PNAS www.pnas.org

$\frac{1}{2}$	
3	
4	
5	
6	
7 Supplementary Information for:	
8	
9 Hearing sensitivity: An underlying mechanism for niche differentiation in g	gleaning bats
10	
11	
12 Authors:	
13 Inga Geipel ¹ , Ella Z. Lattenkamp ¹ , M. May Dixon, Lutz Wiegrebe and Rach	hel A. Page
14	
15 ¹ Joint first authors	
16	
17 Corresponding author:	
18 Inga Geipel, inga.geipel@gmail.com	
19	
20	
22	
22	
23	
25	

27 **Table S1: Summary of recorded ABR measurements and audio sequences.** The number of individuals (n) recorded per species for two different

28 sound stimuli (tone pips and clicks), on either a logarithmic or linear scale and the number of individuals (n) for which their echolocation calls

29 where recorded are shown below.

Species	ABR measurements										ocation c	cation call recordings		
	Abbreviation of ABR files	Male (n)	Female (n)	Total per species (n)	Logarithmic 5-120 kHz (n)	Linear 5-117 kHz (n)	Linear 3-6 kHz (n)	Linear 0-5 kHz (n)	Clicks	Abbreviation of audio files	Male (n)	Female (n)	Total per species (n)	
Gardnerycteris crenulatum	gd1-gd3	1	0	1	1	1	1	1	1	Gd_01	1	0	1	
Glyphonycteris daviesi	lb10+lb11	1	0	1	1	1	1	1	1	Lamp_02	0	1	1	
Lampronycteris brachyotis	lz1+bz1	0	1	1	1	1	1	1	1	LophoS_01	1	0	1	
Lophostoma brasiliense	ls1-ls15	1	0	1	1	1	1	1	1	Ls_01-Ls_05	4	1	5	
Lophostoma silvicolum	mama1- mama2	5	1	6	6	5	5	4	6	Mama_01	1	0	1	
Macrophyllum macrophyllum	mh1-mh10	1	0	1	1	1	1	1	1	Mh_01- Mh_05	2	3	5	
Micronycteris hirsuta	mimi1- mimi14	2	3	5	5	4	5	0	5	Mimi_01- Mimi_07	5	2	7	
Micronycteris microtis	ms1-ms4	5	2	7	7	7	7	1	7	Micsch_01	1	0	1	
Micronycteris schmidtorum	mc+mc2	1	0	1	1	1	1	1	1	Mc_01	1	0	1	
Tonatia saurophila	ts1+ts2	1	0	1	1	1	1	1	1	Ts_01	1	0	1	
Trachops cirrhosus	tc3-tc6, cp7, tc8-tc16	5	3	8	8	6	6	2	8	Tc_01-Tc_07	4	3	7	
Trinycteris nicefori	lb1-lb9	4	0	4	4	4	3	0	4	Lb_01, Lb_02, Tn_03	3	0	3	

40 Fig. S1: ABR setup and positioning of the individuals. A) Photo of the open small sound-attenuating box, which was electrically insulated with a layer of copper mesh (see part of the mesh between lid and box, indicated by white arrow) and acoustically insulated with sound-attenuation foam. 41 42 The loudspeaker was embedded in the right side of the box (indicated by red arrow). Small, soft foam pads were positioned in front of the loudspeaker to support the individual and covered with paper towels for hygienic reasons. B) Each individual was carefully positioned facing the 43 44 center of the speaker (indicated by red arrow) with a 4 cm distance between its outer ear openings and the speaker. To adjust for the different sizes of the individuals, the small, soft, thin foam pats were stacked at different heights. The heads of the bats were always placed at the same level as the 45 center of the speaker. We very diligently checked the head positioning to avoid an off-center angle towards the speaker. The recording electrode 46 47 (red, plus) was placed at the caudal midline of the head, close to the brainstem and the reference electrode (white, minus) was placed at the dorsal 48 midline of the head between the ears. The ground electrode (black) was placed on the tail membrane, carefully avoiding the calcar. To ground the 49 bat, the ground electrode was connected to the copper mesh of the setup via a crocodile clamp (green). C) Side view: To prevent the bats' eyes from 50 drying, a drop of eye cream was applied. Lophostoma silvicolum is shown as an example.

Table S2: Administered amounts of Fentanyl and anesthesia durations. For all measured species we show the body weight, amount of injected Fentanyl and duration of the anesthesia (given in min), i.e. time from the first injection until we observed the bat waking up or hanging from the side of the soft mesh cages the bats were placed in to fully recover from the anesthesia. Values represent the mean \pm standard deviation (SD) for the total number of individuals. For the mean \pm SD of the anesthesia duration, the number of individuals differs from the total number of individuals measured, as several individuals were used in an additional experiment and wakeup times for these individuals were not noted. The sample size (n) of the individuals for which anesthesia duration is known is given after the values, in parentheses.

Species	Total number of individuals per species (n)	Weight [g]	Fentanyl injected [µg per g body weight]	Anesthesia duration [min] (n)
Gardnerycteris crenulatum	1	15.1	0.017	376
Glyphonycteris daviesi	1	23.6	0.014	259
Lampronycteris brachyotis	1	11.5	0.017	249
Lophostoma brasiliense	1	8.1	0.012	
Lophostoma silvicolum	6	27.5 ± 2.7	0.013 ± 0.003	295 ± 81 (4)
Macrophyllum macrophyllum	1	9.4	0.013	141
Micronycteris hirsuta	5	16.1 ± 4.4	0.013 ± 0.006	$188 \pm 54 (4)$
Micronycteris microtis	7	5.7 ± 0.3	0.014 ± 0.002	174 ± 19 (6)
Micronycteris schmidtorum	1	7.9	0.027	380
Tonatia saurophila	1	32.6	0.01	241
Trachops cirrhosus	8	33.7 ± 4.4	0.016 ± 0.005	248 ± 71 (5)
Trinycteris nicefori	4	9.2 ± 0.8	0.017 ± 0.002	276 ± 189

57 Table S3: Echolocation call parameter for 12 animalivorous gleaning bat species of the Neotropical leaf-nosed bat family (Phyllostomidae)

- **from Gamboa, Panamá.** Values are given as mean \pm standard deviation, for species with more than one individual (n > 1) as the mean of the
- 59 means.

Species	Individuals (calls)	Call duration [ms]	Peak frequency [kHz]	Bandwidth [kHz]	Min frequency [kHz]	Max frequency [kHz]	Sweep rate [kHz/ms]	Entropy
Gardnerycteris crenulatum	1 (50)	0.69 ± 0.20	71.1 ± 4.1	32.7 ± 4.8	63.2 ± 3.4	95.9 ± 4.8	47.6	0.293 ± 0.028
Glyphonycteris daviesi	1 (50)	0.55 ± 0.11	68.1 ± 4.8	36.2 ± 8.2	45.3 ± 4.9	81.5 ± 4.2	66.1	0.309 ± 0.041
Lampronycteris brachyotis	1 (50)	0.62 ± 0.21	88.1 ± 8.4	51.5 ± 13.9	68.9 ± 5.3	120.4 ± 12.5	82.5	0.367 ± 0.044
Lophostoma brasiliense	1 (50)	0.64 ± 0.10	69.1 ± 10.5	73.8 ± 12.2	58.2 ± 1.1	132.1 ± 12.4	115.5	0.398 ± 0.052
Lophostoma silvicolum	5 (250)	0.76 ± 0.08	73.7 ± 3.2	43.4 ± 3.4	56.4 ± 1.9	99.8 ± 2.2	57.0	0.336 ± 0.009
Macrophyllum macrophyllum	1 (50)	0.86 ± 0.14	77.2 ± 4.4	54.1 ± 15.8	53.8 ± 7.8	107.9 ± 14.3	63.0	0.329 ± 0.042
Micronycteris hirsuta	5 (250)	0.59 ± 0.03	80.4 ± 3.7	60.2 ± 3.4	55.9 ± 2.5	116.2 ± 3.4	101.6	0.390 ± 0.021
Micronycteris microtis	7 (350)	0.57 ± 0.04	97.6 ± 5.0	76.1 ± 5.6	60.3 ± 1.8	136.4 ± 5.0	132.6	0.430 ± 0.021
Micronycteris schmidtorum	1 (50)	0.64 ± 0.17	95.5 ± 16.9	78.5 ± 12.2	57.7 ± 6.7	136.3 ± 10.5	123.0	0.466 ± 0.041
Tonatia saurophila	1 (50)	0.69 ± 0.16	71.1 ± 8.9	64.3 ± 15.4	34.9 ± 10.4	99.2 ± 9.4	92.6	0.391 ± 0.045
Trachops cirrhosus	7 (350)	0.58 ± 0.05	69.6 ± 3.4	54.8 ± 3.5	51.5 ± 1.7	106.4 ± 3.6	94.5	0.394 ± 0.013
Trinycteris nicefori	3 (150)	0.69 ± 0.10	72.7 ± 7.7	43.3 ± 3.6	56.0 ± 6.7	99.4 ± 7.5	62.7	0.325 ± 0.016

61 Table S4: Comparative hearing thresholds of 12 gleaning bat species. Presented are the detected ABR thresholds (lowest sound levels (in dB 62 peSPL) evoking a significant ABR signal) for all tested species measured in response to 29 tone pip frequencies. For species for which more than 63 one individual was measured, the mean threshold is given and the lowest and highest measured threshold are highlighted (in green and yellow, 64 respectively). This data is also presented in Fig. 2 of the main text.

6	5
U.	\mathcal{I}

Frequency [in kHz]	M. microtis	T. nicefori	M. hirsuta	L. silvicolum	T. cirrhosus	L. brasiliense	L. brachyotis	T. saurophila	G. daviesi	G. crenulatum	M. macrophyllum	M. schmidtorum
N	7	4	4	5	6	1	1	1	1	1	1	1
5	75	88	79	56	49	64	82	46	64	64	88	94
9	51	70	38	34	42	40	46	34	NaN	46	70	46
13	37	54	39	34	40	40	40	34	NaN	40	46	28
17	38	51	42	34	38	40	34	40	34	34	34	34
21	36	48	40	36	36	34	34	40	34	34	NaN	40
25	36	50	40	34	36	34	34	28	34	40	40	34
29	37	49	39	34	39	40	34	40	NaN	34	34	34
33	38	46	37	37	38	52	40	34	34	40	40	34
37	38	48	39	35	40	64	40	34	34	40	40	52
41	39	52	43	38	38	76	40	34	34	52	40	34
45	42	49	43	37	39	64	40	34	40	46	40	40
49	43	60	49	46	47	64	52	40	46	40	52	46
53	44	57	49	50	47	64	52	40	46	52	52	64
57	43	69	49	46	41	76	52	40	46	52	52	46
61	47	64	54	50	42	76	58	40	46	58	52	52
65	47	64	58	53	40	82	52	40	46	52	58	58

Frequency [in kHz]	M. microtis	T. nicefori	M. hirsuta	L. silvicolum	T. cirrhosus	L. brasiliense	L. brachyotis	T. saurophila	G. daviesi	G. crenulatum	M. macrophyllum	M. schmidtorum
69	46	70	61	56	48	82	70	46	46	64	64	46
73	45	70	55	60	57	82	76	52	64	70	64	52
77	47	72	61	64	57	88	82	52	64	76	70	58
81	49	73	66	65	60	88	76	52	76	82	76	64
85	53	82	67	69	58	94	82	52	76	82	70	64
89	55	79	67	75	65	88	94	64	70	94	76	64
93	60	84	67	77	70	88	94	70	82	100	76	64
97	62	85	72	76	78	94	94	76	94	100	76	70
101	66	88	75	87	81	88	94	76	94	NaN	76	70
105	71	88	73	87	85	94	88	76	88	94	82	76
109	77	91	79	93	92	88	94	76	100	100	82	82
113	79	90	85	94	95	100	88	94	NaN	NaN	82	82
117	84	100	91	97	99	NaN	94	94	NaN	NaN	82	88

Fig. S2: Audiograms of 12 gleaning bat species. Graphs depict species-specific (mean) 70 71 ABR thresholds (black lines; shading presents SEM for species with $n\geq 4$), which were 72 calculated via bootstrap analyses. Measurements were conducted for 11 tone pip frequencies 73 logarithmically distributed between 5 and 120 kHz and sound levels between 0 and 110 dB 74 peSPL in 10-dB increments. The iso-response lines (colored lines) represent the different 75 strengths of the measured ABR signal (numbers indicate ABR strength in μ V). Species names 76 and the number of measured individuals (n) are given in the respective plot title (A-L). 77 Audiograms for single individuals (F-L) should be interpreted with care due to the low sample 78 size (n = 1). Horizontal bars represent different prey frequency ranges: 2 - 8 kHz (crickets; 79 brown), 0.4 - 5 kHz (frogs; light blue), 10 - 34 kHz (katydids; light green) and 3 - 30 kHz 80 (prey rustling sounds; orange). The red horizontal bar in the audiograms indicates the 81 recorded frequency bandwidth of the species-specific echolocation calls. Vertical bars

represent minimum frequency (dark blue), peak frequency (light blue), and maximum
frequency (green). For detailed echolocation call parameter measurements see SI Appendix
Table S4. Bat portraits here and in Fig. S3, Fig. S4 and Fig. S5 with courtesy of Marco
Tschapka.

- 86
- 87
- 88
- 89

Fig. S3: Audiograms of four gleaning bat species with measurable ABR's below 5 kHz. 92 93 Graphs depict species-specific (mean) ABR thresholds (black lines; shading presents SEM for 94 species with $n\geq 2$), which were calculated via bootstrap analyses. Measurements were 95 conducted for 11 tone pip frequencies linearly distributed between distributed between 0 and 96 5 kHz and 10 sound levels between 28 and 82 dB peSPL. The iso-response lines (colored 97 lines) represent the different strengths of the measured ABR signal (numbers indicate ABR 98 strength in μV). Species names and the number of measured individuals (n) are given in the 99 respective plot title (A-D). The measurements should be considered with caution due to lack 100 of calibration of the speaker below 2 kHz. Aside from T. cirrhosus and L. silvicolum (Fig. 101 3D,E), we found low auditory thresholds in the low frequency range (3 - 6 kHz) for *Tonatia* 102 saurophila and Gardnerycteris crenulatum (Fig. 3H,J). For these four species we were also 103 able to detect hearing thresholds below 3 kHz. The other eight species showed only weak 104 responses to frequencies between 3 - 6 kHz (Fig. 3). 105

Fig. S4: Stimulus level dependent ABR waveforms of 12 gleaning bat species. The panels
 show the (mean) click-evoked ABR waveform (solid black line) and SEM (shading, for

species with n>1). Displayed are ABRs recorded in response to broadband clicks (i.e. broadband impulses with a flat power spectrum between 3 and 120 kHz) presented at 50 to 110 dB peSPL stimulus level. The species show species-specific characteristics in the location of the waveform extrema, which correspond to variation in the neuronal activity in the different processing centers along the auditory pathway.

115

116

- 125 which were calculated via bootstrap analyses. Measurements were conducted for 29 tone pip
- 126 frequencies linearly distributed between 5 and 117 kHz and 13 sound levels between 28 and

- 127 100 dB peSPL in 6-dB increments. The iso-response lines (colored lines) represent the
- 128 different strengths of the measured ABR signal.

References:

- 133 1. D. Rojas, O. M. Warsi, L. M. Dávalos, Bats (Chiroptera: Noctilionoidea) challenge a recent
- 134 origin of extant Neotropical diversity. *Syst. Biol.* **65**, 432-448 (2016).