. We also believe that the length of treatment is discussed
later on but the caption should include brief details on the treatment length derivation/ and
a reference to supplementary.

In the updated manuscript, we re-generated the �gures so that the axis labels are legible. We have also
included information regarding the duration and scheduling of treatment in the caption. We corrected the
�gure legend in the updated manuscript.

Table 1 - θ is not de�ned here, only much later. This table could be extended with symbolic

9



de�nitions above and the second half of the table de�ning how selecting parameters was done.
This problem could also be solved by including parameter de�nitions in a proposed cartoon
of the model in the suggested �gure.

We have moved the table later in the text so that all parameters are introduced before being listed in the
table. We have also included the de�nition of θ and it's use in determining model-informed therapy in Fig.
5.

Line 234 - Although the authors de�ned Cooperative Adaptation to Therapy in a previous
paper, a refresh on the de�nition here would allow easier reading and improve the �ow of
this paragraph.

We agree with the reviewer and have added the following sentence to brie�y recall the de�nition of CAT
to the main text:

During CAT, cancer cells behave co-operatively to induce drug tolerance in neighbouring cells and thus
induce treatment resistance.

Fig 4 - Axis labelled as A+B cells but becomes � 1 (axes say 10−5/10−10) which is not physical
for a pure sum. Address this and importantly de�ne the quantities plotted on the axes in the
plot caption.

We are grateful to the reviewer for raising the issue with the non-physical sum observed in Figure 5C.
The sustained tumour decay is due to the sustained drug pressure induced on the population that results
in sustained tumour decay, eventually to undetectable levels. The model informed therapy is designed to
induce R∗0 < 1 where R∗0 is the spectral radius of the next generator operator during treatment, so we
expect to see exponential decay during therapy. This exponential decay will eventually result in tumour
extinction, or the observed non-physical sums, if we are also able to avoid the establishment of a drug
tolerant population. This is possible in both examples shown in the main text, which account for the small
tumour sizes observed. In our initial submission, we included the long time simulations to illustrate this
point, but these simulations included the non-physical tumour sizes mentioned by the reviewer.

In our revisions, we now include the dynamics of the ratio θ(t). The behaviour of this ratio with θ(t) < θ∗

is crucial in inhibiting the establishment of the drug tolerant population in Panel B and D of Fig 5. When
combined with the dose size taken to ensure that R∗0 < 1, the dynamics of θ(t) < θ∗ indicate why we
see sustained tumour decay. To emphasize this point, we have included the following text in the revised
manuscript:

In fact, the stable oscillations at (or below) the threshold ratio θ∗ in Panels B and D of Fig. 5 combined
with the exponential decay of N(t) shown in Panels A and C illustrate the e�cacy of the model informed
therapy to preserve a su�ciently large population of sensitive cells while driving tumour extinction. This
exponential decay is precisely what we expected from model-informed therapy where we consistently have a
large enough population of sensitive cells, denoted by θ(t) < θ∗, as R∗0 < 1 during therapy (see the Supporting
Information for details.)

We de�ned the quantities plotted in the updated legend and �gure caption and hope that the updated
�gure is more clear.

Additionally, there is a repeated change in population size at 50 days, possibly due to treat-
ment application or delayed response time? Something about this time should clearly be
stated in the text and caption, we were unable to identify anywhere this was mentioned. This
�gure might bene�t from having the treatment protocol overlayed on these plots. �Given in
S3 table� should read given in Table S3. Table S3 also seems to show results derived from
the plot in Fig 4 and not the parameters used to make the model which seem to appear in
S1 and S2. We would appreciate clari�cation from the authors.

We are grateful to the reviewer for catching this omission and mistake. The reviewers are correct that
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the parameters used for these �gures were given in S1 and S2 and that treatment was applied at day 50.
Following the addition of two new tables corresponding to the generic model parameters and the best �t
parameters for the Dingli et al. data in the SI, we have updated the references to the correct tables in the
SI. We also updated the �gure caption to illustrate that treatment begins on day 50 and give a cartoon
representation of the model informed treatment schedule in the �gure.

In the discussion, we recommend the following paper be cited, Robert Vander Velde et al.
Resistance to targeted therapies as a multifactorial, gradual adaptation to inhibitor speci�c
selective pressures. (https://www.nature.com/articles/s41467-020-16212-w) This paper con-
tains a signi�cant investigation into the emergence of resistance in NSCLC, although under
di�erent drug treatments of Alectinib, Lorlatinib and Crizotinib, the paper presents resis-
tance as a multifactorial, gradual process which is a result of relevance in the context of the
phenotype switching model the authors propose.

We are grateful to the reviewer for directing us to this very interesting paper and added the following text
to the Discussion:

In particular, resistance to targeted therapies in NSCLC has been shown to result from a series of gradual
epigenetic and genetic adaptations to treatment induced selection pressures [27].

and

The results of Vander Velde et al. [27] suggest implementing a continuous phenotype landscape in our model
as well as extending our analysis to study combination therapies, strategies for drug combination, and the
continued evolution of treatment resistance.

We believe that the explanation in lines 402-431 about the data from citation [7] is overly
wordy and should focus simply on the relevant details to the model, rather than the method-
ology. This section needs to make extra clear that this was not work that was done by the
authors for this paper. Changing the initial sentence to read �We used the previously pub-
lished data from Craig et al.� would make this more explicit. We recommend that some of
this experimental detail is instead mentioned in the text or in supplementary, when discussing
the model/�gures/�tting, as opposed to including such detail here which may give the false
impression the experiment was carried out for this paper and does less to contextualise results
in the text.

We agree with the reviewer. The text now reads:

We used the previously published in vitro growth assay data from Craig et al. [6] to parametrize our math-
ematical model. Brie�y, in their work, the parental (WT) cell line was derived from KRas-G12D, p53-/-,
Dicer1f/- genotype lung tumours and mutants (M1 and M2) were obtained through transfection to Dicer1+/+
and Dicer1-/- using CRISPR-Cas9 [5]. Cells were plated as tumour spheroids on NanoCulture plates and
population growth without and with drug was assessed via �ow cytometry on days 1, 3, 5, and 7 [6]

with the remaining detail given in the SI.

Line 433 �initial conditions corresponding to populations in exponential growth�. Make sure
that the exact conditions you're referring to are explicitly stated in the supplementary and
are referenced in the main text.

We are grateful to the reviewer for raising this point and catching this omission. We have added a speci�c
section on the initial conditions of the ODE model to the SI and now give explicit expressions for the
initial conditions of the four variables in the ODE formulation, as well as how they relate to the initial age
distribution of cells in the PDE formulation.

1) Equation above Line 438 : closing bracket on limit is missing kelim, C(t) and C1/2 are
eventually de�ned here but their de�nitions must appear much earlier in the text in order
to be understood in the results. 2) Equations: C(t) C1/2 not de�ned, R/r. 3) Line 307 /
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Equation above - C1/2Vol is de�ned in the supplementary/later but not at �rst sight, same
for kelim.

We corrected the missing bracket and added the generic model of chemotherapy to the �rst section of the
results so that these parameters are introduced earlier in the text.

We are very grateful to the reviewer for identifying the following typos. We have corrected them (and
others) in the revised text.

Time (days) repeated under �gure part D in print version

Line 391 - should read �or drug sensitive�

Line 488 �curves correspond

Line 167 should read �less important than the probability�
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