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Supplementary Note 1. The considerations behind the sensor distribution on 27 

gloves 28 

As depicted in Fig. 1b, the statistical analysis finds that the daily sign language involves 29 

three major motions, including elbow/shoulder motions, face muscle activities, and 30 

hand movements. The dominant hand motion accounts for 43%. Thus, the hand motion 31 

sensing is inevitable for sign language recognition. As shown in the enlarged pie chart 32 

in the right of Fig. 1b, the hand motions can be subdivided into four categories including 33 

finger bending (56%), wrist motion (18%), touch with fingertips (16%), and interaction 34 

with palm (10%). These detailed hand motions need sensors in different positions of 35 

hands to generate the essential correspondence. 36 

 37 

Fig. 1c and Supplementary Fig. 1 show the triboelectric sensor is mounted on each 38 

finger for finger bending detection, while two sensors are put on wrists for wrist motion 39 

perception. In addition, the fingertips of index and middle of right hand are also in 40 

frequent use in daily used sign language and hence two sensors are located at fingertips. 41 

Meanwhile, signers often use their palms to interact with other parts of their body to 42 

convey richer information. But we nominally allocate only one sensor on the palm of 43 

left hand rather than two sensors one located on the left hand and one located on right 44 

hand. There are two major considerations behind such arrangement: (1) based on the 45 

minimalist design for reducing system complexity, we expect as few sensors as possible 46 

with the limit of capable of detect necessary hand motions. Thus, only one sensor is 47 

located on the left hand instead of one for left hand and one for right hand. (2) This 48 

sensor is attached on the left hand not right hand. Because the final status of most of 49 

gestures that involves palm end up on the palm of left hand, such as ‘Excuse’, 50 

‘Medicine’, ‘Nice’, ‘School’, ‘Stop’ and ‘What’ shown in Supplementary Fig. 2. Hence 51 

one palm sensor on the left hand is reasonable to sense the interaction motions. 52 
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 53 

Supplementary Figure 1. The detailed area information and channel label of 54 

sensors on gloves. a Fabricated glove photos show detailed sensor area information 55 

and sensor channel label (corresponding with sensor output signal graphs) of sensors in 56 

a different position. b Schematic diagram of sensors on hand, corresponding with the 57 

photos of proposed gloves. The hand images are created by the authors via Blender. 58 

Photo credit: Feng Wen, National University of Singapore.  59 
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 60 

Supplementary Figure 2. The photography of remaining 31 gestures and their 61 

corresponding triboelectric signals. a Photography of the remaining 31 gestures. The 62 

opaque and translucent gesture images show the starting and final state of the gesture, 63 

respectively. These photos are of one of the authors. b-c Corresponding signals of these 64 

31 gestures. Photo credit: Feng Wen, National University of Singapore.  65 
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 66 

Supplementary Figure 3. The train and validation accuracy increase with epochs. 67 

After a small number of training epochs 50, the accuracy achieves an acceptable level, 68 

proving the good performance of the proposed CNN model for sign language 69 

recognition.  70 
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 71 

Supplementary Figure 4. The word frequency presented in the investigated 20 72 

sentences. 19 Words are numbered from 0-18 according to the decreased usage 73 

frequency.  74 
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 75 

Supplementary Figure 5. The schematic diagram of segmentation. a ‘Do you like 76 

bowling’, b ‘You need a doctor’, and c ‘I feel better now’ as examples to show more 77 

detailed signal splitting process. 78 

  79 
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   80 

Supplementary Figure 6. The recognition result of three new sentences. a Using 81 

single classifier. b Using hierarchy classifier. The false prediction area is greatly 82 

reduced by using hierarchy classifier. Each sentence has been tested for five times with 83 

five samples. 84 
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Supplementary Note 2. The more detailed discussion about pros and cons of non-86 

segmentation and segmentation methods  87 

To illustrate the pros and cons of non-segmentation and segmentation methods, the 88 

detailed implementation of these two approaches should be discussed first. For non-89 

segmentation method, each word or sentence is labeled as the independent individual. 90 

Then all the words and sentences will be separately trained in the neural network. Upon 91 

the completion of training, the CNN will recognize words and sentences independently. 92 

With such regime, either words or sentences essentially are different classes with 93 

respect to CNN’s cognition, in which there is no built-up relationship between word 94 

units and sentences. For the strategy of segmentation, the data sliding window divides 95 

the entire sentence signal (800 data points) into fragments including intact word signals, 96 

incomplete word signals, and background signals. The label of fragment split from 97 

sentence signal is determined by the principal component. In other words, either word 98 

signal or background noise accounts for more than 50% of the sliding window size, and 99 

the label will be the number of corresponding words or 'empty' 19 as shown in Fig. 4a. 100 

Due to the specific size (200 data points) and sliding step (50 data points) of sliding 101 

window, the entire sentence signal is split into 13 fragments where each one is labeled 102 

with a number. Hence, the label of sentence will be a series of 13 numbers as illustrated 103 

in the top of Fig. 4b. Next, the sentence signals with the label of number sequences are 104 

included the dataset for training. The CNN classifier will go through all the fragments 105 

as well as the fragment sequence in sentences. Ultimately, both fragments and reversely 106 

reconstructed sentences by virtue of fragments can be correctly recognized. In particular, 107 

the CNN classifier is even endowed with the capability of recognizing never-seen 108 

sentences that comprise new-order word fragments, in which the never-seen sentences 109 

are not included in the dataset for training process and hence never learned by the neural 110 

network before.  111 

 112 

Overall, as the radar map of comparison in Supplementary Fig. 7 shows, the non-113 

segmentation approach possesses better performance in the aspect of recognition 114 

accuracy either for words or sentences. However, two following limitations of this 115 

means may compromise the universality and practicality of the whole system. Above 116 

all, owing to the independence of words and sentences, the CNN classifier cannot 117 

identify the new sentence although words in the sentence are seen before and only 118 

combined in a new order. In addition, when expanding sentence database, the labor-119 

intensive data collection of new sentences and successive training are unavoidable. This 120 

kind of independence also leads to increased effort on data collection of words since 121 

the CNN model cannot extract and recognize the word signals in the sentence. 122 

Regarding the segmentation method, in addition to identifying existing sentences in the 123 

dataset, the CNN classifier enables the recognition of new sentences. These new 124 

sentences comprise new-order word series that are different from the order of existed 125 

sentences in the dataset. Nevertheless, the segmentation introduces a large amount of 126 

random and irregular ‘empty’ signals. It sacrifices the recognition accuracy for both 127 

words and sentences. Further research efforts could be committed to optimizing the 128 

algorithm framework and improve the recognition accuracy. 129 
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 130 

Supplementary Figure 7. The radar comparison map of two methods. Comparing 131 

non-segmentation and segmentation recognition methods based on their pros and cons. 132 
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Supplementary Note 3. The accuracy performance of image recognition by 134 

comparing with sensor-based recognition system  135 

To clarify the advantages of sensor-based system, the additional test about the accuracy 136 

performance of visual images for gesture recognition is carried out. The recognition 137 

results of six representative gestures are shown in Supplementary Fig. 8 with varying 138 

light conditions (493, 275 and 13 lux). For each light condition, 50 trials of each gesture 139 

(300 trials in total) are carried out for image-based recognition. Supplementary Fig. 140 

8b(i-iii) indicate a dramatically decayed recognition accuracy from 98.33% to 58.33% 141 

when the room light fades. The efficiency of visual images/videos recognition is well-142 

known limited by the environmental interferences such as occlusions and especially 143 

light conditions. In addition, sign language involves the upper limbs as well as human 144 

faces. When the image-based system captures gesture information, the exposure of 145 

facial information to camera may arise the issue of privacy disclosure.  146 

 147 

For sensor-based human gesture recognition system, wearable sensors, are typically less 148 

bulky, flexible and provide an intimate contact with the user for high-quality data 149 

acquisition and high-accurate recognition that is comparable with its image system 150 

counterpart. The sensor-based system is considered as one of approaches to overcome 151 

the drawbacks of image recognition. On the one hand, such sensor-based systems are 152 

not affected by varying luminance and can work well even under entirely dark condition 153 

with higher environmental tolerance. On the other hand, they can mitigate the privacy 154 

issue in cost-effective way owing to no need for individual information collection such 155 

as facial characteristics. 156 
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 157 

Supplementary Figure 8. The accuracy performance of image recognition when 158 

the brightness fades. a Gesture image of ‘Love’ under three light conditions. b (i-iii) 159 

Accuracy of the image recognition under different light conditions (493, 275 and 13 160 

lux). These photos are of one of the authors. c Accuracy degradation with decreased 161 

brightness. Photo credit: Feng Wen, National University of Singapore. 162 

  163 
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Supplementary Table 1. CNN parameters. The detailed parameters for constructing 164 

Convolutional Neural Network (CNN). 165 

 166 

No Layer Type No. of 

Filters 

Kernel/ 

Pool Size 

Stride Input Size Output Size Padding 

1 Convolution 2 64 5 1 (None, 100, 32) (None, 100, 64) same 

2 Max Pooling 2   2 2 (None, 100, 64) (None, 50, 64) same 

3 Convolution 3 128 5 1 (None, 50, 64) (None, 50, 128) same 

4 Max Pooling 3   2 2 (None, 50, 128) (None, 25, 128) same 

5 Convolution 4 256 5 1 (None, 25, 128) (None, 25, 256) same 

6 Max Pooling 4   2 2 (None, 25, 256) (None, 13, 256) same 

7 Convolution 5 512 5 1 (None, 13, 256) (None, 13, 512) same 

8 Max Pooling 5   2 2 (None, 13, 512) (None, 7, 512) same 

9 Flatten       (None, 7, 512) (None, 3584) same 

10 Dense (500)       (None, 3584) (None, 500)   

11 Dense (50)       (None, 500) (None, 50)   

  167 
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Supplementary Table 2. Detailed prediction of three new sentences. The predicted 168 

and true labels of single classifier and hierarchy classifier for three new/never-seen 169 

sentence recognition with numbers in red standing for wrong prediction. 170 

 171 
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Supplementary Table 3. Benchmarking with other works. The benchmarking table 173 

for comparing with other similar works. 174 
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