OMTO, Volume 22

Supplemental information

A novel protein-drug conjugate, SSH20,

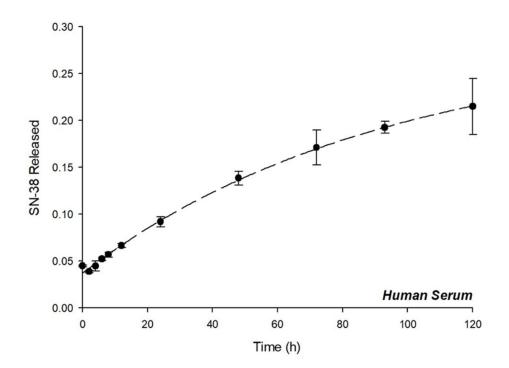
demonstrates significant efficacy

in caveolin-1-expressing tumors

Ryan Robb, Jimmy Chun-Tien Kuo, Yang Liu, Sergio Corrales-Guerrero, Tiantian Cui, Ahmad Hegazi, Gregory Nagy, Robert J. Lee, and Terence M. Williams

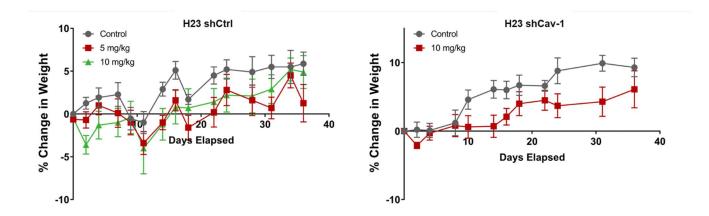
Supplementary material

Methods


In vitro serum stability. Briefly, 180μ L of SSH20 was added to 1620μ L of pooled human serum off the clot (Innovative Research, Novi, MI) to form a 10% SSH20 solution, which was incubated at 37°C. Aliquots were collected at preset time points, a fixed amount of internal standard (10-hydroxycamptothecin, 10-HCPT) was added to each sample aliquot and the solutions were mixed thoroughly on vortex prior to protein precipitation by acetonitrile. Protein precipitates were pulled down by 17,000 x g centrifugation for 5 minutes. The dissociated SN-38 in the supernatant was analyzed by reverse-phase HPLC, using parameters described above, detected by PDA at 368nm. SN-38/internal standard peak ratios were correlated with an SN-38 standard curve (using the same preparation method) to obtain the concentrations of released SN-38. The plot of the kinetics of SN-38 release was generated by Prism, and the half-life was calculated by one-phase exponential association.

In vivo studies. Animal studies were conducted in accordance with an approved protocol adhering to the Institutional Animal Care and Use Committee policies and procedures at The Ohio State University (Columbus, OH). Eight- to ten-week-old male athymic nude mice (Taconic Farms Inc.) were caged in groups of five or less and fed a diet of animal chow and water ad libitum. H23 cells

 (2×10^6) with stable control shRNA (shCtrl) or shCav-1 were injected subcutaneously into the flanks of athymic nude mice. Treatment regimens were started once tumors reached approximately


100-200 mm³ in size (typically 1-3 weeks post-injection). SSH20 (10 mg/kg) was administered intravenously via retro-orbital injection accordingly. Weight and clinical signs of toxicity were monitored several times per week.

Supplementary Figure S1

SFigure S1. Kinetics of SN-38 release from SSH20 incubated in human serum. The half-life was calculated by one-phase exponential association. The release of SN-38 from SSH20 followed a time-dependent manner with a half-life of ~ 64.2 hours.

Supplementary Figure S2

SFigure S2. SSH20 treatment results in no detectable changes in weight compared to vehicletreated mice. H23-shCtrl/shCav-1 cells were injected into the flanks of mice. Once tumors reached approximately 100-200 mm3 in size, 0.9% saline (vehicle), or SSH20 (5 or 10 mg/kg) was administered intravenously via retro-orbital injection. No significant differences in weight were detected between vehicle or SSH20 treated groups.