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The authors consider the issue of criticality and neuronal avalanches in the
stochastic Wilson-Cowan (WC) model. It is a very interesting work since the
detected critical point with neuronal avalanches in the WC model is somewhat
new and the paper clarifies several controversies of the literature. I recommend
publication in PLoS Comput. Biol. after some revision.

Major concerns

1) The introduction is done by using the parlance of standard equilibrium
second order phase transitions (even the Ising model is cited) but the model
transition is a ”non-equilibrium” ”absorbing state transition” in the ”Directed
Percolation (DP)” universality class. These jargon terms perhaps have not been
used in favor of the general audience, but they are very common in the literature
and perhaps should be introduced so that the reader can connect more easily
with the papers of the References. The description of the WC model as a non-
equilibrium system without an Hamiltonian starts only after line 64, occupying
a single paragraph. I suggest a bit more of emphasis on the fact that neuronal
networks (biological and models) are non-equilibrium systems, that there is a
whole field of statistical physics of non-equilibrium phase transitions (perhaps
with a citation of a book to aid a newcomer), that there is a whole field of
SOC non-equilibrium systems [Bonachela2009][Bonachela2010][Kinouchi2020],
because even with the paragraph of the authors, this important point could
stay unnoticed to the reader.

2) A doubt: the same model for regular lattices (dimension d < 4) would
pertain to the branching process (BP) class or to the Compact Directed Per-
colation (DP) class? At mean-field d ≥ 4, BP, DP and CDP are all the same?
Cowan uses the DP description in:

http://www-sop.inria.fr/manifestations/SemesterCirm/slides/cowan
I do not know if these slides have been published, but if so, the publica-

tion should be cited. In these slides, Cowan describes a DP transition, with
critical point avalanches. This contrasts with his paper [17] where non critical
avalanches are considered, as well observed by the authors.

3) The result wc = β−1α is correct, but gives the impression that we need
a fine tuning in a single parameter, the average synaptic weigh w0. However,
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the gain β is also an independent neuronal parameter, so we have not a single
critical point but βcwc = α, that is, we have a critical line (hiperbolae) in the
w vs β parameter plane. Of course, mathematically, the important variable for
the transition is x = βw (as x = βJ in the Ising model). Indeed, in the Ising
model, beta is chosen as the control parameter and the J is fixed. However, we
must remember that w is a synaptic parameter and the gain β is a cell body
excitability parameter (in the axonal initial segment (AIS)?), and the two are
located differently in the neuron. That is, we have not only a fine tuning, but
a non-local fine-tuning, since for criticality the synapses w in the presynaptic
cells need information about the postsynaptic β. Would this merit a comment
in the paper? Or all of this is irrelevant?

4) The (Cowan?) notation Σ0, w0, R0 and s0 is somewhat confusing to me
because it suggests that these quantities refer to the zero activity (absorbing)
phase. Also, the fixed points Σ0 = 0 and the non zero Σ0 > 0 receive the
same name in the Methods section (and also in lines 125-126), which is a bit
confusing because both exist above w0c: one is the Σ0 = 0 which is a true
fixed point, but unstable, and the another is Σ0 > 0, that is stable, as usual
in transcritical bifurcations. Although not used by Cowan [17], I suggest, to
aid the readers, the notation Σ+, R+ and s+ or other notation for the stable
non-zero solution, reserving Σ0 = 0 for the absorbing phase (that also exists
above wc as an unstable fixed point). I also do not understand why to use w0

in the definition of line 107, since w0 is not a fixed point but a parameter and
we could use w = wE −wI and Σ∗ = (w−wc)/w which is much more clean. Or
the single letter w has been used before? Please, could you clarify the option
for this notation? Is it only to preserve the notation of reference [17]?

Minor concerns

6)There is a typo in Eq. (1): it is
∑
j instead of

∑
ij .

7) A doubt: in Eq. (2), is the correct form β tanh(s) or tanh(βs)? I ask
because Eq (4) from [17] has no beta, and it admits a beta inside the tanh(), as
usual in other stochastic models, for example Gerstner model, Wulfram Gerstner
and J Leo van Hemmen (1992) Associative memory in a network of ‘spiking’
neurons, Network: Computation in Neural Systems, 3:2, 139-164, and Boltz-
mann Machines. Or this is irrelevant due to the linear approximation?

8) It is not very clear where the authors change from the single neuron
si representation to the population representation s. Could the authors point
better that to the reader?

9) Only a suggestion: in statistical physics it seems more common to define
avalanche critical exponents as positive numbers, that is, P (S) = S−τS instead
of SτS , so that τS = 3/2 is positive. The minus sign also already signalizes that
P (S) is a decreasing function of S, the reader need not think very much about
that. But if the authors opt for negative exponents, then this must be corrected
in Fig. 4e, where the exponents are given as positive, and also in the legend of
Fig. 5.
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10) In line 16, the three citations are from the same group and about the
same self-organizing mechanism. Perhaps a very recent review of self-organizing
mechanisms could be useful here [Kinouchi2020]. Of course, this is only a sug-
gestion.

Observation about the limit h → 0+: The fine tuning of h = 0 is a
welcome emphasis of this paper, because it is poorly discussed in the neuronal
avalanches literature. So, in the model, we must fine tune (or self-organize) two
independent parameters, w and h. Although h = 0 is natural for magnetic spin
systems, it is not so natural to neuronal networks where neurons are always
bombarded with inputs external to the network. However, there exist an idea
to obtain h = 0 (this explanation need not be included in the paper, it is only
a clarification for the authors). The general form of Eq. (1) is si =

∑
j wijaj +

Ii − θi, here Ii are external inputs and θi are the neuron firing thresholds (or
biases). Now, suppose that the thresholds are adaptive so that their dynamics
θi(t) tend to cancel the inputs Ii, as occur in perfect sensory adaptation and
perfect firing rate adaptation. Then, although the biological external inputs are
not vanishing, the field h = I − θ can be very close to zero, where I = 〈Ii〉 and
θ = 〈θi〉. This self-organization of θi(t) to obtain a fixed point h∗ ≈ 0 has been
proposed recently in [Girardi2020,Kinouchi2020] and the level h = 10−6 or less
can be easily achieved in these models.

Suggestion for future work, not for this paper: I think that if you
use the function f(s) = βs/(1 + βs) instead of f(s) = β tanh(s), a lot of exact,
instead of approximate, results can be obtained. In particular, an equation
similar to Eq. (11) is exact (with the difference of some factors 2): 2βwΣ∗2 +
(α − βw + 2βh)σ∗ − βh = 0. Since this equation is exact, Σ+ = (w − wc)/w
is valid for all (even large) w and is not a first order approximation for this
particular f(s).
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