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Supplementary Figure Legends

Supplementary Fig. S1, related to Fig. 1. Poly(I:C) induces histone extranuclear
translocation in endothelial cells. Immortalized HDMECs were stimulated with poly(l:C) (10
pg/mL) for indicated time points (1, 3, 6 h). Cells were fixed and permeabilized before staining of
histone H3 with mouse anti-H3 antibody and Alexa Fluor 488-conjugated goat anti-mouse 1gG.
The nucleus was stained with DAPI. Immunofluorescence images were obtained with confocal
microscopy. Arrows indicate extranuclear translocation of histone H3. Scale bar: 20 um. Data
guantitation is shown as means * standard error from at least 3 independent experiments. **p <

0.01, ***p < 0.001. Ctrl, control.

Supplementary Fig. S2, related to Fig. 2. EPCR and PARL1 are required for APC inhibition
of poly(l:C)-induced histone extranuclear translocation in endothelial cells. HDMECs were
pretreated with EPCR or PARL1 function-blocking antibodies (15-20 pug/mL for 1h) followed by
treatment with APC (20 nM for 3h) before stimulation with poly(l:C) (10 pug/mL for 1h). Cells
were fixed and permeabilized, followed by staining for histone H3 with rabbit anti-histone H3
antibody and Alexa Fluor 488-conjugated goat anti-rabbit 1IgG. DNA was stained with DAPI.
Immunofluorescence images were taken by confocal microscopy. Arrows indicate extranuclear
translocation of histone H3. Scale bar: 20 um. Data quantitation is shown as means * standard

error from at least 3 independent experiments. **p < 0.01. Ctrl, control.

Supplementary Fig. S3, related to Fig. 7. Poly(l:C) elevates integrin Mac-1 expression in
neutrophils in mice. Mice were injected i.p. with poly(l:C) (110ug/mouse) for 6 and 24h followed
by blood collection and staining for Ly6G-FITC & Mac-1-PE. The cell surface expression of Mac-
1 in Ly6G-FITC-positive neutrophil population was measured by the flow cytometry.

Representative data were obtained from 3-5 mice per group (n = 3-5).



Supplementary Fig. S4, related to Fig. 7. Poly(l:C) downregulates thrombomodulin
expression in mice. Mice were injected i.p. with poly(l:C) (110pg/mouse) for 24h and liver,
kidney and lung tissues were collected, processed and stained with rat anti-thrombomodulin
antibody and Alexa Fluor 488-conjugated goat anti-rat 1gG. The nucleus was stained with DAPI.
Immunofluorescence images were taken by confocal microscopy. Representative images were

obtained from 3-5 mice per group (n = 3-5). Scale bar: 50 pm.

Supplementary Fig. S5, related to Fig. 7. Poly(l:C) does not affect EPCR expression in mice.
Mice were injected i.p. with poly(l:C), and lung tissue was harvested for lysis. Tissue lysates were

immunoblotted for EPCR and B-actin. The relative expression levels of EPCR are presented.

Supplementary Fig. S6, related to Fig. 8. EPCR and PARL1 are required for APC inhibition
of poly(l:C)-induced permeability in endothelial cells. HDMECs were pretreated with EPCR
or PAR1 function-blocking antibodies (1520 pg/mL for 1h) followed by treatment with APC (20
nM for 3h) before stimulation with poly(l:C) (10 pg/mL for 4h). The amount of Evans blue dye
that leaked into the lower chamber in the Trans-well assay plates was measured. Results are shown

as means * standard error from at least 3 independent experiments. *p < 0.05, **p < 0.01.



Supplementary Figure S1, related to Fig. 1
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Supplementary Figure S2, related to Fig. 2
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Supplementary Figure S3, related to Fig. 7
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Supplementary Figure S4, related to Fig. 7
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Supplementary Figure S5, related to Fig. 7
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Supplementary Figure S6, related to Fig. 8
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