SUPPORTING INFORMATION

Discovery of Novel Inhibitors of SARS-CoV-2 Main Protease

Lei Zheng¹, Yanmei Cheng¹, Jingxiao Bao¹, Suzhen Dong^{1*}, Yifei Qi^{1,2*}, and John Z.H. Zhang^{1,2,3,4*}

¹Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China

²NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China

³Department of Chemistry, New York University, NY, NY 10003, USA

⁴Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi

030006, China

SGFRKMAFPS GKVEGCMVQV TCGTTTLNGL WLDDVVYCPR HVICTSEDML NPNYEDLLIR KSNHNFLVQA GNVQLRVIGH SMQNCVLKLK VDTANPKTPK YKFVRIQPGQ TFSVLACYNG SPSGVYQCAM RPNFTIKGSF LNGSCGSVGF NIDYDCVSFC YMHHMELPTG VHAGTDLEGN FYGPFVDRQT AQAAGTDTTI TVNVLAWLYA AVINGDRWFL NRFTTTLNDF NLVAMKYNYE PLTQDHVDIL GPLSAQTGIA VLDMCASLKE LLQNGMNGRT ILGSALLEDE FTPFDVVRQC SGVTFQ

Figure S1. Sequence of the M^{pro} protein.

Figure S2. The biological activity of M^{pro} with the FRET-based substrate Dabcyl-KTSAVLQ/SGFRKME.

Figure S3. FRET Assay of M^{pro} for the first round pre-screening at 10µM.

Figure S4. (a) The IC_{50} of AG-690/13507628 from 2 measurements (95% confidence interval). (b) The IC_{50} of the inhibitor Ebselen as a control from 2 measurements.

Figure S5. FRET Assay of M^{pro} for the second round of pre-screening at 10µM.

Figure S6. The RMSD for ligands of four compounds for three trajectories.

		Reaction	Reaction	
Specs ID	2D-structure	Activity 50 (μM)	Activity 10 (μM)	IC50 (µM)
AG-690/13 507750		99.8	97.6	~
AG-690/13 507754		75.8	101.8	~
AG-690/13 507732		90.7	89.0	~

Table S1. The structures of the non-active compounds for comparison with the active compounds.

Rank	3Dstruture	smiles	name	AG-690/135 07628	AG-690/135 07724	AG-690/135 07757	AG-690/135 08164
1	O O O O O O O O O O O O O O O O O O O	O=C(N)c(c1)ccc(c12)N(C(=O)C2=O)Cc(cc3) cc(c34)ccc(c4)-c5ccccc5	N-substuted isatin 28[1]	0.408	0.513	0.503	0.472
2	HO O N N N N	OC(=O)c1cccc(c12)nc(OCC)n2Cc3ccc(cc3)- c4c(cccc4)-c5n[nH]nn5	Candesartan [2]	0.394	0.474	0.455	0.408
3		Clc(c1)ccc(c12)ccc(n2)\C=C\c(ccc3)cc3[C@ H](SCC4(CC4)CC(=O)O)CCc5c(C(O)(C)C) cccc5	Montelukast Sodium[2]	0.341	0.411	0.468	0.407

Table S2. Structural similarity between known M^{pro} inhibitors and the inhibitors discovered in this study.

Property	Range for good drug candidates	AG-690/13507628	AG-690/13507724	AG-690/13507757	AG-690/13508164			
	Physicochemical Property							
Molecular Weight	100 to 600	523.19	465.15	511.15	549.13			
# Hydrogen bond acceptors	0 to 12	6	5	4	6			
# Hydrogen bond donors	0 to 7	1	1	1	1			
Topological polar surface area	0 to 140	84.24	75.01	65.78	84.24			
LogS	-4 to 0.5	-6.819	-6.874	-6.846	-7.485			
LogD	1 to 3	4.298	4.372	5.014	4.291			
LogP	0 to 3	6.115	5.639	7.304	5.446			
		Absorption						
Human intestinal absorption	0 to 0.3	0.007	0.004	0.006	0.005			
human oral bioavailability 20%	0 to 0.3	0.005	0.295	0.135	0.002			
human oral bioavailability 30%	0 to 0.3	0.269	0.018	0.003	0.004			
Caco-2 Permeability	> -5.15	-5.275	-4.998	-5.288	-5.222			
Distribution								
BBB Penetration	0 to 0.3	0.014	0.11	0.056	0.059			
Metabolism								
CYP1A2 inhibitor	0 to 1, less is better	0.13	0.482	0.462	0.255			
CYP1A2 substrate	0 to 1, less is better	0.96	0.501	0.175	0.894			
CYP2C19 inhibitor	0 to 1, less is better	0.729	0.885	0.749	0.912			
CYP2C19 substrate	0 to 1, less is better	0.088	0.062	0.053	0.065			

Table S3. The ADMET properties of the inhibitors predicted with ADMETlab2.0 [3].

CYP2C9 inhibitor	0 to 1, less is better	0.947	0.958	0.933	0.963		
CYP2C9 substrate	0 to 1, less is better	0.912	0.894	0.859	0.926		
CYP2D6 inhibitor	0 to 1, less is better	0.003	0.009	0.02	0.011		
CYP2D6 substrate	0 to 1, less is better	0.923	0.72	0.211	0.743		
CYP3A4 inhibitor	0 to 1, less is better	0.552	0.703	0.252	0.809		
CYP3A4 substrate	0 to 1, less is better	0.916	0.629	0.789	0.508		
Excretion							
clearance	\geq 5	8.573	8.364	6.324	8.958		
half-life	0 to 0.3	0.161	0.13	0.023	0.125		
Toxicity							
hERG Blockers	0 to 0.3	0.217	0.242	0.326	0.166		
human hepatotoxicity	0 to 0.3	0.777	0.917	0.665	0.947		
Carcinogenicity	0 to 0.3	0.26	0.63	0.261	0.123		
Eye Corrosion	0 to 0.3	0.003	0.003	0.003	0.003		
Eye Irritation	0 to 0.3	0.285	0.748	0.894	0.11		
Respiratory Toxicity	0 to 0.3	0.823	0.848	0.574	0.9		

REFERENCE

[1] P. Liu, H. Liu, Q. Sun, H. Liang, C. Li, X. Deng, Y. Liu, L. Lai, Potent inhibitors of SARS-CoV-2 3C-like protease derived from N-substituted isatin compounds, Eur J Med Chem, 206 (2020) 112702.

[2] Z. Li, X. Li, Y.Y. Huang, Y. Wu, R. Liu, L. Zhou, Y. Lin, D. Wu, L. Zhang, H. Liu, X. Xu, K. Yu, Y. Zhang, J. Cui, C.G. Zhan, X. Wang, H.B. Luo, Identify potent SARS-CoV-2 main protease inhibitors via accelerated free energy perturbation-based virtual screening of existing drugs, Proc Natl Acad Sci U S A, (2020).

[3] G. Xiong, Z. Wu, J. Yi, L. Fu, Z. Yang, C. Hsieh, M. Yin, X. Zeng, C. Wu, X. Chen, T. Hou, D. Cao, ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res, 2021, in press.