## SUPPLEMENTARY MATERIAL FOR

## Myxobacterial depsipeptide chondramides interrupt SARS-CoV-2 entry by targeting its broad, cell tropic spike protein

Rey Arturo Fernandez<sup>a</sup>, Mark Tristan Quimque<sup>a,b,c</sup>, Kin Israel Notarte<sup>d</sup>, Joe Anthony H. Manzano<sup>a,e</sup>, Delfin Yñigo Pilapil IV<sup>a,e</sup>, Von Novi de Leon<sup>a,e</sup>, John Jeric San Jose<sup>a</sup>, Omar Villalobos<sup>f</sup>, Nisha Harur Muralidharan<sup>g</sup>, M. Michael Gromiha<sup>g</sup>, Simone Brogi<sup>h</sup>, Allan Patrick G. Macabeo<sup>a</sup>,\*

<sup>a</sup>Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Blvd., Manila1015, Philippines
<sup>b</sup>The Graduate School, University of Santo Tomas, España Blvd., Manila 1015, Philippines
<sup>c</sup>Chemistry Department, College of Science and Mathematics, Mindanao State University – Iligan Institute of Technology, Tibanga, 9200 Iligan City, Philippines
<sup>d</sup>Faculty of Medicine and Surgery, University of Santo Tomas, España Blvd., Manila 1015, Philippines
<sup>e</sup>Department of Biological Sciences, College of Science, University of Santo Tomas, España Blvd., Manila 1015, Philippines
<sup>f</sup>Department of Pharmacy, Faculty of Pharmacy, University of Santo Tomas, España Blvd., Manila 1015, Philippines

<sup>g</sup>Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai 600 036, Tamilnadu, India

<sup>h</sup>Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy

\*Corresponding author: agmacabeo@ust.edu.ph / allanpatrick\_m@yahoo.com; Tel No. +632-34061611 local 4057; Fax No. +632-87314-031.

## **Table of Contents**

| Figure S1. Chemical structures of the myxobacterial secondary metabolites 1-24.  | 4 |
|----------------------------------------------------------------------------------|---|
| Figure S2. Chemical structures of the myxobacterial secondary metabolites 24-48. | 5 |
| Figure S3. Chemical structures of the myxobacterial secondary metabolites 49-72. | 6 |

**Figure S4.** (A) Superposition between the docking output from AutoDock Vina (grey surface for the protein and green sticks for the ligand) and Glide considering the Brazilian variant (pink sticks for the ligand), RMSD of 1.011 Å; (B) superposition between the docking output from AutoDock Vina (grey surface for the protein and green sticks for the ligand) and Glide considering the South African variant (cyan sticks for the ligand), RMSD of 0.717 Å; (C) superposition between the docking output from AutoDock Vina (grey surface for the ligand) and Glide considering the UK variant (yellow sticks for the ligand), RMSD of 0.936 Å; (D) superposition between the docking output from AutoDock Vina (grey surface for the protein and green sticks for the ligand), RMSD of 0.936 Å; (D) superposition between the docking output from AutoDock Vina (grey surface for the ligand) and Glide considering the wild type protein (magenta sticks for the ligand), RMSD of 0.984 Å.

**Table S1.** Docking scores of myxobacterial secondary metabolites 1-72 against SARS-8CoV-2 spike protein receptor-binding regions.8

**Table S2.** Summary of the binding energies (BE) and interacting residues of the top10compounds against SARS-CoV-2 spike wild-type and variants I472V, A475V and1452Y.

**Table S3.** Summary of the binding energies (BE) and interacting residues of the top11compounds against SARS-CoV-2 spike wild-type and variants V438A, F490L, S477N11and N439K11

**Table S4.** List of active residues set and protein-protein dock poses during protein-12protein docking of spike against host receptors.12

**Table S5.** Summary of binding energies of top compounds against spike RBD for13ACE2 or GRP78, ACE2, and GRP78 based on selectivity docking.13

**Table S6.** Lipinski's Rule of Five for ADME analysis of compounds 1–8.13

| <b>Table S7.</b> Predicted toxicity parameters and solubility of compounds 1–8.     | 14 |
|-------------------------------------------------------------------------------------|----|
| Table S8. Docking grid coordinates of SARS-CoV-2 spike proteins and host receptors. | 14 |
| References                                                                          | 14 |



Chondramide C3 (1)

Ho HO HO HN HN





Chondramide E3 (3)

Ho

но



Aetheramide B (6)

Bromochondramide C3 (7)





Chondramide E2 (5)

Chondramide C6 (9)



Aethermide A (10)



Chondramide A (A1) (11)



Chondramide B (A2) (12)





Chondramide A8 (20)





Chondramide A3 (13)

Chondramide A5 (17)

нс

'nн



Chondramide A3, linear (14)

Chondramide A6 (18)



Chondramide A7 (19)



Figure S1. Chemical structures of the myxobacterial secondary metabolites 1-24.

4



Propionyl Chondramide C1 (25)

о но<sup>л</sup>

δн



Propionyl Bromochondramide C3 (26)

Chondramide C7 (30)

Q,

HO



Chondramide C8 (31)

0

HO





Chondramide C5 (28)







Chondramide C6 (29)





Chondramide C10 (34)





но

нс



Chondramide E6 (37)





Chondramide E8 (39)



Chondramide E9 (40)



Chondramide E10 (41)







ΟН

Hyalachelin A (43)

ОН

он

Hyalachelin B (44)

 $NH_2$ 

ŅН

юн



Figure S2. Chemical structures of the myxobacterial secondary metabolites 25-48.



Figure S3. Chemical structures of the myxobacterial secondary metabolites 49-72.



**Figure S4.** (A) Superposition between the docking output from AutoDock Vina (grey surface for the protein and green sticks for the ligand) and Glide considering the Brazilian variant (pink sticks for the ligand), RMSD of 1.011 Å; (B) superposition between the docking output from AutoDock Vina (grey surface for the protein and green sticks for the ligand) and Glide considering the South African variant (cyan sticks for the ligand), RMSD of 0.717 Å; (C) superposition between the docking output from AutoDock Vina (grey surface for the protein and green sticks for the ligand) and Glide considering the UK variant (yellow sticks for the ligand), RMSD of 0.936 Å; (D) superposition between the docking output from AutoDock Vina (grey surface for the protein and green sticks for the ligand) and Glide considering the UK variant (wellow sticks for the ligand), RMSD of 0.936 Å; (D) superposition between the docking output from AutoDock Vina (grey surface for the protein and green sticks for the ligand) and Glide considering the wild type protein (magenta sticks for the ligand), RMSD of 0.984 Å.

|     | Bind        | ling energy  | (kcal/mol)             |     | Binding energy (kcal/mol) |              |                        |  |  |
|-----|-------------|--------------|------------------------|-----|---------------------------|--------------|------------------------|--|--|
| Cpd | ACE2<br>RBD | GRP78<br>RBD | NRP1 binding<br>region | Cpd | ACE2<br>RBD               | GRP78<br>RBD | NRP1 binding<br>region |  |  |
| 1   | -8.7        | -7.6         | -4.3                   | 22  | -7.7                      | -7.7         | -5.6                   |  |  |
| 2   | -8.6        | -7.9         | -5.2                   | 23  | -7.3                      | -8.3         | -4.9                   |  |  |
| 3   | -8.4        | -7.6         | -6.1                   | 24  | -7.1                      | -8.5         | -5.3                   |  |  |
| 4   | -8.4        | -7.8         | -4.9                   | 25  | -7.4                      | -8.2         | -5.3                   |  |  |
| 5   | -8.2        | -8.3         | -4.8                   | 26  | -7.6                      | -7.3         | -4.4                   |  |  |
| 6   | -8.1        | -7.7         | -6.3                   | 27  | -7.7                      | -8.3         | -6.1                   |  |  |
| 7   | -8.1        | -7.8         | -5.7                   | 28  | -7.1                      | -7.7         | -4.7                   |  |  |
| 8   | -8          | -8.7         | -5.2                   | 29  | -7.6                      | -8.8         | -5.1                   |  |  |
| 9   | -7.2        | -7.4         | -4.0                   | 30  | -7.5                      | -8.0         | -4.8                   |  |  |
| 10  | -7.4        | -7.4         | -5.2                   | 31  | -7.0                      | -7.6         | -4.8                   |  |  |
| 11  | -7.9        | -7.7         | -5.1                   | 32  | -7.7                      | -8.2         | -5.7                   |  |  |
| 12  | -7.5        | -7.9         | -5.3                   | 33  | -7.1                      | -8.1         | -6.0                   |  |  |
| 13  | -6.2        | -7.3         | -5.1                   | 34  | -7.2                      | -7.6         | -5.9                   |  |  |
| 14  | -7.7        | -7.7         | -4.3                   | 35  | -7.9                      | -7.8         | -5.1                   |  |  |
| 15  | -7.5        | -7.3         | -5.9                   | 36  | -7.0                      | -8.0         | -4.9                   |  |  |
| 16  | -7.5        | -7.5         | -5.4                   | 37  | -7.7                      | -7.6         | -5 .2                  |  |  |
| 17  | -7.5        | -7.6         | -5.7                   | 38  | -6.8                      | -7.3         | -5.0                   |  |  |
| 18  | -7.5        | -7.4         | -5.6                   | 39  | -7.4                      | -7.3         | -4.5                   |  |  |
| 19  | -7.3        | -8.5         | -5.4                   | 40  | -7.6                      | -8.4         | -5.2                   |  |  |
| 20  | -7.8        | -7.8         | -5.4                   | 41  | -7.4                      | -7.3         | -5.6                   |  |  |
| 21  | -7.4        | -8.0         | -5.5                   | 42  | -6.5                      | -7.2         | -5.1                   |  |  |

**Table S1.** Docking scores of myxobacterial secondary metabolites 1-72 against SARS-CoV-2

 spike protein receptor-binding regions.

|     | Bino        | ling energy  | (kcal/mol)             |     | Binding energy (kcal/mol) |              |                        |  |  |
|-----|-------------|--------------|------------------------|-----|---------------------------|--------------|------------------------|--|--|
| Cpd | ACE2<br>RBD | GRP78<br>RBD | NRP1 binding<br>region | Cpd | ACE2<br>RBD               | GRP78<br>RBD | NRP1 binding<br>region |  |  |
| 43  | -6.8        | -7.7         | -4.9                   | 58  | -6.3                      | -7.6         | -5.2                   |  |  |
| 44  | -6.8        | -7.6         | -5.9                   | 59  | -6.6                      | -7.1         | -4.6                   |  |  |
| 45  | -6.6        | -6.9         | -5.7                   | 60  | -6.3                      | -7.6         | -6.0                   |  |  |
| 46  | -6.8        | -7.1         | -5.1                   | 61  | -6.4                      | -7.2         | -4.9                   |  |  |
| 47  | -6.5        | -5.6         | -4.9                   | 62  | -6.6                      | -7.2         | -6.0                   |  |  |
| 48  | -6.3        | -5.7         | -5.2                   | 63  | -5.1                      | -6.3         | -4.2                   |  |  |
| 49  | -7.4        | -7.8         | -5.1                   | 64  | -6.5                      | -7.4         | -5.8                   |  |  |
| 50  | -6.7        | -7.6         | -5.4                   | 65  | -6.3                      | -7.3         | -4.8                   |  |  |
| 51  | -6.7        | -6.9         | -5.0                   | 66  | -6.0                      | -5.7         | -4.0                   |  |  |
| 52  | -6.2        | -7.3         | -5.8                   | 67  | -5.6                      | -5.8         | -4.4                   |  |  |
| 53  | -6.9        | -6.8         | -5.3                   | 68  | -5.9                      | -6.7         | -4.3                   |  |  |
| 54  | -6.6        | -7.5         | -5.8                   | 69  | -6.5                      | -6.6         | -5.4                   |  |  |
| 55  | -6.4        | -7.7         | -5.4                   | 70  | -7.4                      | -8.4         | -6.5                   |  |  |
| 56  | -5.8        | -7.6         | -5.1                   | 71  | -6.0                      | -6.0         | -5.7                   |  |  |
| 57  | -6.1        | -5.8         | -4.6                   | 72  | -5.3                      | -5.4         | -4.9                   |  |  |

**Table S2.** Summary of the binding energies (BE) and interacting residues of the top compounds against SARS-CoV-2 spike wild-type and variants I472V, A475V and L452Y.

| I472V                       |      |                                                      |                                                                                                                     |      | A475V                             |                                                                                                 |      | L452R                                        |                                                                                                                                                  |  |
|-----------------------------|------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------|-----------------------------------|-------------------------------------------------------------------------------------------------|------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Compounds                   | BE   | Conventional<br>H-bonding                            | Other types of molecular<br>interactions                                                                            | BE   | Conventional<br>H-bonding         | Other types of molecular<br>interactions                                                        | BE   | Conventional<br>H-bonding                    | Other types of molecular<br>interactions                                                                                                         |  |
| Chondramide C3 (1)          | -8.7 | Glu406, Tyr449,<br>Tyr453, Ser494,<br>Tyr495, Tyr505 | Arg403 (π-cation), Lys417 (π-<br>alkyl), Tyr453 (π-π stacked),<br>Tyr505 (π-alkyl)                                  | -8.4 | Glu406, Tyr453,<br>Ser494, Gly496 | Arg403 (π-cation), Gly496 (π-<br>donor hydrogen bond) Tyr505 (π-<br>alkyl), Gly496 (C-H bond)   | -8.5 | Glu406, Tyr453,<br>Ser494, Asn501,           | Arg403 (π-cation), Tyr453 (π-π<br>stacked), Gly496 (π-donor<br>hydrogen bond), Tyr505 (π-alkyl)<br>Gly496 (C-H bond)                             |  |
| Chondramide C (2)           | -8.6 | Tyr453,<br>Asn501, Tyr505                            | Tyr449 ( $\pi$ -alkyl), Tyr505 ( $\pi$ -alkyl,<br>$\pi$ - $\pi$ stacked and $\pi$ - $\pi$ <i>T</i> -shaped)         | -8.3 | Tyr449                            | Arg403 (π-cation), Tyr453 (π-π<br>stacked), Gly496 (π-donor<br>hydrogen bond), Tyr505 (π-alkyl) | -8.3 | Tyr449, Tyr505                               | Arg403 ( $\pi$ -cation), Tyr453 ( $\pi$ - $\pi$<br>stacked), Gly496 ( $\pi$ -donor<br>hydrogen bond), Tyr505 ( $\pi$ -alkyl)                     |  |
| Chondramide E3 (3)          | -8.4 | Glu406, Tyr453,<br>Tyr449, Ser494,<br>Asn505         | Arg403 (π-cation), Tyr453 (π-π<br>stacked), Gly496 (π-donor<br>hydrogen bond)                                       | -7.3 | Gly496, Asn501                    | Arg403 (π-cation), Tyr505 (π-π<br>stacked)                                                      | -8.2 | Gly496, Gln498                               | Arg403 ( $\pi$ -cation), Tyr453 ( $\pi$ - $\pi$<br>stacked), Tyr505 ( $\pi$ -alkyl, $\pi$ - $\pi$<br>stacked and $\pi$ - $\pi$ <i>T</i> -shaped) |  |
| Chondramide D (4)           | -8.3 | Tyr453, Gly496                                       | Tyr449 ( $\pi$ -alkyl), Tyr505 ( $\pi$ - $\pi$ stacked and $\pi$ - $\pi$ <i>T</i> -shaped)                          | -8.2 | Tyr453,<br>Asn501, Tyr505         | Tyr449 ( $\pi$ -alkyl), Tyr505 ( $\pi$ - $\pi$ stacked and $\pi$ - $\pi$ <i>T</i> -shaped)      | -8.2 | Tyr453, Gly496,<br>Tyr505                    | Tyr449 ( $\pi$ -alkyl), Tyr505 ( $\pi$ - $\pi$ stacked and $\pi$ - $\pi$ T-shaped)                                                               |  |
| Chondramide E2 (5)          | -8.2 | Tyr449, Gln498,<br>Asn501                            | Tyr449 ( $\pi$ -alkyl), Tyr505 ( $\pi$ - $\pi$ stacked)                                                             | -7.9 | Gly496, Asn501                    | Arg403 ( $\pi$ -cation), Tyr449 ( $\pi$ - $\pi$<br>stacked), Tyr505 ( $\pi$ - $\pi$ T-shaped)   | -7.9 | Gly496, Asn501                               | Arg403 ( $\pi$ -cation), Tyr453 ( $\pi$ - $\pi$<br>stacked), Tyr505 ( $\pi$ - $\pi$ stacked<br>and $\pi$ - $\pi$ <i>T</i> -shaped)               |  |
| Aetheramide B (6)           | -8   | Arg403, Asn501                                       | Lys417 (π-alkyl), Tyr489 (π-π T-<br>shaped), Gly496 (π-donor<br>hydrogen bond), Tyr505 (π-π T-<br>shaped and alkyl) | -8.1 | Arg403,<br>Gly496, Asn501         | Gly496 (π-donor hydrogen bond)<br>Asn501 (C-H bond)                                             | -8.1 | Arg403,<br>Asn501, Tyr505                    | Tyr489 ( $\pi$ - $\pi$ T-shaped), Gly496<br>( $\pi$ -donor hydrogen bond)                                                                        |  |
| Bromo-chondramide C3<br>(7) | -8   | Tyr453,<br>Asn501, Tyr505                            | Tyr505 ( $\pi$ - $\pi$ stacked and $\pi$ - $\pi$ T-shaped)                                                          | -6.6 | Ser494, Gly496,<br>Gln498         | Tyr495 ( <i>π</i> -alkyl), Tyr505 ( <i>π</i> - <i>π</i> T-<br>shaped)<br>Gly496 (C-H bond)      | -8   | Glu406, Tyr453,<br>Ser494, Gly496,<br>Tyr505 | Arg403 (π-cation), Lys417 (π-<br>alkyl), Tyr453 (π-π stacked),<br>Gly496 (π-donor hydrogen bond)                                                 |  |
| Chondramide A9 (8)          | -8.7 | Glu406, Tyr449,<br>Tyr453, Ser494,<br>Tyr495, Tyr505 | Arg403 (π-cation), Lys417 (π-<br>alkyl), Tyr453 (π-π stacked),<br>Tyr505 (π-alkyl)                                  | -7.7 | Ser349, Asn450,<br>Gln493         | Tyr449 and Leu452 (π-alkyl),<br>Phe490 (π-π stacked)                                            | -8.3 | Thr470, Gly482,<br>Leu492,<br>Gln493, Ser494 | Phe490 ( $\pi$ - $\pi$ stacked), Gly482 (C-H bond)                                                                                               |  |

**Table S3.** Summary of the binding energies (BE) and interacting residues of the top compounds against SARS-CoV-2 spike wild-type and variants V438A, F490L, S477N and N439K.

|    | V483A   |                                         |                                                                                                                            | F490L |                                         |                                                                                                                                    | S477N |                                                    |                                                                                                                                             | N439K |                                         |                                                                                                                      |
|----|---------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Ср | d<br>BE | Conventional<br>H-bonding               | Other types of molecular<br>interactions                                                                                   | BE    | Conventional<br>H-bonding               | Other types of molecular interactions                                                                                              | BE    | Conventional<br>H-bonding                          | Other types of molecular<br>interactions                                                                                                    | BE    | Conventional<br>H-bonding               | Other types of molecular<br>interactions                                                                             |
| 1  | -8.5    | Glu406,<br>Tyr453,<br>Ser494,<br>Asn501 | Arg403 (π-cation), Tyr453<br>(π-π stacked), Gly496 (π-<br>donor hydrogen bond),<br>Tyr505 (π-alkyl), Gly496<br>(C-H bond)  | -8.5  | Glu406,<br>Tyr453,<br>Ser494,<br>Asn501 | Arg403 (π-cation),<br>Tyr453 (π-π stacked),<br>Gly496 (π-donor<br>hydrogen bond), Tyr505<br>(π-alkyl), Gly496 (C-H<br>bond)        | -8.5  | Glu406,<br>Tyr453,<br>Ser494,<br>Gly496,<br>Tyr505 | Arg403 (π-cation), Lys417 (π-<br>aklyl), Tyr453 (π-π stacked),<br>Gly496 (π-donor hydrogen<br>bond), Tyr505 (π-alkyl), Gly496<br>(C-H bond) | -8.4  | Glu406,<br>Tyr453,<br>Ser494,<br>Asn501 | Arg403 (π-cation), Tyr453 (π-π<br>stacked), Gly496 (π-donor<br>hydrogen bond), Tyr505 (π-alkyl)<br>Gly496 (C-H bond) |
| 2  | -8.4    | Tyr453,<br>Asn501,<br>Tyr505            | Tyr449 ( $\pi$ -alkyl), Tyr505 ( $\pi$ - $\pi$ T-shaped and $\pi$ -alkyl)                                                  | -8.3  | Tyr449                                  | Arg403 ( $\pi$ -cation),<br>Tyr453 ( $\pi$ - $\pi$ stacked),<br>Gly496 ( $\pi$ -donor<br>hydrogen bond), Tyr505<br>( $\pi$ -alkyl) | -8.4  | Tyr453,<br>Gly496,<br>Asn501                       | Tyr449 (π-alkyl), Tyr505 (π-π T-<br>shaped and π-alkyl)                                                                                     | -8.3  | Tyr449, Tyr505                          | Arg403 (π-cation), Tyr453 (π-π<br>stacked), Gly496 (π-donor<br>hydrogen bond), Tyr505 (π-alkyl)<br>Gly496 (C-H bond) |
| 3  | -8.2    | Gly496                                  | Arg403 (π-cation), Tyr453<br>(π-π stacked), Tyr505 (π-π<br>stacked and π-alkyl)                                            | -7.4  | Gly496,<br>Gln498                       | Arg403 ( $\pi$ -cation),<br>Tyr453 ( $\pi$ - $\pi$ stacked),<br>Tyr505 ( $\pi$ - $\pi$ stacked and<br>$\pi$ - $\pi$ T-shaped)      | -7.4  | Gly496                                             | Arg403 (π-cation), Tyr505 (π-π<br>stacked)                                                                                                  | -7.4  | Gly496,<br>Gln498                       | Arg403 (π-cation), Tyr505 (π-π<br>stacked)                                                                           |
| 4  | -8.3    | Tyr453,<br>Asn501,<br>Tyr505            | Tyr449 ( $\pi$ -alkyl), Tyr505<br>( $\pi$ - $\pi$ stacked and $\pi$ - $\pi$ T-<br>shaped)                                  | -8.2  | Tyr453,<br>Gly496,<br>Tyr505            | Tyr449 ( $\pi$ -alkyl), Tyr505<br>( $\pi$ - $\pi$ stacked and $\pi$ - $\pi$ T-<br>shaped)                                          | -8.2  | Arg403,<br>Asn501,<br>Tyr505                       | Tyr449 (π-alkyl), Tyr505 (π-π<br>stacked and π-π T-shaped)                                                                                  | -8.2  | Arg403,<br>Asn501,<br>Tyr505            | Tyr449 ( $\pi$ -alkyl), Tyr505 ( $\pi$ - $\pi$ stacked and $\pi$ - $\pi$ T-shaped)                                   |
| 5  | -7.9    | Gly496,<br>Asn501                       | Arg403 ( $\pi$ -cation), Tyr453<br>( $\pi$ - $\pi$ stacked), Tyr505 ( $\pi$ - $\pi$<br>stacked and $\pi$ - $\pi$ T-shaped) | -7.9  | Gly496,<br>Gln498                       | Arg403 ( $\pi$ -cation),<br>Tyr453 ( $\pi$ - $\pi$ stacked),<br>Tyr505 ( $\pi$ - $\pi$ stacked and<br>$\pi$ - $\pi$ T-shaped)      | -7.9  | Gly496                                             | Arg403 (π-cation), Tyr453 (π-π<br>stacked), Tyr505 (π-π stacked<br>and π-π T-shaped)                                                        | -7.9  | Gly496                                  | Arg403 (π-cation), Tyr453 (π-π<br>stacked), Tyr505 (π-π stacked and<br>π-π T-shaped)                                 |
| 6  | -8.1    | Arg403,<br>Asn501                       | Tyr489 (π-π T-shaped),<br>Gly496 (π-donor hydrogen<br>bond), Tyr505 (π-alkyl),<br>Gly496 (C-H bond)                        | -8    | Arg403,<br>Asn501,<br>Tyr505            | Tyr489 (π-π T-shaped),<br>Gly496 (π-donor<br>hydrogen bond), Gly496<br>and Asn501 (C-H bond)                                       | -8.1  | Arg403,<br>Gly496,<br>Asn501                       | Arg403 (π-cation), Lys417<br>(Alkyl), Tyr489 (π-alkyl)<br>Gly496 and Asn501 (C-H bond)                                                      | -8.1  | Arg403,<br>Gly496                       | Lys417 (π-alkyl), Tyr489 (π-π T-<br>shaped)<br>Gly496 (C-H bond)                                                     |
| 7  | -7.8    | Ser494,<br>Gly496,<br>Gln498            | Tyr505 ( $\pi$ - $\pi$ T-shaped and $\pi$ -alkyl), Gly496 (C-H bond)                                                       | -6.6  | Ser494,<br>Gly496,<br>Gln498            | Tyr505 (π-alkyl and π-π<br>T-shaped), Gly496 (C-H<br>bond)                                                                         | -7.8  | Tyr453,<br>Asn501,<br>Tyr505                       | Tyr505 (π-π stacked and π-π T-<br>shaped)                                                                                                   | -6.6  | Ser494,<br>Gly496,<br>Gln498            | Tyr505 (π-π T-shaped and π-alkyl)<br>Gly496 (C-H bond)                                                               |
| 8  | -8.2    | Asn450,<br>Gln493                       | Tyr449 and Leu452 (π-<br>alkyl), Tyr449 (C-H bond)                                                                         | -7.6  | Tyr449,<br>Gln493,<br>Ser494            | Tyr505 (π-alkyl), Tyr495<br>and Gly496 (C-H bond)                                                                                  | -7.7  | Ser494,<br>Gln498                                  | Tyr505 (π-alkyl)<br>and Gly496 (C-H bond)                                                                                                   | -7.7  | Phe347,<br>Ser349,<br>Asn450,<br>Gln493 | Tyr449 and Leu452 (π-alkyl)                                                                                          |

**Table S4.** List of active residues set and protein-protein dock poses during protein-protein docking of spike against host receptors.

|          | Active I      | Residues      |            |
|----------|---------------|---------------|------------|
| Receptor |               | 1             | Dock poses |
|          | Spike protein | Host receptor |            |
| ACE2     | 403-505       | 24-393        |            |
| GRP78    | 479-481       | 428-458       | b          |

Protein-protein docking poses showing ligand-protein atomic clash of (a) spike RDB/chondramide C3 - ACE2 complex and (b) spike RBD/chondramide C6 – GRP78 complex.

**Table S5.** Summary of binding energies of top compounds against spike RBD for ACE2 or GRP78, ACE2, and GRP78 based on selectivity docking.

| Cpd |              | Spik  |       |       |      |       |
|-----|--------------|-------|-------|-------|------|-------|
|     | Wild<br>type | N501Y | E484K | D614G | ACE2 | GRP78 |
| 1   | -8.7         | -     | -     | -     | -6.1 | -     |
| 2   | -8.6         | -9.1  | -8.7  | -8.3  | -7.0 | -     |
| 9   | -8.8         | -     | -     | -     | -    | -6.6  |

**Binding Energy (kcal/mol)** 

These compounds emerged as top chondramides against spike RBDs for ACE2 (Cpd 1 and 2) and GRP78 (Cpd 9). In addition, Cpd 2 is summarized with BEs against the variants due to high affinities despite mutations (see Table 1).

| Cpd | MW<br>(<500) | #H-bond<br>acceptors (<10) | #H-bond<br>donors (<5) | MLOGP<br>(<5) | Lipinski<br>#violations | Drug<br>Likeness |
|-----|--------------|----------------------------|------------------------|---------------|-------------------------|------------------|
| 1   | 651.19       | 6                          | 4                      | 2.45          | 1                       | YES              |
| 2   | 616.75       | 6                          | 4                      | 2             | 1                       | YES              |
| 3   | 667.19       | 7                          | 5                      | 1.68          | 2                       | NO               |
| 4   | 651.19       | 6                          | 4                      | 2.45          | 1                       | YES              |
| 5   | 667.19       | 7                          | 5                      | 1.68          | 2                       | NO               |
| 6   | 718.88       | 9                          | 3                      | 1.88          | 1                       | YES              |
| 7   | 695.64       | 6                          | 4                      | 2.53          | 1                       | YES              |
| 8   | 857.34       | 13                         | 7                      | -0.41         | 3                       | NO               |
| 9   | 731.17       | 9                          | 5                      | 1.74          | 2                       | NO               |

**Table S6.** Lipinski's Rule of Five for ADME analysis of compounds 1–9.

\_

|     |              | Toxici         |                    |                          |
|-----|--------------|----------------|--------------------|--------------------------|
| Cpd | Mutagenicity | Tumorigenicity | Irritant<br>effect | Reproductive<br>toxicity |
| 1   | None         | None           | None               | None                     |
| 2   | None         | None           | None               | None                     |
| 3   | None         | None           | None               | None                     |
| 4   | None         | None           | None               | None                     |
| 5   | None         | None           | None               | None                     |
| 6   | None         | None           | Medium-risk        | None                     |
| 7   | None         | None           | None               | None                     |
| 8   | None         | None           | None               | None                     |
| 9   | None         | None           | None               | None                     |

| Table S7. Predicted | toxicity parameters | s and solubility | of compounds 1–9. |
|---------------------|---------------------|------------------|-------------------|
|---------------------|---------------------|------------------|-------------------|

| Table S8. Docking | grid coordinates | of SARS-CoV-2 s | pike proteins and | host receptors. |
|-------------------|------------------|-----------------|-------------------|-----------------|
|                   |                  |                 |                   |                 |

| Protein (PDB ID)                  | Coordinates |     |     | Ductoin (DDD ID)        | Coordinates |    |     |
|-----------------------------------|-------------|-----|-----|-------------------------|-------------|----|-----|
|                                   | Х           | У   | Z   | Protein (PDB ID)        | Х           | У  | Z   |
| SARS-CoV-2 RBD to<br>ACE2 (6M0J)  | -38         | 30  | 5   | ACE2 (6M0J,<br>chain A) | -30         | 30 | 0   |
| SARS-CoV-2 RBD to<br>GRP78 (6VXX) | 210         | 178 | 262 | GRP78 (5E84)            | 23          | 60 | -33 |

## **REFERENCES:**

- (1) Herrmann, J.; Hüttel, S.; Müller, R. Discovery and biological activity of new chondramides from *Chondromyces* sp. *Chembiochem*, **2013**, *14* (13), 1573–1580. https://doi.org/10.1002/cbic.20130 0140.
- (2) Mulwa, L. S., & Stadler, M. (2018). Antiviral compounds from Myxobacteria. Microorganisms, 6(3), 73–88. https://doi.org/10.3390/microorganisms6030073.