Digital Supplement: Effects of neighborhood-level data on performance equality in predicting 30-day heart failure readmissions at an urban academic medical center

Gary E. Weissman, MD, MSHP, Stephanie Teeple, Nwamaka D. Eneanya, MD, MPH, Rebecca A. Hubbard, PhD, Shreya Kangovi, MD, MSHP

March 3, 2021

Supplemental Methods

Algorithmic Equity

We chose to focus on three measures of algorithmic equity that are both easily measurable and have clear policy remedies.¹⁻³ First, we examined error due to statistical bias in the predictions. Statistical bias, distinct from human bias, reflects the degree to which, on average, a model's predictions diverge from the true values. Biased models can improve with the collection of additional variables that are informatively associated with the outcome of interest or with the use of a more flexible modeling approach. To measure bias we compared the point estimates of the Brier score between white and non-white patients. Additionally, we iteratively resampled the data with an increasing number of randomly sampled input variables and measured the models' performance on the testing data in aggregate and by patient race.

Second, we examined the error due to variance. This type of error reflects how flexibly the model can generalize to a new dataset (e.g. the testing data) after being fitted with the training dataset. Models that have interpreted random noise in the training data as true signals will not generalize well to new datasets and will be overfit. Error due to variance can be improved with increased regularization or with the collection of more training observations. To measure error due to variance, we iteratively resampled from the training data increasing numbers of observations to train each model and then measured the models' performance using the testing data in aggregate and by patient race.

Third, we examined the classification parity, measured by differences in the positive predictive value, over a range of classification thresholds. In a fair model, these rates should be equivalent across patient sub-groups. This metric of equity is intended to gauge a model that supports deployment of resources for individual patients and does not require that outcome prevalence be the same across subgroups, although this could be an alternative measure of fairness. In predictive model development the classification threshold is often chosen by default, or chosen to maximize a performance metric with little attention to algorithmic equity. Classification parity might be improved in models by increasing the overall model performance in a particular group or by adjusting the classification threshold. Therefore, we examined the positive predictive value in aggregate and by patient race over all possible classification thresholds in the testing sample.

Supplemental Tables

ICD codes to identify congestive heart failure admissions follow the approach of Amarasingham et al. $^{\rm 4}$

Table 1: Diagnostic codes for congestive heart failure.

ICD9 Codes
402.01
402.11
402.91
425.1
425.4
425.5
425.7
425.8
425.9
428.0
428.1
428.2
428.21
428.22
428.23
428.3
428.31
428.32
428.33
428.4
428.41
428.42
428.43
428.9

ICD codes for depression are taken from Fiest et al.⁵

Table 2: Diagnostic codes for depression.

ICD9	ICD10
296.20	F32.0
296.21	F32.1
296.22	F32.2

296.23	F32.3
296.24	F32.4
296.25	F32.5
296.30	F32.6
296.31	F32.7
296.32	F32.8
296.33	F32.9
296.34	F33.0
296.35	F33.1
300.4	F33.2
311	F33.3
296.5	F33.8
296.6	F33.9
296.82	F34.1
296.90	F41.2
309.0	F31.3
309.1	F31.4
309.28	F31.5
	F31.6
	F34.8
	F34.9
	F38.0
	F38.1
	F38.8
	F39
	F99

Table 3: Tuning Grid - Elastic Net

alpha	lambda
1e-05	0.001
1e-04	0.003
1e-03	0.005
1e-02	0.010

5e-02	0.015
8e-02	0.020
1e-01	0.025
2e-01	0.030
3e-01	0.040
5e-01	0.050
6e-01	0.100
7e-01	0.150
8e-01	0.200
9e-01	0.300
1e+00	0.400
1e-05	0.500
1e-04	0.700
1e-03	0.800
1e-02	0.900
5e-02	1.000
8e-02	1.500
1e-01	2.000
2e-01	3.000
3e-01	4.000
5e-01	5.000
6e-01	6.000
7e-01	7.000
8e-01	8.000
9e-01	9.000
1e+00	10.000

Table 4: Tuning Grid - Gradient Boosting Machine

n.trees	interaction.depth	shrinkage	n.minobsinnode
5	1	0.0001	1
10	2	0.0010	2
15	3	0.0050	3
20	5	0.0080	4
25	7	0.0100	5
50	10	0.0200	6

75	0.0250	7
100	0.0300	8
	0.0400	9
	0.0500	10
	0.0600	11
	0.0800	12
	0.1000	13
	0.2000	
	0.3000	
	0.4000	
	0.5000	
	0.6000	
	0.7000	
	0.8000	

Table 5: Differences in model performance with inclusion of the Area Deprivation Index with bootstrapped 95% confidence intervals. Positive values indicate an increase in the metric (thus indicating worse performance in this case). Abbreviations: EN = elastic net, GBM = gradient boosting machine, BS = Brier score, CI = confidence interval.

Model type	Metric	Difference	2.5% CI	95% CI	p-value
EN	BS	4.06e-05	-0.0003749	0.0002553	0.7943206
GBM	BS	3.84e-04	-0.0025067	0.0015735	0.7155284

Table 6: Summary of performance characteristics for models across all models in the held-out test set with bootstrapped confidence intervals. Abbreviations: EN = elastic net, GBM = gradient boosting machine.

Model		Patient	Brier score (95% confidence	C-statistic (95% confidence
type	ADI	group	interval)	interval)
EN	No	Non-white	0.13 (0.13 to 0.14)	0.60 (0.54 to 0.66)
EN	No	White	0.12 (0.12 to 0.13)	0.64 (0.58 to 0.72)
GBM	No	Non-white	0.14 (0.11 to 0.16)	0.50 (0.44 to 0.56)

No	White	0.13 (0.10 to 0.16)	0.45 (0.34 to 0.56)
Yes	Non-white	0.13 (0.13 to 0.14)	0.61 (0.56 to 0.66)
Yes	White	0.12 (0.12 to 0.13)	0.64 (0.57 to 0.71)
Yes	Non-white	0.14 (0.12 to 0.16)	0.40 (0.34 to 0.46)
Yes	White	0.12 (0.09 to 0.16)	0.42 (0.31 to 0.53)
No	All	0.13 (0.13 to 0.14)	0.60 (0.55 to 0.65)
Yes	All	0.13 (0.13 to 0.14)	0.60 (0.55 to 0.65)
No	All	0.13 (0.11 to 0.16)	0.48 (0.42 to 0.54)
Yes	All	0.13 (0.11 to 0.15)	0.40 (0.34 to 0.46)
	No Yes Yes Yes No Yes No Yes	NoWhiteYesNon-whiteYesNon-whiteYesWhiteNoAllYesAllNoAllYesAllYesAll	NoWhite0.13 (0.10 to 0.16)YesNon-white0.13 (0.13 to 0.14)YesWhite0.12 (0.12 to 0.13)YesNon-white0.14 (0.12 to 0.16)YesWhite0.12 (0.09 to 0.16)NoAll0.13 (0.13 to 0.14)YesAll0.13 (0.11 to 0.16)NoAll0.13 (0.11 to 0.15)

Table 7: Missingness of predictor variables overall and by race..

				nonwhite_		
var_name	overall_m	overall_m	nonwhite_mi	missing_pc	white_miss	white_miss
S	issing_pct	issing_cnt	ssingness_cnt	t	ingness_cnt	ingness_pct
worst_pco	0.946043	1578	0.9598394	1195	0.9054374	383
2_24h	2					
worst cpk	0.932254	1555	0.9236948	1150	0.9574468	405
_24h	2					
worst alb	0.594124	991	0.6080321	757	0.5531915	234
umin 24h	7		0.0000022		0.0001/10	201
worst hili	0 486211	811	0 4931727	614	0 4657210	197
24h	0.100211	011	0.1751727	011	0.1057210	177
worst tro	0 403477	673	0 4248996	529	0 3404255	11.1.
nonin 24	0.403477	075	0.4240770	527	0.3404233	177
h	-					
worst pro	0 368105	614	0 3019679	4.88	0 2078723	126
hnn $24h$	0.300103	014	0.3717077	400	0.2770725	120
worst inr	0.266006	(1)	0 2047200	470	0 21 4 4 2 0 0	100
24h	0.300900	012	0.364/390	4/9	0.3144208	155
_2 +11	0 1 5 5 7 5	250	0 1 4050 4 4	105	0 1 7 40 400	
worst_te	0.155275	259	0.1485944	185	0.1/49409	/4
mp_24n	8			100	.	
worst_sbp	0.152278	254	0.1445783	180	0.1749409	74
_24h	2					
worst_wb	0.048561	81	0.0514056	64	0.0401891	17
c_24h	2					
worst_bu	0.023980	40	0.0240964	30	0.0236407	10
n_24h	8					
worst_cre	0.022182	37	0.0232932	29	0.0189125	8
at_24h	3					

worst_na_ 24h	0.020983 2	35	0.0216867	27	0.0189125	8
worst_glu cose_24h	0.014388 5	24	0.0136546	17	0.0165485	7
is_hispani c	0.001798 6	3	0.0024096	3	0.0000000	0
age	0.000000 0	0	0.0000000	0	0.0000000	0
any_cocai ne_6mos	0.000000 0	0	0.0000000	0	0.0000000	0
any_depr_ las6m	0.000000 0	0	0.0000000	0	0.0000000	0
any_thc_6 mos	0.000000 0	0	0.0000000	0	0.0000000	0
count_er_ 6m	0.000000 0	0	0.0000000	0	0.0000000	0
count_h_6 m	0.000000 0	0	0.0000000	0	0.0000000	0
count_op_ 6m	0.000000 0	0	0.0000000	0	0.0000000	0
gender	0.000000 0	0	0.0000000	0	0.0000000	0
has_medi caid	0.000000 0	0	0.0000000	0	0.0000000	0
is_white	0.000000	0	0.0000000	0	0.0000000	0

Table 8: Model performance (Brier score) using an anti-classification approach that removes race entirely from the model and still uses the Area Deprivation Index (ADI) in its place. EN = elastic net, GBM = gradient boosting machine.

Model type	Patient group	Brier Score (95% confidence interval)
EN	All	0.13 (0.13 to 0.14)
GBM	All	0.13 (0.11 to 0.16)
EN	White	0.12 (0.12 to 0.13)
GBM	White	0.13 (0.10 to 0.15)
EN	Non-white	0.13 (0.13 to 0.14)
GBM	Non-white	0.14 (0.11 to 0.16)

Supplemental Figures

Figure 1: Density plot of patient addresses around Philadelphia with Hospital Locations

Figure 2: Results of grid search EN with baseline data

Figure 3: Results of grid search EN with inclusion of ADI data

Figure 4: Results of grid search GBM with baseline data

Figure 5: Results of grid search GBM with inclusion of ADI data

Figure 6: Results of reweighting analysis

Figure 7: Variable importance by model type and use of the Area Deprivation Index. Multicollinearity between clinical variables such as BUN and creatinine may provide unstable estimates of variable importance for those variables.

Figure 8: Correlations of predictor variables in the training (left panel) and testing (right panel) sets.

References

1. Chen IY, Szolovits P, Ghassemi M. Can AI Help Reduce Disparities in General Medical and Mental Health Care? AMA Journal of Ethics. 2019 Feb;21(2):167–79.

2. Chen I, Johansson FD, Sontag D. Why Is My Classifier Discriminatory? arXiv:180512002 [cs, stat] [Internet]. 2018 May; Available from: https://arxiv.org/abs/1805.12002

3. Corbett-Davies S, Goel S. The Measure and Mismeasure of Fairness: A Critical Review of Fair Machine Learning. arXiv:180800023 [cs] [Internet]. 2018 Jul; Available from: https://arxiv.org/abs/1808.00023

4. Amarasingham R, Moore BJ, Tabak YP, Drazner MH, Clark CA, Zhang S, et al. An automated model to identify heart failure patients at risk for 30-day readmission or death using electronic medical record data. Medical care. 2010 Nov;48(11):981–8.

5. Fiest KM, Jette N, Quan H, St. Germaine-Smith C, Metcalfe A, Patten SB, et al. Systematic review and assessment of validated case definitions for depression in administrative data. BMC Psychiatry. 2014;14(1):289.