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Extended Data Figure 1: METABRIC methylation cohort
a. Total number of methylation calls per METABRIC sample, colored by Stage (top) and Integrative cluster (bottom).
b. Cumulative distribution of mean CpG coverage on the pool of all tumor samples. 
c. Mean coverage of H3K4me1 hotspots (CDF) on the pool of all tumor samples. 
d. Sample cellularity estimate (based on ASCAT, y-axis) compared to sample coverage (total number of methylation calls, 
left) and non-promoter methylation (right), in ER+ (green) and ER- (purple) tumors.
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Extended Data Figure 2: The tumor-microenvironment (TME) methylation signatures
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Extended Data Figure 2: The tumor-microenvironment (TME) methylation signatures (CONTINUED)
a. Clustered correlation heatmap of tumor gene expression and promoter methylation vectors in ER+ tumors. Expression 
clusters (CE1-30, rows) are annotated based on key marker gene expression. See Supplementary Tables 2, 3 for complete 
details. CAF: cancer associated fibroblasts. 
b. Clustered correlation heatmap between methylation profiles (columns) and matching gene expression (rows) in ER-
tumors. 
c. Comparison of CD3D/CAV1 expression and the Immune/CAF methylation modules.
d. Comparison of Methylayer Immune and CAF expression modules (X axis) to independently inferred deconvoluted gene 
expression profiles (defined using the MCP-counter, Y axis).
e. Comparison of Methylayer Immune and CAF methylation modules (X axis) to independently inferred deconvoluted gene 
expression profiles (defined using the MCP-counter, Y axis).
f. Immune/CAF expression score (x-axis) versus lymphocyte/fibroblasts H&E digital pathology estimates (top) and Imaging 
Mass Cytometry (IMC, logged) (bottom). 
g. Immune/CAF methylation score (x-axis) versus lymphocyte/fibroblasts H&E digital pathology estimates (top) and Imaging 
Mass Cytometry (IMC, logged) (bottom). 
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Extended Data Figure 3: Normalizing CAF/Immune methylation
a. CAF (top) and immune (bottom) expression modules for each ER+ sample (y-axis) plotted against methylation of the most 
correlated promoter to CD3D gene expression (SMG6) before (left) and after (right) normalization. 
b-d. Same as a. for SKC25A25 (most correlated to CAV1), LOC100506470 (most correlated to TOP2A) and STAP2 (most 
correlated to GATA3) promoter methylation.
e. Distribution of promoter methylation correlation to the expression of CD3D (top) and CAV1 (bottom) for different K 
parameters. Larger values of K lead to less effective normalization (wider correlation distribution) of the CAF and immune 
signatures since the neighborhood becomes less homogenous in the Immune/CAF space. 
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Extended Data Figure 4: Loss clock distributions (CONTINUED)
a. Clustered correlation heatmap of normalized methylation profiles for 45,299 loci in ER+ tumors. Detected locus clusters 
are annotated at the left (numbers), and layers are constructed from such clusters as labeled (Clock, ML, MG).
b. Similar to a, for ER- samples, where loci order is determined by the ER+ clustering.
c. Distribution of epigenomic context for loss clock versus other methylation loci. (!! test, p < 2.2e-16 ).
d. Distribution of CpG content for loss clock versus other loci. (two-tailed Kolmogorov-Smirnoff test, p < 2.2e-16 ).
e. Average methylation in early versus late replicating regions (left) and early versus intermediate replicating regions (right)
for each tumor sample. 
f. Similar to Fig 1m, showing data on chromosome 10.
g. Plotted is the difference in methylation between samples with high and low clock score in genomic bins of 0.5MB of 
chromosome 1 versus their time of replication.
h. Distribution of correlation of every locus with the loss clock loci methylation. Loci are separated into those who have low 
(0-0.3), intermediate (0.3-0.7) and high (0.7-1) methylation levels in normal tissues.
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Extended Data Figure 5: Loss clock comparisons (CONTINUED)
a. Gene expression profiles most negatively correlated with the methylation loss clock (in ER+ tumors).
b. Examples (MAGE2, PAGE5) of correlation between gene expression and loss clock methylation. ER+ (left) and ER-
(right) cancers
c. Methylation of normal samples (n = 244 ) in early, intermediate (mid) and late replication regions. Shown is methylation of 
CpGs that are of low CpG content (≤ 2% CpGs in the adjacent 500bp, n = 36420). The middle line indicates the median, box 
limits represent quartiles, and whiskers are 1.5× the interquartile range.
d. Comparison of loss clock layer and sample biological age on tumor and normal samples.
e. Number of CpGs within each of Methylayer signatures that are part of the methylation age phenoAge score. Note that 
coverage for many phenoAge CpGs is not available in RRBS data. 
f. Comparing loss clock and estimated phenoAge on tumor and normal samples.
g. Comparing phenoAge and biological age on tumor and normal samples.



Extended Data Figure 6: Promoter epigenomic instability in breast cancers
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Extended Data Figure 6: Promoter epigenomic instability in breast cancers (CONTINUED)
a-b. Comparison of Methylayer scores over ER+ and ER- samples separately.
c. Distribution of the correlation between normalized methylation and layer scores (color coded lines) for loci grouped by 
genomic context and CpG content. Background represents all loci that are not otherwise classified.
d. Distribution of tumor stage and grade stratified by five bins of MG and ML scores. (!! test, tests with p < 0.05 are 
indicated).
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Extended Data Figure 7: Non-promoter epigenomic instability in breast cancers
a. Epi-polymorphism versus average methylation is shown for loci classified by genomic context. Red dots indicate loci 
correlated with the MG and ML layer scores. Running medians are depicted as black and red lines.
b. Methylation in loci that are part of MG epigenomic instability score in early versus late replication regions. High correlation 
suggests that MG is not affected by time of replication. Each dot represents a tumor sample, color coded by ER status. 
c. Distribution of MG and ML epigenomic instability scores in 1418 breast cancers stratified by Integrative clusters; and in 92 
normal breast samples (Kruskal-Wallis test). The middle line indicates the median, box limits represent quartiles, and whiskers 
are 1.5× the interquartile range.
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Extended Data Figure 8: Cis-regulation of gene expression
a. Distribution of average methylation in cis-regulated promoters (n = 503) versus other promoters (background, n = 8857). 
b. Distribution of CpG content of cis-regulated promoters (red line) and other promoters (dashed gray line). 
c. Heatmap of expression correlation between cis-regulated genes. 
d. Distribution of Epi-polymorphism in non-promoter loci with high cis E-M correlation. Shown are loci that had at least one 
tumor sample with average methylation above 0.05 (red, n = 1500). Loci are grouped by average promoter methylation and 
other loci (gray, n = 88736) are provided for control. *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001, ****: p ≤ 0.0001 (one-sided Wilcox 
test). The middle line indicates the median, box limits represent quartiles, and whiskers are 1.5× the interquartile range. 
e. Top 25 promoters negatively correlating with BRCA1 expression in ER- tumors.
In all box plots in the figure, the middle line indicates the median, box limits represent quartiles, and whiskers are 1.5× the 
interquartile range.
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Extended Data Figure 9: X dosage compensation (CONTINUED)
a. Correlation between 1218 ER+ methylation profiles on the X chromosome (columns) and gene expression (rows).
b. Average methylation of X-linked promoters (correlation with XIST expression ³ 0.2, n = 615) and XIST expression.  Tumor 
samples color coded by ER status. 
c. Cumulative distribution of the percentage of chromosome X that was lost (left) or gained (right) per tumor sample. 
d. Methylation distribution of XIST associated promoters in loci that had a single copy (1N) two copies (2N) and 3 and more 
copies (³3N) for ER+ (left, n = 444 for 1N, 988 for 2N and 413 for ³3N) and ER- (right, n = 181 for 1N, 269 for 2N and 135 
for ³3N) tumors. ns: p > 0.05, *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001, ****: p ≤ 0.0001 (spearman rho: 2N versus 1N in ER+, p 
< 2e-16 ; ³3N versus 2N in ER+, p = 0.86 ; 2N versus 1N in ER-, p < 2e-16 ; ³3N versus 2N in ER-, p = 7.7e-10 ).
e. Left: methylation of loci on X chromosome in samples in which they had two copies (x axis) and 3 or more copies (y-axis), 
colored by ER status. Right: same for samples that lost a copy (x-axis) versus samples with normal X karyotype (y-axis). 
Lower (higher) correlation suggests higher (lower) dosage compensation.
f. Left: expression of genes on X chromosome in samples in which its promoter had two copies (x axis) and 3 or more 
copies (y-axis), colored by ER status. Right: same for samples that lost a copy (x-axis) versus samples with normal X 
karyotype (y-axis). Lower (higher) correlation suggests higher (lower) dosage compensation.
g. Methylation distribution of autosomes in 15207 loci that had a single copy (1N) two copies (2N) and 3 and more copies 
(³3N) for ER+ (left, n = 996 for 1N, 1018 for 2N and 1010 for ³3N) and ER- (right, n = 259 for 1N, 273 for 2N and 276 for 
³3N) tumors. (spearman rho: ³3N versus 2N in ER-, p = 2.6e-05). 
h. Left: methylation of loci on autosomes in samples in which they had two copies (x axis) and 4 or more copies (y-axis), 
colored by ER status. Red dashed lines represent a difference of ±0.1 in average methylation.  Right: same for samples that 
lost a copy (x-axis) versus samples with normal X karyotype (y-axis). Lower (higher) correlation suggests higher (lower) 
dosage compensation.
i. Left: distribution of log fold change between expression in samples with 2 copies versus 3 or more in ER+ (left) and ER-
(right) samples. Red line represents the distribution for loci that are on autosomes. Blue line represents the distribution for 
loci that had a higher methylation on samples that gained copies (³3N, above the upper red line in h left panel). Gray line 
represents distribution for loci that are on the X chromosome. Right: distribution of log fold change between expression in 
samples with 1 copy versus 2 copies. Blue line shows the distribution of loci that had a lower methylation on the samples 
that lost a copy (1N, below the bottom red line in h right panel ). *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001, ****: p ≤ 0.0001  
(two-tailed Kolmogorov–Smirnov test: 2N versus 1N in ER+, p = 0.0301 ; ³3N versus 2N in ER+, p < 2e-16 ; 2N versus 1N 
in ER-, p = 0.0371 ; ³3N versus 2N in ER-, p < 2e-16 ).
In all box plots in the figure, the middle line indicates the median, box limits represent quartiles, and whiskers are 1.5× the 
interquartile range.
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Extended Data Figure 10: Epigenetic scores in the genomic and clinical context of breast cancer (CONTINUED)
a. Epigenomic scores across the 11 integrative clusters (IntClust). Each score was stratified into 5 bins (bars), and shown are 
the proportions of each integrative cluster in each bin. 
b. Boxplots of distribution of epigenomic signatures in 1024 ER+ and 263 ER- tumors stratified according to their genomic 
intra-tumor heterogeneity score (using mutant-allele tumor heterogeneity (MATH) score). *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 
0.001, ****: p ≤ 0.0001 (spearman rho).  The middle line indicates the median, box limits represent quartiles, and whiskers are 
1.5× the interquartile range.
c. Left: Plot of log2 fold change between epigenetic scores in the top and bottom 20% of tumors that had loss of 
heterozygosity (LOH) in one of 57 tumor suppressor genes in ER+ tumors. CNAs with statistically significant association to an
epigenomic score (p<0.01, two-sided Wilcox-test, FDR corrected over 102 tumor associated genes) are highlighted with a star. 
Shown are only genes that were associated with at least one score. 
Right: Same for gain of copy in one of 28 oncogenes in ER+ tumors.
d. Kaplan-Meier survival plots for ER+ tumors with P53+ mutation (top, n = 202) and without P53+ mutation (bottom, n = 824), 
grouped into high-scoring and low-scoring groups for each epigenomic signature. 95% confidence intervals are shown. Log-
rank p-values for survival difference are reported . 
e. Multi-state breast cancer progression models8. Log Hazard Ratios (mean with 95% confidence intervals) calculated for each 
epigenomic signature at different states (post-surgery (PS), after locoregional relapse (LR) and after distant relapse (DR)). 
Models were stratified for ER+ (top, n = 1079) and ER- (bottom, n = 306) status. Left: CP (adjusted for Clinico-pathological 
variables - age, grade, tumor size and lymph node status). Right: CP + IntClust (adjusted for Clinico-pathological variables and 
Integrative cluster subtypes).



SUPPLEMENTARY NOTE 1 
 
Validation of Methylayer pipeline using an unsupervised approach based on 

non-negative matrix factorization 
 
In order to validate the (CAF, Immune), MG, ML and Clock signatures identified using the 
Methylayer pipeline, an unsupervised computational framework was utilized to conduct non-
negative matrix factorization (NMF) of the METABRIC methylomes (1538 breast tumor and 
244 normal breast samples) into latent methylation components (LMCs). In order to strengthen 
the accuracy of recovering normal cell-type components from the heterogeneous breast 
methylomes, 10 normal reference methylomes (WGBS) were included in the analysis - 
Roadmap breast luminal epithelial cells; Roadmap breast myoepithelial cells; 2 x Roadmap 
fibroblast primary cell lines; 2 x Blueprint adult endothelial progenitor cells (S00UJK AND 
S01GU9); 4 x Blueprint CD8+ alpha beta T-cells (C00256, C003VO, C0066P and S00C2F). 
Specifically, the reference methylomes were first filtered for those that overlapped with the 
METABRIC RRBS data (n=93,703 CpG sites). Missing methylation values were imputed 
using mean-imputation with a regularization parameter (k=4). CpGs were filtered based on 
having an SD > 0.2 either among the 1538 breast tumors or among the 10 reference methylome; 
and then 20,000 CpGs were randomly selected to be used as input in the deconvolution. The 
MeDeCom algorithm1 based on NMF was applied on the 1792 samples (1782 METABRIC + 
10 reference samples) over the 20,000 CpG sites to deconvolute the methylomes into 
independent LMCs. Selection of the number of LMCs (k=8) and regularization factor 
(lambda=0.01) were based on cross-validation.  
 
 The 8 LMCs were compared (spearman correlation) with the 10 normal reference methylomes 
(Fig 1). Both the fibroblast cell lines and myoepithelial cells were most associated with LMC1 
indicating that LMC1 might represent the stromal fraction of the breast tumors. In addition, 
LMC1 also showed high correlation with endothelial cells. However, both the endothelial cell 
lines but particularly, the 4 T-cell lines were most associated with LMC5 suggesting that it 
represents the immune infiltrating fraction of the breast tumors. 
 
Next, the 5 layers defined using the Methylayer pipeline were investigated (Fig 2). Each of the 
5 layers (caf, immune, clock, MG and ML) were strongly correlated (spearman) with 
independent LMCs for ER+ and ER- breast tumors. The CAF methylation module was 
significantly correlated with LMC1 (r=0.82, p<<0.001 in ER+; r=0.68, p<<0.001 in ER-). The 
immune methylation module was significantly correlated with LMC5 (r=0.78, p<<0.001 in 
ER+; r=0.79, p<<0.001 in ER-). The Clock signature was significantly correlated with LMC2 
(r=0.61, p<<0.001 in ER+; r=0.72, p<<0.001 in ER-) and with LMC3 (r=0.7, p<<0.001 in ER+; 
r=0.49, p<<0.001 in ER-). The MG epigenetic instability signature was significantly correlated 
with LMC7 (r=0.78, p<<0.001 in ER+; r=0.82, p<<0.001 in ER-) and the ML epigenetic 
instability signature was significantly correlated with LMC6 (r=0.51, p<<0.001 in ER+). Two 
remaining LMCs (LMC4 and LMC8) were characterized by ER+ and ER- specific 
hypomethylation (recall Methylayer was applied on the two sub-cohorts separately).  
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 11: Comparison of the 8 LMCs with the 10 normal reference methylomes.  
Color of the tiles represents spearman correlation. For each reference methylome, the LMC that is most 
correlated is indicated with an ‘*’. 



 
 
 
Supplementary Figure 12: Robustness of the Methylayer pipeline confirmed by an unsupervised 
approach based on non-negative matrix factorization (NMF).  
Each of the 5 signatures (CAF, immune, Clock, MG and ML) defined using the Methylayer pipeline were strongly 
correlated with independent LMCs derived by NMF for both ER+ and ER- breast tumors. 
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SUPPLEMENTARY NOTE 2 

Applying Methylayer to TCGA breast cancer dataset 
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Import and load TCGA breast cancer methylation and expression 
data 
We use the following Bioconductor packages to load TCGA-BRCA data: 

• curatedTCGAData 
• TCGAutils 

We take the BRCA_Methylation_methyl450-20160128 dataset for 450k array methylation 
data and BRCA_RNASeq2GeneNorm-20160128 for expression data. Methylation data is 
saved as misha track.array. 

Import is done by running: 

import_breast_tcga() 

See scripts/tcga/import.r at tanaylab/metabric_rrbs for details. 

Loading is done by running the following commands: 

init_tcga_samp_data() 
head(tcga_samp_data) 

## # A tibble: 6 x 20 
##   samp_id barcode submitter_id sample_definiti… sample vial  portion an
alyte 
##   <chr>   <chr>   <chr>        <chr>             <int> <chr>   <int> <c
hr>   
## 1 TCGA_3… TCGA-3… TCGA-3C-AAAU Primary Solid T…      1 A          11 D       
## 2 TCGA_3… TCGA-3… TCGA-3C-AALI Primary Solid T…      1 A          11 D       
## 3 TCGA_3… TCGA-3… TCGA-3C-AALJ Primary Solid T…      1 A          31 D       
## 4 TCGA_3… TCGA-3… TCGA-3C-AALK Primary Solid T…      1 A          11 D       
## 5 TCGA_4… TCGA-4… TCGA-4H-AAAK Primary Solid T…      1 A          12 D       
## 6 TCGA_5… TCGA-5… TCGA-5L-AAT0 Primary Solid T…      1 A          12 D       
## # … with 12 more variables: plate <chr>, center <int>, type <chr>, ER <
chr>, 
## #   HER2 <chr>, PR <chr>, gender <chr>, PAM50 <chr>, age <int>, stage <
chr>, 
## #   IHC <chr>, patient <chr> 

Load TCGA-BRCA expression and methylation data. Methylation data is separated to 
promoters and non-promoters. 

load_all_tcga_brca_data() 

Expression data: 

dim(tcga_expr) 

## [1] 20501  1212 

dim(tcga_expr_positive) 

## [1] 20501   594 

dim(tcga_expr_negative) 



## [1] 20501   179 

dim(tcga_expr_normal) 

## [1] 20501    89 

Promoter methylation data: 

dim(tcga_prom_meth) 

## [1] 32378   885 

dim(tcga_prom_meth_positive) 

## [1] 32378   358 

dim(tcga_prom_meth_negative) 

## [1] 32378   111 

dim(tcga_prom_meth_normal) 

## [1] 32378    82 

Non-promoter methylation data: 

dim(tcga_genomic_meth) 

## [1] 176342    885 

dim(tcga_genomic_meth_positive) 

## [1] 176342    358 

dim(tcga_genomic_meth_negative) 

## [1] 176342    111 

dim(tcga_genomic_meth_normal) 

## [1] 176342     82 

Combined promoters and non-promoter methylation: 

Note: The full matrix for TCGA-BRCA methylation has a row per CpG whereas for normalization we averaged 
the CpGs of every promoter. 

dim(all_meth) 

## [1] 394182    886 

dim(all_meth_positive) 

## [1] 394182    358 

dim(all_meth_negative) 

## [1] 394182    111 

dim(all_meth_normal) 



## [1] 394182     82 

Normalize tumor microenvironment (TME) effects 
Sampling DNA methylation from bulk tumor tissue is known to be affected by variable 
populations of stromal and immune cells. Mean methylation levels per samples and locus can 
thereby represent mixtures of distinct epigenomic signatures from different cell types. 

To facilitate robust deconvolution of these tumor microenvironment (TME) effects, 
Methylayer uses an unsupervised approach relying on analysis of the cross-correlations 
between gene expression profiles with promoter methylation signatures. 

In broad strokes, Methylayer's normalization strategy is to: 

• Compute cross-correlation between gene expression and promoter methylation. 
• Cluster the cross-correlation matrix to identify TME expression signatures (i.e. groups 

of TME genes that affect promoter methylation). 
• Use the Euclidean distance in the 2D space of these signatures to identify the K-nearest 

neighbors of each tumor. 
• Subtract from the raw methylation value of each tumor the mean methylation of its K 

neighbors. 

It should be noted that using smaller K values will increase noise (since the neighborhood 
mean methylation will becomes less stable), while using larger K values may lead to less 
effective normalization of the TME signatures. 

See ?deconv_TME for more details. 

  



Normalize ER+/ER-/normal TCGA-BRCA samples 
ER_positive_norm_meth <- deconv_TME(tcga_prom_meth_positive, tcga_expr_pos
itive, all_meth_positive, k = 15) %cache_rds% here("data/TCGA-BRCA/TCGA_BR
CA_ER_positive_norm_meth.rds") 

ER_negative_norm_meth <- deconv_TME(tcga_prom_meth_negative, tcga_expr_neg
ative, all_meth_negative, k = 15) %cache_rds% here("data/TCGA-BRCA/TCGA_BR
CA_ER_negative_norm_meth.rds") 

normal_norm_meth <- deconv_TME(tcga_prom_meth_normal, tcga_expr_normal, al
l_meth_normal, k = 15) %cache_rds% here("data/TCGA-BRCA/TCGA_BRCA_normals_
norm_meth.rds") 

 

Merge all normalized methylation 
all_norm_meth <- cbind(ER_positive_norm_meth$norm_meth, ER_negative_norm_m
eth$norm_meth, normal_norm_meth$norm_meth) %>% mat_to_intervs() 

dim(all_norm_meth) 

## [1] 394182    540 

# gtrack.rm("TCGA.BRCA_450k_norm", force=TRUE) 
if (!gtrack.exists("TCGA.BRCA_450k_norm")) { 
  data.table::fwrite(all_norm_meth, here("data/TCGA-BRCA/TCGA_BRCA_all_nor
m_meth.tsv"), na = "nan", row.names = FALSE, quote = FALSE, sep = "\t", sc
ipen = 50) 
  gtrack.array.import("TCGA.BRCA_450k_norm", "TME normalized TCGA-BRCA met
hylation", here("data/TCGA-BRCA/TCGA_BRCA_all_norm_meth.tsv")) 
} 

 

Merge all TME expression scores 
tme_df <- bind_rows( 
  ER_positive_norm_meth$tme_features, 
  ER_negative_norm_meth$tme_features, 
  normal_norm_meth$tme_features 
) %>% 
  select(samp, caf, immune, caf.meth, immune.meth) %cache_df% 
  here("data/TCGA-BRCA/TCGA_BRCA_TME_features.tsv") 

head(tme_df) 

##             samp         caf       immune  caf.meth immune.meth 
## 1 TCGA_A1_A0SB_T 1.222652536 -1.932360349 0.4297221   0.6180962 
## 2 TCGA_A1_A0SE_T 0.585128289  0.009182071 0.5917645   0.7026801 
## 3 TCGA_A1_A0SF_T 0.277531944  0.793479727 0.5607568   0.6241409 
## 4 TCGA_A1_A0SG_T 0.003446965  0.314856974 0.5603409   0.6285214 
## 5 TCGA_A1_A0SI_T 0.621719992  0.757864580 0.5391400   0.6103056 
## 6 TCGA_A1_A0SJ_T 0.391526312  0.075408753 0.6324559   0.7086122 



 

Diagnose TME normalization 
We will extract the correlation of the raw and normalized methylation to gene expression of 
selected genes in order to see that our normalization worked. Gene expression associations of 
CAV1, a canonical CAF gene, and CD3D, a canonical T-cell gene have been normalized 
while cancer-relevant genes such as GATA3 and TOP2A were not affected by our 
normalization 

before_after_df <- calc_gene_cor_before_after_deconv(ER_positive_norm_meth
, all_meth_positive %>% mat_to_intervs(), c("CAV1", "CD3D", "GATA3", "TOP2
A")) %>% as_tibble() 

before_after_df <- before_after_df %>% 
  select(-ends_with(".norm")) %>% 
  gather("gene", "cor_raw", -(chrom:end)) %>% 
  left_join(before_after_df %>% select(chrom:end, ends_with(".norm")) %>% 
gather("gene", "cor_norm", -(chrom:end)) %>% mutate(gene = gsub(".norm$", 
"", gene))) 

## Joining, by = c("chrom", "start", "end", "gene") 

options(repr.plot.width = 8, repr.plot.height = 8) 
 
lims <- c(-0.7, 0.7) 
 
p_before_after <- before_after_df %>% 
  mutate(ER = "ER+") %>% 
  mutate( 
    cor_raw = tgutil::clip_vals(cor_raw, lims[1], lims[2]), 
    cor_norm = tgutil::clip_vals(cor_norm, lims[1], lims[2]) 
  ) %>% 
  ggplot(aes(x = cor_raw, y = cor_norm, color = ER)) + 
  geom_point(size = 0.001) + 
  scale_color_manual(values = annot_colors$ER1) + 
  geom_abline(linetype = "dashed") + 
  xlab("Raw methylation vs. expression correlation") + 
  ylab("Normalized methylation\nvs. expression correlation") + 
  facet_wrap(. ~ gene, nrow = 2) + 
  guides(color = FALSE) + 
  xlim(lims[1], lims[2]) + 
  ylim(lims[1], lims[2]) + 
  theme(aspect.ratio = 1) 
 
p_before_after + theme_bw() + theme(aspect.ratio = 1) 



 

See appendix 1 for more TME normalization diagnostics. 

Define epigenomic scores 
Now that we have TME-normalized methylation profiles we can look at their correlation 
structure in order to identify the epigenomic scores. We will start by clustering the 
normalized methylation of ER+ samples: 

ER_positive_mat_raw <- all_meth[, intersect(colnames(all_meth), tcga_ER_po
sitive_samples)] 

ER_positive_mat <- all_norm_meth %>% 
  select(chrom:end, any_of(tcga_ER_positive_samples)) %>% 
  intervs_to_mat() 

Filter loci that have low methylation (average of under 0.1): 

means <- rowMeans(all_meth, na.rm = TRUE) 
means_ER_positive <- rowMeans(ER_positive_mat_raw, na.rm = TRUE) 



meth_thresh <- 0.1 

options(repr.plot.width = 4, repr.plot.height = 4) 
tibble(m = means_ER_positive) %>% ggplot(aes(x = m)) + 
  geom_density() + 
  geom_vline(xintercept = meth_thresh) + 
  theme_bw() 

 
ER_positive_mat_s <- ER_positive_mat[means_ER_positive >= meth_thresh, ] 
nrow(ER_positive_mat_s) 

## [1] 289121 

We sample 20k loci and calculate a correlation matrix of their methylation values in ER+ 
samples: 

set.seed(17) 
ER_positive_mat_s <- ER_positive_mat_s[sample(1:nrow(ER_positive_mat_s), 2
e4), ] 

cm <- tgs_cor(t(ER_positive_mat_s), pairwise.complete.obs = TRUE) %fcache_
rds% here("data/TCGA-BRCA/TCGA_BRCA_ER_positive_loci_cm_samp.rds") 

We remove rows and columns without at least one correlation value above 0.25: 

cm1 <- cm 
diag(cm1) <- NA 
cor_maxs <- matrixStats::rowMaxs(abs(cm1), na.rm = TRUE) 
f <- cor_maxs >= 0.25 
f <- f & rowSums(is.na(cm)) == 0 
cm_f <- cm[f, f] 



dim(cm_f) 

## [1] 19994 19994 

We cluster the correlation matrix using hclust: 

hc_meth <- as.dist(1 - cm_f) %>% fastcluster::hclust(method = "ward.D2") %
fcache_rds% here("data/TCGA-BRCA/TCGA_BRCA_ER_positive_loci_cm_hclust.rds"
) 

Reorder the dendrogram according to average methylation: 

hc_meth <- reorder(hc_meth, rowMeans(ER_positive_mat_raw[rownames(cm_f), ]
, na.rm = TRUE)) 

k <- 14 

options(repr.plot.width = 8, repr.plot.height = 8) 
plot_meth_mat_cm( 
  cm_f, 
  k = k, 
  width = 1000, 
  height = 1000, 
  hc_meth = hc_meth, 
  downscale = TRUE, 
  zlim = c(-0.3, 0.3), 
  colors = c("black", "darkred", "white", "darkblue", "cyan") 
) 

## downscaling matrix 

## downscale k: 10 

## plotting 



 

We can see that there is a large group of correlated loci at the top right (10-14), another group 
in the middle (6-8), and another on at the bottom left (1,2).  

Below we compare these clusters to the methylation layers we derived from the METABRIC 
cohort, and therefore we would call the top right cluster ‘clock’, the middle cluster ‘ML’ and 
the bottom ‘MG’.  

In addition, we have another 2 small clusters (3 and 5) which we term ‘other1’ and ‘other2’ 
respectively. The other clusters (4,9) look weak in their intra correlation. We combine these 
and call them ‘no cor’: 

ct <- cutree_order(hc_meth, k = k) 
ct_new <- case_when( 
  ct %in% 10:14 ~ "clock", 
  ct %in% 6:9 ~ "ML", 
  ct %in% 1:2 ~ "MG", 
  ct == 3 ~ "other1", 
  ct == 5 ~ "other2", 
  ct %in% c(4, 9) ~ "no_cor" 
) 
names(ct_new) <- names(ct) 



We will generate a score for each tumor based on the mean methylation of each group: 

feats_mat <- tgs_matrix_tapply(all_norm_meth %>% intervs_to_mat() %>% .[na
mes(ct_new), ] %>% t(), ct_new, mean, na.rm = TRUE) %>% t() 
 
# We add the TME features for comparison 
tme_df <- fread(here("data/TCGA-BRCA/TCGA_BRCA_TME_features.tsv")) %>% as_
tibble() 
feats_mat <- cbind(feats_mat, tme_df %>% select(samp, caf, immune, caf.met
h, immune.meth) %>% as.data.frame() %>% column_to_rownames("samp")) 

feats_df <- feats_mat %>% 
  as.data.frame() %>% 
  rownames_to_column("samp") %>% 
  select(-other1, -other2, -no_cor) %>% 
  left_join(tcga_samp_data %>% select(samp = samp_id, ER), by = "samp") %>
% 
  select(samp, ER, everything()) %fcache_df% 
  here("data/TCGA-BRCA/TCGA_BRCA_epigenomic_features.tsv") %>% 
  as_tibble() 

head(feats_df) 

## # A tibble: 6 x 9 
##   samp     ER       clock       MG      ML     caf   immune caf.meth im
mune.meth 
##   <chr>    <chr>    <dbl>    <dbl>   <dbl>   <dbl>    <dbl>    <dbl>       
<dbl> 
## 1 TCGA_A1… ER+    0.0189  -1.25e-1 -0.0958 1.22    -1.93       0.430       
0.618 
## 2 TCGA_A1… ER+   -0.0194  -2.29e-2  0.0183 0.585    0.00918    0.592       
0.703 
## 3 TCGA_A1… ER+   -0.00529  3.98e-4 -0.0119 0.278    0.793      0.561       
0.624 
## 4 TCGA_A1… ER+   -0.0801  -1.00e-1 -0.0266 0.00345  0.315      0.560       
0.629 
## 5 TCGA_A1… ER+   -0.0542  -3.70e-2 -0.0208 0.622    0.758      0.539       
0.610 
## 6 TCGA_A1… ER+    0.0664   5.48e-2  0.0235 0.392    0.0754     0.632       
0.709 

  



Compare TCGA-BRCA epigenomic modules to METABRIC 
Since TCGA-BRCA data is 450k based while METABRIC data is RRBS, it would be hard to 
compare the epigenomic modules directly. Fortunately, we can use the expression data as an 
anchor and compare the correlations of the methylation modules in each dataset with gene 
expression. If the genes that are correlated with each module are the same in both datasets it 
gives us high confidence that we are observing the same effect. 

Calculate correlation between the modules and every gene: 

tcga_gene_cors <- plyr::ddply(feats_df, "ER", function(x) { 
  samples <- reduce(list(tcga_samp_data$samp_id, colnames(tcga_expr), x$sa
mp), intersect) 
  feats_mat <- x %>% 
    select(-ER) %>% 
    as.data.frame() %>% 
    column_to_rownames("samp") %>% 
    as.matrix() 
  cm <- tgs_cor(t(tcga_expr[, samples]), feats_mat[samples, ], pairwise.co
mplete.obs = TRUE) 
  cm <- cm %>% 
    as.data.frame() %>% 
    rownames_to_column("name") %>% 
    as_tibble() 
  return(cm %>% mutate(ER = x$ER[1])) 
}) 
head(tcga_gene_cors) 

##    name       clock           MG          ML         caf       immune 
## 1  A1BG  0.04849510  0.003149984  0.24601114  0.04908175 -0.074749797 
## 2  A1CF  0.10798897  0.061904818 -0.03467173 -0.01548953  0.110957541 
## 3 A2BP1  0.01341289 -0.000587340  0.22526708  0.19762620  0.007679025 
## 4 A2LD1 -0.04122864 -0.097998921  0.01634378  0.09301897  0.088271914 
## 5 A2ML1 -0.13092742 -0.189658881 -0.33538301 -0.03703322  0.039981388 
## 6   A2M  0.01943741 -0.128176602 -0.10856015  0.44829072  0.196500885 
##      caf.meth  immune.meth  ER 
## 1  0.08028370  0.114162819 ER- 
## 2 -0.01249476 -0.045891226 ER- 
## 3 -0.07261832 -0.009398886 ER- 
## 4 -0.06744866 -0.052208571 ER- 
## 5 -0.10419845 -0.186983947 ER- 
## 6 -0.19331311 -0.152809835 ER- 

metabric_gene_cors <- get_expression_features_cors() %>% mutate(clock = -c
lock, ML = -ML) 

Note that the METABRIC scores that involved loss of methylation in tumors were reversed (so that higher score 
=> higher difference from the normal), so we reverse them back in order to compare with the TCGA-BRCA 
modules 

df <- tcga_gene_cors %>% 
  rename( 
    tcga.clock = clock, 
    tcga.MG = MG, 
    tcga.ML = ML, 



    tcga.caf = caf, 
    tcga.immune = immune, 
    tcga.caf.meth = caf.meth, 
    tcga.immune.meth = immune.meth 
  ) %>% 
  left_join(metabric_gene_cors, by = c("name", "ER")) %>% 
  mutate(ER = factor(ER, levels = c("ER+", "ER-", "normal"))) 

df_cross <- df %>% 
  gather("feat1", "cor1", -ER, -name) %>% 
  left_join(df %>% gather("feat2", "cor2", -ER, -name)) %>% 
  filter(grepl("tcga", feat1), !grepl("tcga", feat2)) %>% 
  na.omit() %>% 
  filter(is.finite(cor1), is.finite(cor2)) %>% 
  group_by(feat1, feat2, ER) %>% 
  mutate(feat_cor = cor(cor1, cor2, use = "pairwise.complete.obs")) 

## Joining, by = c("name", "ER") 

options(repr.plot.width = 10, repr.plot.height = 10) 
df_cross1 <- df_cross %>% 
  filter(ER == "ER+") %>% 
  filter(!grepl("immune", feat1), !grepl("caf", feat1), !grepl("immune", f
eat2), !grepl("caf", feat2)) 
df_cross1 %>% 
  ggplot(aes(x = cor1, y = cor2, color = ER)) + 
  geom_point(size = 0.5) + 
  theme_bw() + 
  theme(aspect.ratio = 1) + 
  facet_wrap(~ER) + 
  scale_color_manual(values = annot_colors$ER1) + 
  geom_label(data = df_cross1 %>% distinct(feat1, feat2, feat_cor, ER) %>% 
mutate(feat_cor = paste0("cor = ", round(feat_cor, digits = 2))), inherit.
aes = TRUE, aes(label = feat_cor), x = -0.2, y = 0.2, color = "black") + 
  facet_grid(feat2 ~ feat1, scales = "free") 



 

X axis has the correlations of gene expression of 17,125 genes with the 3 modules we 
identified in the TCGA-BRCA dataset and Y axis has correlations of the same genes with the 
3 METABRIC modules. 

We can see indeed that there is a good correspondence between the modules we termed 
"clock", "MG" and "ML" in the TCGA dataset and the same modules in the METABRIC 
cohort. 

We will now plot the same correlations for ER- tumors: 

options(repr.plot.width = 10, repr.plot.height = 10) 
df_cross1 <- df_cross %>% 
  filter(ER == "ER-") %>% 
  filter(!grepl("immune", feat1), !grepl("caf", feat1), !grepl("immune", f
eat2), !grepl("caf", feat2)) 
df_cross1 %>% 
  ggplot(aes(x = cor1, y = cor2, color = ER)) + 
  geom_point(size = 0.5) + 
  theme_bw() + 
  theme(aspect.ratio = 1) + 
  facet_wrap(~ER) + 



  scale_color_manual(values = annot_colors$ER1) + 
  geom_label(data = df_cross1 %>% distinct(feat1, feat2, feat_cor, ER) %>% 
mutate(feat_cor = paste0("cor = ", round(feat_cor, digits = 2))), inherit.
aes = TRUE, aes(label = feat_cor), x = -0.2, y = 0.2, color = "black") + 
  facet_grid(feat2 ~ feat1, scales = "free") 

 
We can see that the correlation exists also in the ER- tumors, though to a less extent. 
Interestingly, MG and ML in ER- TCGA tumors are both correlated to MG and ML in 
METABRIC (MG to ML and vice versa), and indeed a similar correlation is seen in ER- 
METABRIC samples (Figure 2E, bottom).  

Correlation between the features 
We look at the correlations between the features in TCGA ER+/ER-/normal samples 
separately: 

options(repr.plot.width = 10, repr.plot.height = 10) 
GGally::ggpairs(feats_mat[intersect(rownames(feats_mat), tcga_ER_positive_
samples), ] %>% as.data.frame(), progress = FALSE) + theme_bw() 



 
options(repr.plot.width = 7, repr.plot.height = 7) 
feats_cm <- tgs_cor(as.matrix(feats_mat), pairwise.complete.obs = TRUE) 
gather_matrix(feats_cm) %>% 
  mutate(val = round(val, digits = 2)) %>% 
  mutate(x = factor(x, levels = c("clock", "ML", "MG", "other1", "other2", 
"no_cor", "immune", "caf"))) %>% 
  mutate(y = factor(y, levels = c("clock", "ML", "MG", "other1", "other2", 
"no_cor", "immune", "caf"))) %>% 
  filter(!is.na(x), !is.na(y)) %>% 
  ggplot(aes(x = x, y = y, fill = val, label = val)) + 
  geom_tile() + 
  geom_text() + 
  scale_fill_gradient2(low = "blue", high = "red") + 
  theme_bw() + 
  theme(aspect.ratio = 1) 



 
options(repr.plot.width = 10, repr.plot.height = 10) 
GGally::ggpairs(feats_mat[intersect(rownames(feats_mat), tcga_ER_negative_
samples), ] %>% as.data.frame(), progress = FALSE) + theme_bw() 



 
options(repr.plot.width = 10, repr.plot.height = 10) 
GGally::ggpairs(feats_mat[intersect(rownames(feats_mat), tcga_normal_sampl
es), ] %>% as.data.frame(), progress = FALSE) + theme_bw() 



 

Methylation regulation of gene expression in cis 
We start by identifying genes that are strongly correlated to TME (immune and CAF) in the 
expression-methylation correlation clusters. Our TME normalization cleaned most of their 
correlations with methylation, thereby enhancing the  more interesting expression-
methylation in-cis correlations. 

TME_genes <- 
  { 
    ER_pos_TME_genes <- get_TME_genes(readr::read_rds(here("data/TCGA-BRCA
/TCGA_BRCA_ER_positive_norm_meth.rds"))$em_cross_clust) 
    ER_neg_TME_genes <- get_TME_genes(readr::read_rds(here("data/TCGA-BRCA
/TCGA_BRCA_ER_negative_norm_meth.rds"))$em_cross_clust) 
    normal_TME_genes <- get_TME_genes(readr::read_rds(here("data/TCGA-BRCA
/TCGA_BRCA_normals_norm_meth.rds"))$em_cross_clust) 
 
    unique(c(ER_pos_TME_genes, ER_neg_TME_genes, normal_TME_genes)) 
  } %cache_rds% here("data/TCGA-BRCA/TCGA_BRCA_TME_genes.rds") 



 
length(TME_genes) 

## [1] 2421 

expr_mat_f <- tcga_expr[!(rownames( 
  tcga_expr 
) %in% TME_genes), ] 
dim(expr_mat_f) 

## [1] 18080  1212 

 

Load normalized methylation and separate it to promoters and non-
promoters 
prom_meth <- get_tcga_brca_prom_meth_TME_norm() %>% mat_to_intervs() 

non_prom_meth <- get_tcga_brca_genomic_meth(track = "TCGA.BRCA_450k_norm") 
%>% mat_to_intervs() 

prom_intervs_f <- resolve_alt_promoters(prom_meth %>% select(chrom:end)) 

 

Promoters 
We use Methylayer to identify promoters that are correlated in cis to the expression of their 
gene. We start by creating matrices with promoter methylation for ER+/ER-/normal samples. 

ER_positive_prom_mat_norm <- prom_meth %>% 
  select(chrom:end, any_of(tcga_ER_positive_samples)) %>% 
  intervs_to_mat() 
ER_negative_prom_mat_norm <- prom_meth %>% 
  select(chrom:end, any_of(tcga_ER_negative_samples)) %>% 
  intervs_to_mat() 
normal_prom_mat_norm <- prom_meth %>% 
  select(chrom:end, any_of(tcga_normal_samples)) %>% 
  intervs_to_mat() 
 
dim(ER_positive_prom_mat_norm) 

## [1] 32378   357 

dim(ER_negative_prom_mat_norm) 

## [1] 32378   111 

dim(normal_prom_mat_norm) 

## [1] 32378    69 

We remove rows with missing values (these are loci that were not covered by 450k arrays). 



f <- rowSums(is.na(ER_positive_prom_mat_norm)) == 0 & rowSums(is.na(ER_neg
ative_prom_mat_norm)) == 0 & rowSums(is.na(normal_prom_mat_norm)) == 0 
sum(f) 

## [1] 24670 

We then use the function cis_em_promoters to detect promoters that are correlated to their 
gene expression in cis. The approach Methylayer is taking is relatively simple:  

1. Compute the expression-methylation correlation for each promoter and each gene.  

2. For every gene, rank its correlations with promoters, and look at the rank of the 
gene’s own promoter. 

3. We then estimate the significance of the rank of the gene’s own promoter (see 
methods). Specifically, if the highest correlation of a gene is with its own promoter 
there is a high probability that this correlation is specific in cis and not a part of a 
large methylation effects that correlate many loci with multiple genes (in trans effect).  

tcga_prom_cands <- bind_rows( 
  cis_em_promoters(ER_positive_prom_mat_norm[f, ], expr_mat_f, prom_interv
s_f, min_samples = 50) %>% mutate(ER = "ER+"), 
  cis_em_promoters(ER_negative_prom_mat_norm[f, ], expr_mat_f, prom_interv
s_f, min_samples = 50) %>% mutate(ER = "ER-"), 
  cis_em_promoters(normal_prom_mat_norm[f, ], expr_mat_f, prom_intervs_f, 
min_samples = 50) %>% mutate(ER = "normal") 
) %cache_df% here("data/TCGA-BRCA/TCGA_BRCA_promoter_cis_cands.tsv") %>% a
s_tibble() 

df <- tcga_prom_cands %>% 
  filter(r == 1) %>% 
  distinct(fdr, n_fdr, ER) 
 
df_fdr <- tcga_prom_cands %>% 
  filter(fdr < 0.05) %>% 
  group_by(ER) %>% 
  filter(fdr == max(fdr)) %>% 
  distinct(fdr, n_fdr, ER) 
 
df 

## # A tibble: 3 x 3 
##       fdr n_fdr ER     
##     <dbl> <int> <chr>  
## 1 0.00115   870 ER+    
## 2 0.00186   537 ER-    
## 3 0.0385     26 normal 

df_fdr 

## # A tibble: 3 x 3 
## # Groups:   ER [3] 
##      fdr n_fdr ER     
##    <dbl> <int> <chr>  
## 1 0.0498  3193 ER+    



## 2 0.0496  2176 ER-    
## 3 0.0385    26 normal 

glue("we identified {n_top_ER_pos} promoters in ER+ and {n_top_ER_neg} in 
ER- (FDR<0.01; {n_fdr_ER_pos} in ER+ and {n_fdr_ER_neg} in ER- if increasi
ng FDR to <0.05)", 
  n_top_ER_pos = df$n_fdr[df$ER == "ER+"], 
  n_top_ER_neg = df$n_fdr[df$ER == "ER-"], 
  n_fdr_ER_pos = df_fdr$n_fdr[df_fdr$ER == "ER+"], 
  n_fdr_ER_neg = df_fdr$n_fdr[df_fdr$ER == "ER-"] 
) 

## we identified 870 promoters in ER+ and 537 in ER- (FDR<0.01; 3193 in ER
+ and 2176 in ER- if increasing FDR to <0.05) 

Compare to METABRIC cis regulated genes 
metabric_prom_cands <- fread(here("data/promoter_cis_cands.tsv")) %>% as_t
ibble() 

max_r <- 1 
tcga_top_cands <- tcga_prom_cands %>% filter(r <= max_r) 
metabric_top_cands <- metabric_prom_cands %>% filter(r <= max_r) 

genes <- intersect(tcga_prom_cands$name, metabric_prom_cands$name) 

tcga_top_genes <- tcga_top_cands %>% 
  filter(name %in% genes) %>% 
  pull(name) %>% 
  unique() 
metabric_top_genes <- metabric_top_cands %>% 
  filter(name %in% genes) %>% 
  pull(name) %>% 
  unique() 

scales::percent(sum(metabric_top_genes %in% tcga_top_genes) / length(metab
ric_top_genes)) 

## [1] "53%" 

scales::percent(sum(tcga_top_genes %in% metabric_top_genes) / length(tcga_
top_genes)) 

## [1] "40%" 

options(repr.plot.width = 4, repr.plot.height = 4) 
grid.draw(list(`METABRIC` = metabric_top_genes, `TCGA` = tcga_top_genes) %
>% VennDiagram::venn.diagram(filename = NULL)) 



 
We can see that 53% of the genes that were identified as candidates for cis regulation in the 
METABRIC cohort were also identified as such in TCGA, and 40% of the TCGA candidate 
genes were also identified in the METABRIC cohort. 

phyper(length(intersect(metabric_top_genes, tcga_top_genes)), 
length(metabric_top_genes), length(genes) - length(metabric_top_genes), 
length(tcga_top_genes), lower.tail=FALSE) 

## [1] 1.228326e-163 

 

Non-promoters 
We use Methylayer to identify non-promoter regions that are correlated in cis to expression 
of any gene within their vicinity (within 500kb to the TSS).  

Since a locus can be correlated in cis with multiple genes, we modify the procedure we used 
for the promoters and rank the correlation of every locus with all the genes, and then examine 
the ranks of genes that are within 500kb to the locus. We defined a locus as paired if the TSS 
of its top (or k-highest) correlated gene expression profile was within 500kb from it.   

We can then estimate the FDR for pairing using the ratio between pairing events in real and 
shuffled data (we shuffle the correlations of each gene between the loci). 

ER_positive_genomic_mat <- non_prom_meth %>% 
  select(chrom:end, any_of(tcga_ER_positive_samples)) %>% 
  intervs_to_mat() 
ER_negative_genomic_mat <- non_prom_meth %>% 
  select(chrom:end, any_of(tcga_ER_negative_samples)) %>% 
  intervs_to_mat() 



normal_genomic_mat <- non_prom_meth %>% 
  select(chrom:end, any_of(tcga_normal_samples)) %>% 
  intervs_to_mat() 
 
 
 
dim(ER_positive_genomic_mat) 

## [1] 176342    357 

dim(ER_negative_genomic_mat) 

## [1] 176342    111 

dim(normal_genomic_mat) 

## [1] 176342     69 

gene_tss <- get_gene_tss_coord() 

## Joining, by = "full_name" 

genomic_cands_ER_pos <- cis_em_genomic(ER_positive_genomic_mat, expr_mat_f
, gene_tss, min_samples = 50, max_dist = 5e5, min_dist = 200) %>% mutate(E
R = "ER+") %cache_df% here("data/TCGA-BRCA/TCGA_BRCA_genomic_cis_cands_ER_
positive.tsv") 

genomic_cands_ER_neg <- cis_em_genomic(ER_negative_genomic_mat, expr_mat_f
, gene_tss, min_samples = 50, max_dist = 5e5, min_dist = 200) %>% mutate(E
R = "ER-") %cache_df% here("data/TCGA-BRCA/TCGA_BRCA_genomic_cis_cands_ER_
negative.tsv") 

genomic_cands_normals <- cis_em_genomic(normal_genomic_mat, expr_mat_f, ge
ne_tss, min_samples = 50, max_dist = 5e5, min_dist = 200) %>% mutate(ER = 
"normal") %cache_df% here("data/TCGA-BRCA/TCGA_BRCA_genomic_cis_cands_norm
al.tsv") 

genomic_cis_cands <- bind_rows( 
  genomic_cands_ER_pos, 
  genomic_cands_ER_neg, 
  genomic_cands_normals 
) %>% as_tibble() 
head(genomic_cis_cands) 

## # A tibble: 6 x 16 
##   chrom  start    end type   rank gene     cor chrom_expr start_expr en
d_expr 
##   <chr>  <int>  <int> <chr> <int> <chr>  <dbl> <chr>           <int>    
<int> 
## 1 chr1   91549  91550 obs       1 SR140 -0.330 <NA>               NA  N
A      
## 2 chr1  135251 135252 obs       1 SHRO… -0.221 chr5        132162002   
1.32e8 
## 3 chr1  530958 530959 obs       1 MCHR2 -0.321 chr6        100442099   
1.00e8 
## 4 chr1  533949 533950 obs       1 FTHL… -0.390 chrX         31090170   



3.11e7 
## 5 chr1  542757 542758 obs       1 ENTP… -0.264 chr14        74486026   
7.45e7 
## 6 chr1  565169 565170 obs       1 MAT1A -0.214 chr10        82049434   
8.20e7 
## # … with 6 more variables: strand_expr <int>, dist <int>, n_obs <int>, 
## #   n_shuff <int>, fdr <dbl>, ER <chr> 

dim(genomic_cis_cands) 

## [1] 52878500       16 

  



Appendix 1: additional TME normalization diagnostics 
Full expression-methylation correlation matrix before normalization 

We can look at the cross-correlation matrix (of ER+) before normalization. Rows are genes 
and columns are methylation profiles. Methylayer identified the immune module as module 
number 5 and the CAFs module as module number 6. 

options(repr.plot.width = 7, repr.plot.height = 10) 
plot_em_cross_cor(ER_positive_norm_meth$em_cross_clust) 

## plotting em cross 
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