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Supplementary Note 1. DATA AND METHOD

In this paper, we constructed large-scale datasets for creative products from a wide range

of disparate sources, including images of artworks for artists, film plots and casts for direc-

tors, and publication and citation information for scientists, along with their impact mea-

sures of auction prices, IMDB ratings and paper citations, respectively [1]. We developed

computational tools from deep learning and network science and learned high-dimensional

representations for these creative products, allowing us to trace an individual’s career trajec-

tory on the underlying creative space around the beginning of a hot streak. In this section,

we describe in detail how we construct the data and how we learn the representation for the

three domains.

Supplementary Note 1.1. Artists

Supplementary Note 1.1.1. Data

We collect for artists large-scale image datasets tracing art styles, and auction datasets

tracing the career impact, to quantitatively understand artistic success through the work one

produced. We first gather over 800K images of visual arts from two databases, Art500K [2, 3]

and Artnet (www.artnet.com). Art500K contains large-scale images of artworks collected

from several online sources and museum collections such as Rijks Museum and Wikiart,

covering artworks for over 600 years from medieval to contemporary art. The data contain

information regarding disambiguated artist names, title, year of production for each artwork.

In addition, Art500K offers art style labels for over 160K images, allowing us to train the

art style embedding in the classification task. Artnet is an art market website with over

340K disambiguated artist profiles. The free version of the website records for each artist

a list of gallery collections and auction records in the market, along with the image, title,

and production year. If an artwork was produced over a span of several years, we use the

last year as its production year, corresponding to the year in which the work was finalized.

Together, we curated for artists in Art500K and Artnet their image profiles with the list of

images and year of production. To quantify the impact dynamics and career hot streaks,

we further collect impact profiles of 3,480 artists who have at least 15 artworks and 10 years

of career length by combining two art market databases, Artprice (www.artprice.com) and
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Findartinfo (www.findartinfo.com). Building on prior work [1, 4], we curated for each artist

the list of auction price and year of production for the work one produced, allowing us to

measure the timing of hot streak for each individual with the auction price.

We compare each of the 3,480 artists who have impact information to the image profiles

curated from Art500K and Artnet. Two artists are considered to be the same if they satisfy

the following criteria: 1) Identical names. The last name and first initial are the same. If

full names are available for both artists, they must be identical. 2) Active during the same

period. The career span of the image profile, measured by the production year of the first

and last artwork, is within 10 years of the career span of the impact profile. By applying this

entity linkage procedure, we end up with 2,016 artists with impact sequence and at least 10

images for our analysis. Note that images from the Art500K mainly include artworks from

museums that may not appear in the auction market. Previous studies show that the years

during which artists produced artworks with high market value are aligned with the produc-

tion years of high-value artworks considered by museum curators [4, 5], suggesting that the

timing when an artwork was produced is useful to identify its relative impact within a career.

Supplementary Note 1.1.2. Method

We train an art style classifier with deep neural networks using images with ground-truth

labels in Art500K [6]. If an image have multiple labels, we randomly pick one as its unique

label. Art500K provides 230 unique art styles, with imbalanced sample size among them

(Fig. 1). To improve the performance of the classifier, we ignore styles with too few images,

and reduced the number of classes to art styles with over 1000 images (top 29). For classes

with more than 5000 samples, we randomly selected 5000 images for each class. For classes

with samples fewer than 5000, we increase their sample size to 5000 by applying image aug-

mentation methods with rotation (±30), scale (1-1.2) and random crop (0.8-1). Together,

we gathered a balanced dataset of 145K images for the classification task. We normalize

each image by their mean and standard deviation. We randomly sample 80% of images as

the training set and the rest 20% as the test set.
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We build on a popular convolutional neural network architecture in art style analysis,

VGG16 [7]. Prior studies show that a transfer learning approach in which a model is fine-

tuned outperforms the model trained from scratch, as its filters are more interpretive and

better capture lines and shapes learned from the object recognition tasks [6], prompting us

to adopt the transfer learning method in this paper. Specifically, we remove the dense layers

in the pretrained VGG16, added two hidden dense layers with ReLU activation (dimension

= 4096 and 512, respectively) and a final classification layer of 29 nodes with softmax acti-

vation (Fig. 1A). The first dense layer learns the non-linear combinations of outputs from

convolutional layers. The second dense layer further reduces the dimension for the output

of the previous layer and learns the high-level content for each image to better identify

different art styles. In the experiment, we fix the parameters of the convolutional layers

and only fine-tune the weights in the three newly added layers. We train the model with

Adam optimizer and batch of size 128, and selected the model with the best performance.

The highest accuracy is 0.54 on the test set, which is significantly higher than the random

accuracy for our balanced set (0.03). A recent study on art style classification [6] utilized

77K images with art style labels from Wikiart, and trained their model with unbalanced

samples from 20 style classes. Their random accuracy is 0.17 and their best accuracy is

0.637, suggesting that the performance of our model is comparable to the state-of-art in

terms of the accuracy improvement compared to random guess.

As art style is encoded in both low-level features like brush strokes and high-level features

like content and themes [8], we combine both the low- and high-level embedding to represent

the art style of each image. We first use the 512-dimensional dense layer to capture the

high-level feature of each image. We extract the output from the 512-dimensional dense

layer for all images in our dataset, and then apply principle component analysis (PCA) to

reduce the 512-dimensional vector to a 100-dimensional vector. We further generate low-

level features from the first and third convolutional layers in VGG16 (d = 224 × 224 × 64,

d = 112× 112× 128, respectively). Different from the traditional Gram matrix kernel [2, 8]

that flattens the output of convolutional layers to generate a huge vector, here we reduce the

dimension of the two tensors by calculating the mean value for the second and third dimen-

sion, and generate a 224-dimensional vector and a 112-dimensional vector respectively. As

the absolute value of the two vectors may not be comparable to compute the distance in the
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embedding space, we further normalize the two vectors by their sample mean and standard

deviation, and then concatenate the 224-dimensional vector from the first convolutional

layer and the 112-dimensional vector from the third convolutional layer. To make sure that

the low- and high-level features are of equal importance, we further reduce the low-level

feature to 100-dimensional vector by applying PCA on the 336-dimensional vector. In the

end, we normalize the low and high level embedding by their sample mean and standard

deviation, and combine the two 100-dimensional vectors together to get a 200-dimensional

representation for each image. We visualize the kernel density projected onto two dimensions

with PCA for images from three art styles (Fig. 7). We then apply the k-means clustering

to the 200-dimensional embeddings, and assigned style label for each image as the cluster

it belongs to. In the main text we report results based on k-means clustering with n = 30

centroids. We show in Fig. 34 that our results are robust to different number of centroids.

To better understand the meaning of each layer, and to test if the selected layers can

indeed capture low-level brushes strokes and high-level content of an image, we offer several

case studies on famous paintings to obtain more insights from the fine-tuned model. We

analyze two positive samples, Number 1 by Jackson Pollock (Fig. 3) and Mona Lisa by

Leonardo da Vinci (Fig. 4), and two negative samples, Kiss by Gustav Klimt (Fig. 5) and

Café terrace by Vincent van Gogh (Fig. 6). Our model can successfully predict the abstrac-

tion expressionism for Number 1 and high renaissance for Mona Lisa, while it misclassifies

Kiss, one of the most famous paintings in Art Nouveau, and Café terrace, a famous post-

impressionism painting, to Surrealism. We visualize a random activation from the first and

third convolutional layer for each image. The first convolutional layer learns to detect lines,

dots and colors from raw pixels with 3 × 3 filters, and then passes these local patterns to

deeper layers, which captures the brush strokes within a broader region of each image. For

example, the dripping and splattering in Jackson Pollock’s Number 1 are well captured by

these low-level layers, and the uniform distribution of each pattern also reflect the balanced

nature of his work. Compared to the local patterns coded in low-level layers, the activation

of the convolutional layer in the last block and the last max-pooling layer show higher-level

features such as the landscape, part of a body, and the roof of a house, which suggests

that high-level features capture more about the content or object in an image. Finally, we

visualize the saliency map for the predicted label, which highlights the important pixels that

8



the model utilized to make the decision. The two negative samples share common features

in the saliency map, where the yellow regions in the background and the clothes for Kiss,

and the yellow cafe house for Café terrace are highlighted, which illustrates why the two

images may be classified to the same style.

Supplementary Note 1.2. Directors

Supplementary Note 1.2.1. Data

Our second setting traces the profiles of film directors from The Internet Movie Datavase

(IMDB) (www.imdb.com/interfaces). The IMDB database contains one of the largest col-

lections of film records for over 100 years worldwide, along with detailed information for

each film such as title, release time, user rating and more. In addition, the webpage for each

film includes sections for full cast and crew list, plot information, and genre tags, allowing us

to learn the embedding of films. The IMDB database also provides a disambiguated profile

for each director with a unique ID assigned to the list of work they produced. We focus

on directors who have at least 10 years in career length and 15 films in IMDB. We use the

IMDB rating to approximate the impact of each film and measure the timing of hot streak

within a career with the rating sequence [1, 9]. Directors have wide-range responsibilities

for a film, from pre-production to approving the final edit. They are also responsible for

working with and overseeing scriptwriters as they work on the script as well as selecting and

training the cast. Given the director’s role in shaping these important elements of the film,

we use data on the plot and casting of each film to analyze the careers of film directors.

Specifically, we gather plot information from the storyline, plot summary and plot synopsis

section from the IMDB webpages. If a film has multiple paragraphs from these sections, we

merge them together to construct a single plot record for each film. We also gather for each

film the full list of actors with their unique IDs. Given IDs in the IMDB database, we can

identify if a film belongs to the hot streak period or not. In total, we collect 79K films by

4,377 directors for our analysis.
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Supplementary Note 1.2.2. Method

Prior studies show that the storyline and casting information play an important role in

the success of a film [10–14], prompting us to construct for each film the word embedding

from plot summaries and node embedding from co-casting network. We first preprocess the

plot text to learn the word embedding. We tokenize each plot into words and transferred all

words to the lowercase. We remove punctuation and English stop words, stem each word,

and only keep stemmed tokens with at least 3 characters. We train the word embedding

with skip-gram model in our plot corpus from scratch, which captures the meaning of a word

from its surrounding text in the plot corpus. We learn the 100-dimensional representation

for each word with window size of 5 for 50 iterations, and calculate the plot embedding

vector as the average value for all word vectors in each plot.

We further incorporate the casting information by constructing a co-casting network

for the work produced by directors in our dataset. As IMDB ordered the cast by their

importance, here we focus on top 10 featured actors. Two films are connected if they have

common actors, with the link weight as the total number of actors they shared. We apply

DeepWalk [15] to the co-casting network, a well-known representation algorithm for social

networks which captures the local structures of nodes from random walks. We set the walk

length as 10, the number of walks as 80, window size as 5, and learn the 100-dimensional

node embedding. We further normalize the 100-dimensional plot and cast vector by sample

mean and standard deviation, and concatenate the two vectors to get a 200-dimensional

vector for each film. We visualize the kernel density for films from three different genre

projected onto the two dimensional embedding space with PCA (Fig. 8). Similarly, we apply

the k-means clustering to the 200-dimensional embeddings with their euclidean distance,

and assign the style label for each film as the cluster it belongs to. In the main text we

report results based on k-means clustering with n = 30 centroids. We show in Fig. 34 that

our results are robust to different number of centroids.

To test if the learned embedding captures the film styles, we use the 200-dimensional

vector as the input to predict the genre of each film. We formulate this task as a multi-

label classification problem. Specifically, we build a fully-connected neural network with
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two hidden layers (100d and 50d). We randomly split the data into training (80%) and test

set (20%), and use the Adam optimizer to train the model with batch size of 128 for 20

epochs. Although we do not utilize any genre information to learn the film embeddings,

they can successfully predict film genres with an accuracy of 0.948 (Fig. 9A). We repeat the

classification task for word embedding and cast embedding separately (Fig. 9B-C), and find

that they can also achieve a high accuracy (0.94 for both cases). And combing the two leads

to even better performance.

Supplementary Note 1.3. Scientists

Supplementary Note 1.3.1. Data

In our third setting, we analyze publication records of scientists by combining Google

Scholar (GS) profiles with Web of Science (WoS) [1]. GS allows individual scientists from

diverse disciplines to create, maintain, and update their publication profiles. Assisted by

its disambiguation algorithms, GS profiles provide a state-of-art disambiguation method

to assemble publication list for individual scientists, offering unique opportunities to study

scientific careers [16, 17]. We collect scientists’ profiles and matched each publication record

to the WoS database, which provides publication metadata and citation records for around

46 million journal papers since 1900. We curate for each scientist a list of papers with unique

WoS identification numbers, publication date, and citation in 10 years C10 to approximate

the impact of each paper, yielding 20,040 scientists with at least 15 papers and 20 years of

career length for our analysis. We measure the timing of hot streak for these scientists using

the logarithmic of C10 for the sequence of work they produced [1].

Supplementary Note 1.3.2. Method

We identify the topics of over 1 million papers published by these scientists using a novel

network method introduced by Zeng and colleagues [18]. Here, we extract the reference

list of each paper from the WoS with unique WoS ID, and focus on papers with at least

one reference as recorded in the WoS. We construct a weighted co-citing network among

papers produced by each scientist. Two papers are linked if they have common references,

with the link weight as the total number of references they shared. We apply community
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detection algorithm to the ego co-citing network for each scientist and assign the topic of a

paper as the community it belongs to. In the main text, we report results using the commu-

nity detection methods. To examine the robustness of our results, next we follow the same

methodology for artists and directors to learn an embedding for papers with neural networks.

We construct a co-citing network among 1 million papers published by individuals in our

dataset. Two papers are linked if they have common references, with the weight indicating

the number of references they share. To speed up the network embedding algorithm, we

first reduced the size of its adjacency matrix A with truncated SVD to 500 dimensions,

where A = UTΣV . Fig. 10 shows the cumulative variance explained. There is no obvious

saturation after a certain n, suggesting all components contain important information for

the matrix. We then use the subject label in WoS to train a neural network and learn

the representation of each paper. We focus on the top 34 subjects with more than 10,000

papers in the dataset, and ignore subjects with too few papers in this case. We randomly

sample 10,000 papers for each subject if it contains more papers to make a balanced training

set. We randomly split the data into training (80%) and test set (20%). We train a neural

network with one hidden layer (64d). The accuracy is 0.515 for the test set (Fig. 12). We

use the 64-dimensional vector from the hidden layer to represent the topic information of

a paper. We visualize the kernel density for papers from three different disciplines in the

embedding space (Fig. 13). We apply k-means clustering to the 64-dimensional embedding

space with n = 60 centroids, and assign the topic of each paper as the community it belongs

to. We repeat our analysis on 〈H〉 for topics measured from the embedding space, finding

our conclusions remain the same (Fig. 14).

Supplementary Note 1.4. Limitations

Although our datasets capture among the largest collections of career profiles, there are

limitations of the data that readers should keep in mind. For instance, the individuals in our

datasets are ”survivors” with long enough careers. This design is meant to be consistent with

the previous study [1] so the patterns we observe here are comparable across the literature.

Nevertheless, it also means that we cannot eliminate the potential survivorship bias, as some

individuals and works may have been filtered out before the analysis. For example, famous
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works may be overrepresented in museum exhibitions. This issue is mitigated somewhat by

data collected from online art database Artnet, which contains art images from dealers such

as galleries and auction platforms. By combining images from the two datasets it allows us

to construct a more comprehensive profile for artistic careers, especially for the less famous

works an individual produced. But still, potential biases may persist. For example, the

coverage of one’s entire career history may vary across individuals, and famous artists may

have a better coverage overall than their less famous counterparts. Artworks by influential

artists are more likely to appear in the art market or in the museum collection, whereas

for less famous artists, the museums and art markets may only include their best work.

Similarly, the coverage of artworks within each career might not be uniform, possibly biased

toward the famous work one produced. This could lead to a potential downward bias for

the exploration phase before the hot streak but a potential upward bias for the exploitation

results during the hot streak.

Supplementary Note 1.5. Impact distribution for auction prices and citations

In this study we use the logarithmics of auction price and citations logC10 to approx-

imate the impact of works for artists and scientists. The choice of logarithm is consis-

tent with the hot streak model [1] that the impact of each individual was randomly draw

from normal distributions. Prior literature [1, 16, 19, 20] offers empirical evidence that

the raw auction price and raw C10 can be approximated by a log-normal distribution

P (x) = 1
x
√
2πσ

exp
[
− (log x−µ)2

2σ2

]
. As such, the distribution of logarithmic auction price and

logC10 follows narrow distributions. Moreover, the IMDB rating for films directors also

follows a narrow distribution ranging between 1 and 10. Taking the logarithm of the auc-

tion price and paper citation also allows us to study the impact across three domains in a

consistent manner.
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Supplementary Note 1.6. Interpretation of exploration and exploitation in differ-

ent domains

The exploitation strategy in art reflects paintings that are similar in style. e.g. the

artworks may contain similar objects, convey similar themes, or use similar skills/techniques.

This corresponds to famous examples such as van Gogh’s series of sunflowers, Picasso’s blue

period and its theme of poverty and despair, Warhol’s repetition in the use of objects, and

more. Exploitation in film directing reflects a pattern of making similar films in succession,

which may share similar story lines and/or characters. Film sequels are typical examples:

they share similar stories with largely overlapping characters and casts, and they typically

belong to the same genre. By contrast, exploration corresponds to films with diverse styles

as well as different stories, characters, and genres. Similarly, exploitation in science involves

papers on similar research topics or using similar methodologies or techniques, whereas

exploration engages experimentation on diverse ideas and areas of research.

Supplementary Note 2. RELATED WORK

Supplementary Note 2.1. Art style analysis

In this section, we briefly summarize related work on art image analysis from three

directions: 1) statistical patterns of art styles, 2) deep neural networks (DNN) and style

classification, and 3) neural style transfer.

Statistical patterns of art styles This line of research focuses on providing quantifi-

able information on art styles by looking at different visual properties of the images [21].

Researchers proposed various metrics from local patterns of images to identify art styles

or artists, ranging from the fractal dimensions [22–25] to edge and shape statistics [26] to

color usage [27–29]. Early studies mainly involve with small samples, consisting of several

thousand images or less, and focus on case studies of certain art styles or artists [22, 24, 26].

More recent work started to cover images from different art movements thanks to the de-

velopment of digital libraries on artworks such as Web Gallery of Art and Wikiart. For

example, Sigaki et al. analyzed art history from images in Wikiart [30], and measured the

entropy and complexity of local image patterns, and found identifiable trend of art style
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evolution in the complexity–entropy plane. Although this line of research provides insights

to quantitatively understand art styles, researchers usually need to design meaningful local

features that can better identify different art styles, the process of which is largely acceler-

ated by the DNN studies that can automatically learn image representations.

DNN and style classification One productive line of research uses DNN to learn

a better representation of images with large-scale labeled images of visual arts. Wikiart

dataset is a popular dataset for such tasks [6, 31–35]. In addition, more recent studies cu-

rated large-scale, structured datasets on images of visual art by combining different online

sources, and increased the number of art images to over 500k [2, 3, 36]. These studies built

upon popular DNN architectures such as VGGNet [7], ResNet [37] and AlexNet [38] in

object recognition, and fine-tuned models pre-trained on ImageNet or trained these models

from scratch [2, 6, 31, 33–35, 39]. Although DNN improves the accuracy of art style classifi-

cation with high-level representations, researchers find that the joint embedding from both

high-level vector and the output of convolutional filters better captures the art styles [2],

and adding outputs from convolutional layers to the high-level embedding also outperforms

the high-level embedding in style and artist classification [32, 33], prompting us to use the

joint embedding for style representation in this paper.

Neural style transfer Another line of research examines the art style analysis using

neural style transfer [40]. The seminal work by Gatys et al. [8] first proposed to use VGGNet

to convert an natural image into the art style of a target painting by optimizing the content

information of the original image coded in high-level filters and the art style of the target

painting coded in low-level filters. Since then researchers have studied various methods

to speed up the transfer process [41, 42] and apply this method to different scenarios (e.g.

general-purpose image-to-image transfer) [43] and different types of inputs (e.g. videos) [44].

More recent studies also use generative adversarial networks (GANs) for style transfer [45],

and extend the input from a single image to an embedding space of styles. GAN has also

been used to generate creative artworks that deviate from the trained distributions [46].
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Supplementary Note 2.2. Exploration and exploitation

The trade-off between exploration and exploitation — and its relationship to creativity

and learning — has been discussed extensively across a broad set of disciplines, ranging

from computer science [47–49], to psychology [50, 51], to neuroscience [52, 53], to compu-

tational social science [54–56], to strategic management and organization theory [57–61].

On the one hand, producing creative and high-impact works requires one to explore new

and diverse ideas, especially given the combinatorial nature of innovation and technology.

Yet, exploration often comes at the cost of productivity. Exploitation, on the other hand,

can support a focused agenda which is essential for developing existing knowledge. The

trade-off between exploration and exploitation represents an enduring dilemma for individ-

ual and organization learning, motivating a large body of literature to examine exploration

and exploitation from both theoretical and empirical perspectives. In Table. S1, we offer a

brief overview of three relevant lines of research inquiring individual behavior, organization

learning, and idea formation. We next discuss these directions in more detail.

Individual behavior At the individual level, the ‘essential tension’ hypothesis by

Thomas Kuhn [62] illustrates the choice between exploiting existing ideas and exploring

new yet risky opportunities. The sociology of science offers several fundamental theoretical

discussions [63, 64]. More recently, empirical anlaysis has been conducted to quantitatively

understand the ‘essential tension’ hypothesis. For example, Foster et al. [55] analyzed mil-

lions of abstracts from MEDLINE, and identified topics from the clusters on the chemical

network to trace the research strategy of biomedical researchers [65]. In addition, the PACS

code in American Physical Society (APS) dataset has also been widely used to quantify

exploration and exploitation for scientific careers [18, 54, 66].

Researchers have also studied various environmental, social and individual factors that

may influence one’s choice between exploration and exploitation [50]. Environmental fac-

tors include resource status of a local position [51, 67], cost and reward of exploration and

exploitation [67, 68], available information on different options [69], and more. Discussions

centered around how long individuals should stay in the exploitation/exploration phase and

when to change their behaviors under different environmental settings. For example, the
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probability of exploration increases when the resource is depleted, when the cost of explo-

ration decreases, or when individuals are uncertain about the options. The social factors

are widely discussed in social learning strategies and collective intelligence [70–74], ranging

from task complexity [75], to past success and failure [73, 75] to network structures [76, 77].

Individuals can update their strategies like exploration, exploitation or copying others to

increase their payoffs under different settings. Individual factors such as personalities [78],

cognitive capacity [79], and aspiration level [80], also influence one’s propensity to explore

or exploit.

In the literature of strategic management and organization theory, scholars have exam-

ined exploration and exploitation behaviors of individuals and firms, particularly focusing

on the effects this has on organizational outcomes. For example, Singh & Agrawal [81] found

that when scientists begin working within a new organization, the organization increases

their use of the new recruit’s prior work and that the majority of the effect is due to the

employee’s own exploitation of their prior work. Groysberg & Lee [82] found that when

star security analysts were hired to explore (i.e., to initiate new activities for the organi-

zation), they experienced a drop in performance; whereas star security analysts hired to

engage in exploitation (i.e., to reinforce the organization’s existing activities) experienced

a boost in performance. Other research has looked at the antecedents of individuals’ ex-

ploration and exploitation behaviors. For example, Lee & Meyer-Doyle [83] examined how

financial incentives shaped the behavior of sales people and found that individuals engaged

in more exploration when performance-based incentives were weakened but this increase

was driven by the organization’s strongest performers. Recent study on network oscillation

for bankers [84] suggests that switching between exploration and exploitation has positive

effects on the employee’s network advantage.

Organization learning, design and adaptation At the macro level, another impor-

tant line of research examines exploration and exploitation in the context of organization

learning, organization design, and organizational adaptation [60]. This line of work builds

on the canonical work by March [59], and suggests that both exploration and exploitation

are critical for an organization’s performance, but they are inherently in tension and that

this tension must be actively managed [85]. This tension reflects trade-offs between short vs.
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long-term performance and stability vs. adaptability [59, 86–89]. Debates in this literature

center on several fundamental questions: Do exploration and exploitation exist as two ends

of a continuum (and so cannot coexist at the same time) or are they orthogonal discrete

choices? Can organizations find a balance between exploration and exploitation activities

or should they specialize in one or the other in terms of organizational, temporal or domain

separation. It also explores the antecedents to organizations’ decisions to pursue exploration

or exploitation [61, 90], examining environmental factors (e.g., exogenous shocks, competi-

tive dynamics) as well as organizational factors (e.g., culture, resources, capabilities) that

influence that choice. This literature also uses the notion of organizational ambidexterity

to describe the ability to do both exploration and exploitation simultaneously [91]. Finally,

this research examines the performance implications for organizations of adopting different

approaches to balancing this enduring trade-off between exploration and exploitation [92].

This line of research is performed using multiple different methodologies including empirical

studies using quantitative and qualitative data from organizations, theoretical models [93],

and agent-based simulations [61, 94, 95].

The temporal separation between exploration and exploitation discussed in this line of

research is related to our findings. The temporal separation indicates that organizations

transit from exploration to exploitation from time to time and vice versa. The intuition

behind temporal separation is that exploration may offer opportunities and promising di-

rections for organizations to exploit later [60]. The idea of temporal separation is rooted

in notion of punctuated equilibrium, which describes how organizations transform through

cycles of stability and massive upheaval. But in practice, the transition between exploration

and exploitation is considered to be difficult. For instance, if an organization is focused on

one of the activities, that creates a path dependence for the organization and is a powerful

source of inertia. Temporal separation is therefore thought to require an agile organization

that can successfully transition between the two activities when needed. The literature also

discussed the gradual and discontinuous shifts between exploration and exploitation [96–99],

and found that a sudden transition may be harmful to the survival of an organization [98, 99].

Idea formation At a more micro level, the discussion of exploration and exploitation is

particularly relevant to studies on idea formation and innovation process [100–102], which
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models the mechanism of innovation as random walks on the network of ideas/landscape of

solutions. In this setting, exploration and exploitation is usually defined as creating new

path or reproducing existing ideas. For example, Iacopini et al [100] models the cognitive

growth of knowledge in science for over 20 years and validate process with concept networks

curated from WoS abstracts. Studies have shown that both existing knowledge and novel

combinations are essential for producing high-impact scientific papers [103]. The discussion

goes beyond science to innovation and technology as well. For example, Youn et al. [104]

analyzed technology codes used by USPTO to quantify innovation strategy, finding a con-

stant rate of exploration and exploitation in patent records.

Overall, our results contribute to these three lines of literature in several ways. First,

by documenting the relationship between exploration, exploitation and career hot streaks,

our results demonstrate broader relevance of the concepts of exploration and exploitation,

extending beyond existing individual or organizational settings to the understanding of hot

streaks and individual creative careers. At root, our results suggest the important role of

both exploration and exploitation in individual careers. Curiously, across a wide range of

creative domains, a major turning point for individual careers appears most closely linked

with neither exploration nor exploitation behavior in isolation, but rather with the particular

sequence of exploration followed by exploitation, which highlights our second contribution.

Indeed, extant literature has documented the fundamental role of exploration and exploita-

tion in creativity. Yet as creative behaviors, they have traditionally been considered either

in isolation or in combination, but rarely in succession [55, 60]. This is especially the case

for career-level analysis. Our results suggest a sequential view of creative strategies that

balances experimentation and implementation may be particularly powerful for producing

long-lasting contributions.
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Year Paper Category Topic

2020 Kang & Kim [105] Organization incremental and discontinuous transition between exploration and exploitation

2019 Aleta et al. [54] Individual topic evolution for scientific careers

2019 Shibayama et al. [106] Individual junior scientists’ performance and their training strategy

2019 Zeng et al. [18] Individual topic evolution for scientific careers

2018 Iacopini et al. [100] Idea emergence of knowledge and innovation

2018 De Langhe et al. [107] Individual exploration, exploitation and scientific revolution

2018 Luger et al. [88] Organization dynamic balancing of exploration and exploitation

2017 Jia et al. [66] Individual topic evolution for scientific careers

2016 Loreto et al. [101] Idea emergence of knowledge and innovation

2016 Swift [98] Organization difficult leap between exploration and exploitation

2016 Piao & Zajac et al. [89] Organization repetitive versus incremental exploitation and impact on exploration

2016 Murdock et al. Individual the reading strategy of Charles Darwin

2016 Burt & Merluzzi [84] Individual oscillation of network structure between brokerage and closure

2015 Foster et al. [55] Individual essential tension in biomedical research

2015 Rzhetsky et al. [65] Idea the evolution of problem selection in in biomedical research

2015 Youn et al. [104] Idea combinatorial dynamic of exploration and exploitation in innovation

2015 Bateman & Hess [78] Individual scientists’ personality and research strategy

2015 Krafft et al. [73] Individual collective intelligence and learning strategies

2015 Chin et al. [108] Individual age and search strategy

2015 De Langhe & Rubbens [109] Idea essential tension in science

2014 Holmqvist [86] Organization exploitation and exploration in inter-organizational learning

2014 Knudsen & Srikanth [95] Organization coordinated behaviors by multiple individuals

2014 Tria et al. [102] Idea dynamics of correlated novelties

2014 Spisak et al. [110] Individual age of leaders and search strategy

2014 Billinger et al. [75] Individual impact of task complexity on the trade-off

2014 Toyokawa et al. [72] Individual impact of social learning on the trade-off

2013 Uzzi et al. [103] Idea novelty and conventionality of knowledge and paper impact

2013 Berger-Tal et al. [56] Individual trade-off for project-levels and project-based strategies

2012 Hills et al. [79] Individual memory and individual searching strategies

2012 Posen & Levinthal [61] Organization exploitation and exploration in inter-organizational learning

2011 Molina et al. [111] Organizations goal of new product development and the strategy choice

2011 Singh & Agrawal [81] Individual inventors mobility and exploration/exploitation behaviors

2010 Fang et al. [112] Organization balance between exploration and exploitation

2010 Rakow & Newell [69] Individual available information and propensity to take risks

2009 Groysberg & Lee [82] Individual individual mobility and exploration/exploitation behaviors

2009 Weisberg & Muldoon [113] Individual search strategy on epistemic landscape

2008 Hau et al. [68] Individual the role of sample size on decision making

2008 Goldstone et al. [74] Individual collective behavior and different learning strategies

2007 Namara et al. [114] Organization trade-off in biotechnology firms

2007 Eliassen et al. [115] Individual lifetime expectancy and individual foraging strategies

2007 Sidhu et al. [116] Organization multidimensional search in supply, demand, and geographic space

2007 Lazer & Friedman [77] Individual network structure of exploration and exploitation

2007 Lee & Meyer-Doyle [83] Individual incentives and the behavior of sales people

2007 Parker et al. [80] Individual maximizers, satisficers, and preference to exploration

2006 Lavie & Rosenkopf [96] Organization balancing exploration and exploitation in alliance formation

2006 Siggelkow & Rivkin [94] Organization performance effects of balance between exploration and exploitation

2005 Jansen et al. [90] Organization ambidexterity of exploration and exploitation

2005 Auh & Menguc [92] Organization multiplicative interactions between exploration and exploitation

2004 Rothaermel & Deeds [97] Organization exploration and exploitation in alliance formation

2004 He & Wong [117] Organization ambidexterity of exploration and exploitation

2002 Burgelman [118] Organization long-term adaptive capability of a firm’s strategy

2002 Zollo & Winter [99] Organization exploration, exploitation and knowledge evolution cycle

2001 Rosenkopf & Nerkar [58] Organization patenting activity and the external environment

2001 Sørensen et al. [87] Organization organizational aging and innovation process

1994 Henderson & Cockburn [57] Organization R&D behaviors and research productivity in pharmaceutical firms

1993 Levinthal & March [119] Organization exploration and exploitation in organizational learning

1991 March [59] Organization exploration and exploitation in organizational learning

1979 Kuhn [62] Individual essential tension in science

1976 Charnov [67] Individual optimal foraging behaviors

1975 Bourdieu [63] Individual scientific organizing framework and capital accumulation

1962 Polanyi [64] Individual scientific discoveries as puzzle solving

Supplymentary Table 1: List of key references on exploration and exploitation20



Supplementary Note 3. ROBUSTNESS CHECK

Supplementary Note 3.1. Different timing of hot streaks

Does the observed relationship between exploration, exploitation and hot streak depend

on when hot streak occurs within a career? To test this, we split artists, directors and scien-

tists into early and late hot streak, and compare the distribution P (H) for work produced

before and during a hot streak for individuals with different timing of hot streak. We find

that P (H) during hot streak is significantly smaller than before for both cases, suggesting

that our findings are robust to different timing of hot streaks (Fig. 15)

Supplementary Note 3.2. Different levels of impact

Does the observed exploration-exploitation transition apply to individuals with different

level of impact? To test this, we identify for each individual the highest impact work within

a career [1, 16], and group individuals by their highest impact into high- and low-level. We

compare the distribution P (H) for work produced before and during hot streak, finding that

P (H) during hot streak is significantly smaller than before for individuals with different level

of impact across three domains (Fig. 16). We also calculate 〈H〉 for work produced before

and during hot streak, and compare to the entropy distribution P (〈H〉) of the null model,

finding again the same conclusion (Fig. 17).

Supplementary Note 3.3. Different disciplines

To test if our results apply to scientists from different disciplines, we identify for each

scientist her discipline with subject categories provided by WoS, and group the subjects into

six general disciplines: Physical Science, Biology, Medicine, Environmental Science, Chem-

istry and Engineering [120]. For each scientist, we count the number of papers published in

each of the subject, and consider the one with the most publications as her home discipline.

We repeat the analysis on 〈H〉 for scientists from each of the six disciplines, and compare to

the distribution P (〈H〉) for 1000 realizations of the null model, finding our results remains

the same (Fig. 18A-L) We also measure P (H) for papers before and during hot streak in

real careers, and reach the same conclusion (Fig. 18M–R).
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Supplementary Note 3.4. Individual fixed effect

Individuals may have different baseline exploration rates. Do individuals with overall low

career entropy show similar exploration-exploitation dynamics? To test this, we identify the

typical level of exploration in each career, defined by the percentage of the unique number

of styles/topics ni over all works one produced (N), denoted as ni/N . We group individuals

into high and low exploration rates, and compare the distribution P (H) for works produced

before and after during hot streak. We find that the exploration-exploitation transition

occurs for individuals with different levels of entropy across the three domains (Fig. 19). We

also calculate 〈H〉 in real careers and compare to the entropy distribution P (〈H〉) of the null

model, and find that our results remain the same across three domains (Fig. 20). We further

compare the level of entropy change by measuring the distribution P (H) of real careers over

that of the null model, denoted as R(H) = P (H)/Pr(H) for works produced before and

during hot streak (Fig. 21). We find that individuals tend to deviate from their typical

strategy around the beginning of a hot streak: individuals who tend to exploit on average

become more exploratory before a hot streak begins (Fig. 21A–C), whereas individuals who

tend to explore become particularly focused during hot streak (Fig. 21D–F). This is also

validated by the difference between 〈H〉 and that of the null model (Fig. 20). For example,

the difference between 〈H〉 and null model before hot streak for low-diversity artists is more

pronounced than that of the high-diversity artists. Similarly, the difference between 〈H〉

and null model during hot streak for high-entropy directors is more pronounced than that

of the low-entropy directors.

Supplementary Note 3.5. Regression analysis

In this section, we systematically calculate the correlation between diversity and the

beginning of a hot streak by controlling individual-specific characters using OLS regression.

We first study the entropy change when individuals started to explore before a hot streak

begins, compared to their earlier career of the same length, after controlling for impact,

career stage, and other individual characteristics:

H = a0 + a1 × StageHS + a2 ×Ni + a3 × career stage+ a4 × ti/N

+a5 × career age+ a6 × 〈impact〉+ a7 × logN
(1)
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where StageHS = 1 if the work is produced before a hot streak, and 0 in earlier careers;

Ni is the unique number of styles and topics within a career; N is the overall productiv-

ity; career stage is the relative timing of the work overall all works produced in a career;

career age is the years since the first work, 〈impact〉 captures the average impact of all

works. We further compare the regression coefficient a1 of real careers to that of a null

model, where we randomly selected a work as the beginning of a hot streak. We then repeat

the analysis for diversity change after a hot streak begins, and assign StageHS = 1 if the

work is produced during a hot streak, and 0 before it happens. Compared to the null model

where a1 is rather flat, we find that a1 for real careers across three domains show obvious

decreasing trend from before to after a hot streak begins (Fig. 22). When individuals start

to explore before a hot streak, a1 is larger than the null model would expect, and a1 for

directors and scientists are systematically larger than 0, indicating higher diversity before

a hot streak begins. While after the beginning of a hot streak, a1 becomes systematically

smaller than null model, indicating a drop of diversity during exploitation. Overall, our

conclusions remain the same after controlling for individual specific properties.

Supplementary Note 3.6. Scientists with two hot streaks

Do individuals with two hot streaks experience the exploration-exploitation transition in

both cases? Given that the careers with multiple hot streaks are uncommon, here we only

focus on scientists who have two hot streaks. We calculate P (H) for papers around each

hot streak (Fig. 23), finding P (H) before a hot streak is systematically larger than P (H)

during hot streak for both hot streaks.

Supplementary Note 3.7. Scientists with hot streaks at the beginning of their

career

By definition, the exploration-exploitation transition can only be measured for individuals

who have produced a number of works before their hot streak begins. What about the

individuals whose hot streak occurs at the beginning of their careers? To test this, we focus

on scientific careers with hot streak at the beginning and compare their entropy dynamics

to that of the null model (Fig. 24a), or their cohorts who do not have hot streaks at the
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beginning (Fig. 24b). We find that in both cases, although we could not observe the behavior

before their first record, individuals with hot streaks at the beginning have systematically

smaller entropy, consistent with exploitation behavior during hot streak.

Supplementary Note 3.8. Alternative community detection method

In the main text we report the topics detected using the same community detection

methods in Zeng et al. [18]. To test if our results are robust to different community detection

algorithms, here we use Infomap [121] to detect the community structure and repeat our

analysis of P (〈H〉), finding our conclusions remain the same (Fig. 25).

Supplementary Note 3.9. Different time window

In the main text we measure topic entropy for works produced during the hot streak

and the prior period of the same length before. To test if our results are roust to entropy

measured by different time window, we calculate the entropy for works produced within

5 years before and after the onset of hot streak (Fig. 26), and the same number of works

produced before and after the onset of hot streak (Fig. 27), finding that our conclusions

remains the same.

Supplementary Note 3.10. Alternative diversity index

To test if our results are robust to other diversity measures, here we use Simpson diversity

(D = 1 − Σip
2
i , where pi is the probability of topic i), and normalize it by the maximum

value. We repeat the measurement for P (〈Simpson〉), finding again that 〈Simpson〉 for

works before a hot streak is systematically larger than the null model across the three

domains (Fig. 28A–C) Similarity, 〈Simpson〉 for works after a hot streak begins is again

systematically smaller than expected (Fig. 28D–F). Together, the uncovered exploration

and exploitation transition remains the same for different diversity measures.
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Supplementary Note 3.11. The number of styles/topics

To test the robustness of our results for the number of topics/styles m, and to compare

m given different productivity levels, we calculate the number of styles/topics normalized

the number of papers m/n for time periods before and during a hot streak, by controlling

the productivity n over time. We compare the average 〈m/n〉 before and during hot streaks

measured in real careers to the distribution of P (〈m/n〉) for 1000 realizations of the ran-

domized careers across three domains (Fig. 29A-F). We further compare the distribution

P (m/n) before and after the hot streak begins for real and randomized careers (Fig. 29J–L).

Together, Fig. 29 suggest that individuals tend to work on more topics before a hot streak

and fewer topics after a hot streak begins, consistent with the shift from exploration to

exploitation strategy.

We further test the robustness of our results by controlling for individuals with similar m

in each domain. Specifically, we focus on individuals with m around the median value (6 to

8 for artists, 2 to 4 for directors, and 4 to 6 for scientists (Fig. 30)), and compare the average

entropy measured in these careers to the distribution of 1000 realizations of the randomized

careers. (Fig. 31A–F). We also directly compare the distribution of entropy before and after

the hot streak begins for real and randomized careers (Fig. 31G-L). All these results show

that individuals tend to work on more diverse topics before and become more focused after

a hot streak begins, suggesting that the shift from exploration to exploitation strategy still

hold after controlling for the number of topics m.

Supplementary Note 3.12. The faction of works on the most popular style/topic

We test the robustness of our results by measuring the fraction of works on the most

popular styles/topics (Fig. 32), defined as the topic that represents the most works one

produces. We find that individuals produce fewer works on the most studied topic before a

hot streak, which is consistent with an exploration strategy, but they become more focused

on the most popular topic during their hot streak, which is consistent with an exploitation

strategy.
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Supplementary Note 3.13. Switching topics

We measure the probability that an individual switches style or topic between consecutive

works for periods before and during a hot streak (Fig. 33). We find that across all three

domains, individuals are more likely to switch topics before hot streaks and less likely to do

so during hot streaks, which are consistent with our overall conclusions.

Supplementary Note 3.14. Episodes of exploration and exploitation

To systematically understand the correlation between exploration, exploitation and the

onset of career hot streaks, we define for each individual episodes of exploration and ex-

ploitation within a career by calculating the style or topic entropy in a sliding window of

two years for artists and scientists, and five films for directors. We calculate the probability

to initiate a hot streak at the end of an exploration episode (P↓), at the beginning of an

exploitation episode (P↑), at the transition from exploration to exploitation (P↓↑), and at the

transition from exploitation to exploitation (P↑↓), We further compare their relative change

to the baseline probability Pr, defined as the average probability for the beginning of an

episode to coincide with a hot streak among all episodes in a domain (0.040 for artists, 0.042

for directors, and 0.073 for scientists, respectively). In the main text (Fig. 3S-U), we report

the relative change in the probability (P = P↓,↑,↓↑,↑↓/Pr − 1).

Supplementary Note 3.15. Different numbers of centroids

We test in this section whether our results are robust to different number of clusters for

artists and directors. We retrain the k-means clustering with 20 and 40 centroids and repeat

the analysis of P (〈H〉), finding the results are robust with different numbers of centroids

(Fig. 34).

Supplementary Note 3.16. Papers without references

We find that some of the papers do not have references in WoS, which lack sufficient

information for us to identify their topics from the co-citing network. We ignore papers

without references in scientific careers in the main text. To test whether our results are
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robust if we include those papers, we include the impact of papers without references when

we measure hot streak, use the same community detection methods to identify topics, and

assign papers without references to a new topic. We then calculate the entropy distribution

P (〈H〉) for 10 works produced before and during hot streak begins and compare to the null

model, finding again that papers produced before a hot streak have higher entropy than

expected, while papers during a hot streak have significantly low entropy than expected

(Fig. 35).

Supplementary Note 3.17. Different style measurements

In this section, we test if the results are robust if we use different style measurements for

artists and directors. We directly use style labels for artworks and genres labels for films

to measure entropy distribution. We use fine-tuned VGGNet to predict the style of each

image. The model output is a 29-dimensional vector with probability to each style, and

the image is assigned the style with the highest probability. We then calculate the entropy

distribution P (〈H〉) for works produced within 5 years before and during hot streak, finding

our conclusion remains the same (Fig. 36). We also use genre labels in IMDB to approximate

the style of each film. We focus on the genres for 5 works produced before and after a hot

streak begins. If a film has multiple genres, we include all of them in the genre list. We

again observe the transition from exploration to exploitation if we measure film style with

genres (Fig. 37), suggesting that our analysis is robust under different style definitions.

Supplementary Note 4. SCIENTIFIC TEAMS

Motivated by the recent literature on scientific teams [120, 122], we focus on scientific

careers and investigate whether there are detectable changes in collaboration patterns around

the exploration-exploitation transition.

Supplementary Note 4.1. Regression analysis on team size

In the main text, we compare the team size during exploration and exploitation for all

scientists in our dataset. To ensure that our results are not affected any temporal trend or
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population differences, here we perform a OLS regression to study the correlation between

team size and the beginning of a hot streak. We first measure the change of team size when

scientists started to explore before a hot streak begins compared to their earlier career of

the same length, after controlling for year, career stage and research fields:

log team size = a0 + a1 × StageHS + a2 × year + a3 × career stage

+a4 × career age+ a5 × field
(2)

where log team size is the logrithmic of team size for a paper, as the distribution of

P (team size) is fat-tailed in general (Fig. 38). StageHS = 1 if the paper is produced before

a hot streak (within 10 papers), and 0 if the paper is produced in one’s earlier career;

career stage captures the relative timing of the paper overall all papers produced in a

career; career age measures the years since the first paper; and field is the subject category

in WoS which the paper belongs to. We further compare the regression coefficient a1 of real

careers to that of a null model, where we randomly selected a paper as the beginning of a

hot streak. We then repeat the analysis for team size after a hot streak begins, and assign

StageHS = 1 if the work is produced during a hot streak (within 10 papers), and 0 otherwise.

Compared to the null model where a1 is rather flat, we find that a1 for real careers

show increasing trends from before to after the onset of a hot streak (Fig. 39). a1 for the

exploration phase is smaller than the null model would expect, and is systematically smaller

than 0, indicating that scientists explore with smaller teams before a hot streak begins.

While after the beginning of a hot streak, a1 becomes systematically larger than null model,

indicating that scientists work with larger teams during exploitation. Overall, our results

are robust after controlling for temporal and disciplinary differences.

Supplementary Note 4.2. Different disciplines

We further split scientists into six major domains following S6.4, and run the OLS re-

gressions for scientists in each domain separately (Fig. 40). Consistent with prior results,

we find that the team size across six domains shows significant increase after a hot streak

begins. a1 for the team size before hot streak is smaller in real careers than that of the

null model, and scientists from physical science, environmental science and engineering have

more pronounced effects.
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Supplementary Note 4.3. Team composition

The large team during hot streak may be not simply expanded from past collaborators.

Indeed, a prior study [122] investigated the important role of fresh teams, prompting us to

investigate whether scientists work with a new group of collaborators following the onset

of hot streak. To test this, we calculate the dynamics for the number of common authors

Ashared for 5 papers before and after a given position t, divided by the total number of

unique authors A for the 10 consecutive papers (Fig. 41A). Here we focus on the individuals

with similar hot streak duration (L = 10 ± 2) and align their careers by the timing of the

hot streak. Ashared/A at the beginning of a hot streak is significantly smaller than the null

model, suggesting that collaborators after t↑ are less likely to overlap with collaborators

before. We further validate this result by measuring the rate of new co-authors for papers.

Specifically, we calculate the number of new co-authors Anew within a sliding window of 5

papers, divided by the number of unique authors A during the same time. We find that

hot streak begins with the highest rate of new collaborators as Anew/A peaks at t↑, and is

significantly higher than the null model (Fig. 41B). Together, Fig. 41 suggests that instead

of expanding their collaborators when a hot streak begins, scientists are more likely to work

with a new group of collaborators during their hot streak.

Supplementary Note 4.4. Self citations

Is the work produced during a hot streak highly cited due to the larger team size itself?

One possibility is that there are more coauthors to showcase the work. This has been

discussed in the team science literature, which has argued for a need to adjust for self-

citations to account for the increased visibility from coauthors [123]. Following the literature,

we repeated our analysis by excluding self-citations. Specifically, for each citation of a paper,

we compare the coauthors’ last name and first initial. If they share at least one author with

the same name, we consider it as a self-citation and subtract it from C10, which offers a

conservative estimation on the effect of self-citations. We find that although adjusted C10

(without self-citation) is smaller than the raw C10 (lower than the diagonal line in Fig. 42A),

the two values are highly correlated. We further quantify the distribution of adjusted logC10

for papers published during hot streaks and the rest for all scientists in the dataset, and find
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that the hot streak papers have systematically higher impact (Fig. 42B), indicating that the

highly cited papers are not only simply due to self-citations.

Supplementary Note 4.5. Controlling for effects of collaborations

Individuals may have varied commitments to their main topics of research and collabora-

tive ones, suggesting that controlling for their lead-author publications may further highlight

the uncovered effects. To test this, we identify, for each scientist, the authorship order in

their papers. We approximate the first and last author as lead authorship. We then focus on

lead-author publications during a hot streak, and measure again their entropy distribution

P (H). Excluding papers of a lesser role significantly reduces the topic entropy during the

hot streak (Fig. 43A, KS-test p-value = 6.1 × 10−9). Focusing on lead-author publications

alone also yields a larger difference in the entropy distribution P(H) before and during a hot

streak (Fig. 43B, KS-test p-value = 1.0× 10−55).

Supplementary Note 5. CHARACTERISTICS OF EXPLOITED TOPICS DUR-

ING HOT STREAK

In this section, we probe the connections between phases of exploration and exploitation.

We begin by establishing how we define the exploration, exploitation and normal (typical)

phases. We then examine properties of the topics that are explored before a hot streak

begins, ranging from their recency to citation impact to popularity (Fig. 44), asking which

ones tend to be chosen for subsequent exploitation.

Supplementary Note 5.1. Exploration, exploitation and normal phase

There are in principle three phases in a career: exploration, exploitation, and the normal

phase, where the topic/style diversity is not significantly different from one’s typical level.

We mainly focused on the first two phases in the main text. Here we explicitly incorporate

the normal phase into our framework, and test all nine combinations of the three phases and

correlate them with the onset of career hot streaks. We construct a null model for each career

by randomly designating one work as the start of his/her hot streak, and repeat the procedure
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for 1000 realizations. This null model allows to us to identify phases of exploration, normal,

and exploitation within each career by comparing the entropy in a period to the distribution

P (H) predicted by the null model (Fig. 45). We define exploration, exploitation, and normal

phase as a period with H significantly larger, smaller, or similar to one’s typical level. We

measure the probability to observe the onset of hot streak for the nine different combinations

between exploration, normal phase and exploitation, and compare it to a baseline when the

hot streak randomly appears in a career Fig. 46). We find that the percentage change for

the exploration-exploitation transition is significantly larger than zero and again the highest

among all types of combinations.

Supplementary Note 5.2. Recency

Prior research shows that topic evolution along a scientific career is characterized by

recency [66], implying that scientists should exploit during hot streak the latest topic they

explored. We test this hypothesis by calculating the probability of the exploited topics to

be the most recent before a hot streak begins (Fig. 44C, left). Among exploited topics that

are studied before, around 32.7% of them are the most recent ones, lower than the null

model would expect (33.6%, Chi-square test, p-value=0.0019). Thus, as individuals may

learn from exploration to deliberately find a direction worth going deep, the transition from

exploration to exploitation when a hot streak begins is not simply due to perceiving a new

direction by chance and reaping its benefits.

Supplementary Note 5.3. Popularity in a career

Prior study also shows that scientists have their core research topic that are repeatedly

investigated [66], suggesting the exploited topic may be popular within a career. To test this,

we measure the popularity of a topic by the number of paper published before the onset of

hot streak, and calculate the probability for the topic exploited to be the most popular. We

find that the probability to select the most popular topic is lower than expected (Chi-square

test, p-value=6.12 × 10−40), suggesting that scientists are less likely to continue their past

focal topic during hot streak.
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Supplementary Note 5.4. Impact

Is the exploited topic the highest cited among all topics explored before? We compare

the impact for topics before a hot streak by measuring the average paper citation till the

onset of hot streak, and categorize explored topics into low, middle and high impact. We

calculate the probability for the exploited topic to fall into each category, and find that the

topics studied during exploitation are less likely to be the high-impact topic (Fig. 44D).

Supplementary Note 5.5. Popularity in embedding space

Exploration may increase the likelihood for individuals to stumble upon a hot topic and

reap its benefits during hot streak, prompting us to test if the exploited topic is popular at

that time. We project the 64-dimensional embeddings learned from co-citing network among

all papers in the dataset onto two dimensions using PCA. We calculate the density on these

dimensions by measuring the volume of papers at the time in the embedding space. The

popularity of a topic is defined as the average density for papers belonging to the topic when

they were published. We find that the topics studied during exploitation are less likely to

reside in either high- or low- density regions but rather somewhere in the middle (Fig. 44E).

We also calculate the momentum of each topic during the exploration phase, which traces

the rate of increase in popularity within five years before the onset of hot streak, finding

again that the topic exploited is not among the fastest growing (Fig. 44E, inset)

Supplementary Note 5.6. Predicting topic exploited

We utilize the topic properties discussed above together with the team size to predict

which topic a scientist will choose to exploit during their hot streak. Specifically, we for-

mulate a binary classification problem: For each scientist, given each topic she explored

before hot streak, we predict whether it will be exploited during the hot streak based on

its recency, impact, popularity and team size. Here we focus on careers whose exploited

topics were among those studied before (around 80% among all scientists in the dataset).

We calculate the topic recency, impact, popularity in a career and in the embedding space

following th same procedure above. The team size of each topic is calculated as the average

log team size for papers belonging to the topic that were published before hot streak.
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We randomly sample 80% of topic records as training set and the rest 20% as the test set,

and use the random forest model with 500 trees to train the classifier. The model accuracy

is 0.89 and AUC is 0.83 (Fig. 44F). We also test the effect of imbalanced positive (exploited)

and negative (not exploited) sample size, and down-sample the negative cases to the same

amount of positive ones, finding the AUC remain above 0.8. We further compare the model

accuracy to two baselines: 1) the accuracy for the topic from the last paper before hot streak

is 0.64; 2) the accuracy for a randomly selected topic before hot streak is 0.43, finding our

prediction model significantly outperforms the two baselines.

Supplementary Note 6. TESTING ALTERNATIVE HYPOTHESIS

To explore alternative explanations for career hot streaks, we test several hypotheses in

this section, each capturing plausible factors or processes for career progression and success.

Supplementary Note 6.1. Multiple publications

. Innovators may stumble upon a groundbreaking idea, which manifests itself in the

forms of multiple artworks, films, or publications. Hence from an evolutionary perspective,

hot streak may correspond to the duration for the temporary competitive advantage to

dissipate. We test this hypothesis by measuring the relative order of three highest impact

papers during hot streak. Multiple publications hypothesis predicts that the highest impact

paper should be more likely to occur before the second highest. By contrast, we find that

there is an equal probability for the highest-impact work to appear before or after the second

highest (Fig. 47A).

Supplementary Note 6.2. New research direction

Some research topics are more impactful than others, and hot streaks may be simply

driven by switching to a new research direction, which affects an individual’s overall achieve-

ments. We test this hypothesis by measuring the probability of observing a new topic when

hot streak begins, and compare it with that of the randomized careers (Fig. 47B). However,
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we find no detectable difference between data and the null model (Chi-square test, p-value

=0.23).

Supplementary Note 6.3. Collaboration with high-impact scientists

Teams are increasingly responsible for producing high-impact work, suggesting hot streak

may reflect fruitful, repeated collaborations with other high-impact individuals. To test

this, we quantify the reputation of one’s coauthors using h-index, and measure the h-index

distribution for the most prestigious co-author of each paper published during hot streak.

We find that the h-index for the most prestigious coauthor is largely indistinguishable from

the null model (Fig. 47C).

Supplementary Note 6.4. Changing institutions

Scientists moving to a new intellectual environment may be exposed to new sets of ideas

or opportunities, which may increase their likelihood to produce high-impact work . To in-

vestigate the relationship between changing institutions and hot streak, we trace the physical

mobility of scientists through their affiliations recorded in publication records [124], and cal-

culate the probability of changing institutions during their hot streak. We find that hot

streaks are less likely to be associated with affiliation change than expected (Chi-square

test, p-value = 1.8× 10−41, Fig. 47D).

Supplementary Note 6.5. Research support

A new grant may help accelerate a scientist’s research progress and offer opportuni-

ties to produce high-impact papers. To test whether hot streak can be explained by

new grants, we linked the careers of scientists in our dataset with a funding database

that captures 3.7 million funded projects across more than 250 funding agencies world-

wide (https://www.dimensions.ai/) by the same last name, first initial and affiliation. We

measure the number of new grants around the onset of a hot streak, and find no detectable

differences compared with the null model (Fig. S39E, Chi-square test, p-value = 0.36). We

further calculate the amount of funding one received around the beginning of a hot streak,
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finding again a lack of difference between data and the null model (Fig. 47E, KS test, p-value

= 0.67).

Supplementary Note 6.6. Future hot topic

Although scientists are less likely to work on the most popular topic at the time, scientists

may happen to work on a topic that becomes hot in the future. To test this hypothesis, we

quantify the impact of each topic in the WoS data and compare the distribution of topic

impact during hot streak to that of before, and find that the impact improvement for topics

appears negligible relative to the overall impact change in real careers (Fig. 47F).

Supplementary Note 6.7. Exploiting previously successful work

. Next, we analyze whether the doubling down on prior success might be a potential

explanation for the onset of hot streaks (i.e. if something is successful, do it again). The

Matthew effect suggests that an individual’s initial success may bring resources and repu-

tation which may help the individual to succeed again in the future. From this perspective,

creating subsequent work that is similar to one’s successful prior work may be advantageous.

One key prediction of the Matthew effect is first mover advantage [125, 126]. It thus suggests

that we should expect that on average individual performance would decrease over time as

one repeats the same recipe for success. Indeed, research shows that while sequel films have

good box-office performance in general, it is rare for sequels to outperform the predecessors

in terms of either gross box office or the probability to earn award recognitions [127, 128].

Similarly, in science, the first study that opens up a new line of inquiry tends to be highly

cited. And follow-up studies that continue the investigations may also attract attention,

but are less likely to be cited at the same level as the canonical paper.

We perform two different measurements to test this prediction: (1) We compare the im-

pact distribution of works produced in the first and second half of the hot streak, as measured

by the logarithmic of auction price, the IMDB rating and the logarithmic paper citations

in 10 years C10 (Fig. 48A-C). (2) We measure the relative position of the highest-impact

work among the top six highest-impact works in a career (Fig. 48D-F). Interestingly—and
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contrary to what the hypothesis would predict—we find no systematic difference between

the impact in the first and second half of the hot streak. Moreover, we observe an equal

probability for the highest-impact work to appear before and after other hits in a career.

In sum, our results show that the impact during a hot streak stays remarkably stable, and

does not exhibit decreasing trends in impact.

Supplementary Note 6.8. An autoregressive process

An autoregressive model assumes short-range correlations in the impact sequence and

combines with a random term to predict one’s future impact. Specifically, we can express

an autoregressive model AR(ρ) for the impact sequence Xt of each individual career as

Xt = c+ Σρ
i=1βiXt−1 + ε, where ρ is the number of preceding time steps, βi is the correlation

at lag i, c is a constant, and ε is white noise.

At the first glance, the autoregressive model appears a rather plausible candidate for

describing the hot streak dynamics, given that high-impact works are temporarily clustered

in careers. To test its validity, we fit AR(1) to our data and test whether the model can

reproduce the clustering of hits in real careers. We measure the correlations between the

relative timing of an individual’s two biggest hits N∗ and N∗∗ predicted by the best fitted

parameters of each career (Fig. 49A-C). In contrast to patterns in real careers (Fig. 49A-F),

we find that there is little correlation between the timing of N∗ and N∗∗ under the AR(1)

model (Fig. 49D-F). We also calculate the distribution of streak length P (L), as predicted

by AR(1), defined as the number of consecutive works whose impacts exceed the median

impact of all works within a career, compared with a null model where the impact sequence

is randomly shuffled (Fig. 49J-O)). We find that the model fails to capture the fact that

high-impact works tend to be clustered in sequence in real careers. We further relax autore-

gressive model to allow for larger lags and test the predictions by AR(5), finding again the

model fails to reproduce the clustering of high-impact works in real careers (Fig. 49G-I, P-R).

Overall, these results indicate that while the hot streak dynamics imply a temporal

correlation, simply having the temporal correlation by itself is insufficient to reproduce the

dynamics observed in real careers. The main reason is that the correlations vary over time,
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according to the hot streak dynamics which accounts for the period of sustained high perfor-

mance. Indeed, overall, the level of correlation across a whole career is rather mild. When

we measure directly the autocorrelation function for real careers across the three domains,

we find that the lag 1 autocorrelation is 0.04 for artists and movie directors, and 0.05 for

scientists. The correlation becomes even smaller for larger lags. These results indicate that

the assumptions underlying the hot streak model remain the key to reproducing the patterns

we observe in real careers; without these assumptions, a generic autoregressive model by

itself cannot account for the observed patterns.
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Supplymentary Figure 1: The number of samples for top 20 labels in Art500k

test

Supplymentary Figure 2: The training and test accuracy of fine-tuned VGG16 to

predict art style labels.
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Supplymentary Figure 3: A case study on model interpretation for Number 1. The top

row shows the raw image and the model prediction results, with probability in top 3 styles.

The middle and low panel show a random feature map from CONV 1 1, CONV 2 1,

CONV 5 1, POOL5 and the saliency map with the most likely art style (FC). Image

reproduced under Creative Commons Attribution-Share Alike 4.0 International license.
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Supplymentary Figure 4: A case study on model interpretation for Mona Lisa. The top

row shows the raw image and the model prediction results, with probability in top 3 styles.

The middle and low panel show a random feature map from CONV 1 1, CONV 2 1,

CONV 5 1, POOL5 and the saliency map with the most likely art style (FC).

46



Supplymentary Figure 5: A case study on model interpretation for Kiss. The top row

shows the raw image and the model prediction results, with probability in top 3 styles.

The middle and low panel show a random feature map from CONV 1 1, CONV 2 1,

CONV 5 1, POOL5 and the saliency map with the most likely art style (FC).
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Supplymentary Figure 6: A case study on model interpretation for Cafe terrace. The

top row shows the raw image and the model prediction results, with probability in top 3

styles. The middle and low panel show a random feature map from CONV 1 1, CONV 2 1,

CONV 5 1, POOL5 and the saliency map with the most likely art style (FC).
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Supplymentary Figure 7: The kernel density for images from renaissance, impressionism

and pop art projected onto a 2D embedding space with principle component analysis

−2 0 2
−2

−1

0

1

2
Action
Romance
Fantasy

Supplymentary Figure 8: The kernel density for action, romance and fantasy films

projected onto a 2D embedding space with principle component analysis
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Supplymentary Figure 9: The training and test accuracy for the neural network to

predict film genres.

Supplymentary Figure 10: The cumulative variance explained for the top 100

eigenvalues.
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Supplymentary Figure 11: The scatter plot for two columns from the u matrix, only

considered top 100k samples. The title in each subplot represents the dimension we

measured.
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Supplymentary Figure 12: The training and test accuracy for the neural network in

predicting paper subject.
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Supplymentary Figure 13: The kernel density for neurosciences, cell biology and

physics papers projected onto a 2D embedding space with principle component analysis.
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Supplymentary Figure 14: The distribution of rescaled entropy P (〈H〉) before and

during hot streak for 1000 realizations of the randomized scientific careers using topics

measured from the node embedding space. 〈H〉 measured from real careers (vertical line)

is significantly larger than expected before hot streak and smaller than expected during

hot streak.
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Supplymentary Figure 15: The distribution of topic entropy P (H) for works produced

before and during hot streak for individuals with different timing of hot streak. We split

artists and directors into early (N↑/N ≤ 1/2) and late (N↑/N ≤ 1/2) hot streak. Given

that the sample size for scientists is larger than artists and directors, we split scientists

into early (N↑/N ≤ 1/3), middle (1/3 < N↑/N ≤ 2/3) and late (N↑/N > 2/3) hot streak.

H before hot streak is consistently larger than H during hot streak.
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Supplymentary Figure 16: The distribution of topic entropy P (H) for works produced

before and during hot streak for individuals with different levels of impact. We split artists

and directors into high (top 1/2) and low (bottom 1/2) level of impact. Given that the

sample size for scientists is larger than artists and directors, we split scientists into high

(top 1/3), low (bottom 1/3), and middle (the rest 1/3) level of impact. H before hot

streak is consistently larger than H during hot streak.
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Supplymentary Figure 17: The distribution of rescaled entropy P (〈H〉) before and

during hot streak for 1000 realizations of the randomized careers before and during hot

streak for individuals with different levels of impact. We split artists and directors into high

(top 1/2) and low (bottom 1/2) level of impact. Given that the sample size for scientists is

larger than artists and directors, we split scientists into high (top 1/3), low (bottom 1/3),

and middle (the rest 1/3) level of impact. 〈H〉 measured from real careers (vertical line) is

larger than expected before hot streak and smaller than expected during hot streak.
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Supplymentary Figure 18: (a-l) The distribution of rescaled entropy P (〈H〉) before and

during hot streak for 1000 realizations of the randomized scientific careers before and

during hot streak for scientists from six disciplines. 〈H〉 measured from real careers

(vertical line) is larger than expected before hot streak and smaller than expected during

hot streak. (m-r) The distribution of topic entropy P (H) for works produced before and

during hot streak for scientists from six disciplines. H before hot streak is consistently

larger than H during hot streak.
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Supplymentary Figure 19: The distribution of topic entropy P (H) for works produced

before and during hot streak for individuals with high (top 1/2) and low (bottom 1/2)

baseline exploration rates ni/N . Given that the sample size for scientists is larger than

artists and directors, we split scientists into high (top 1/3), low (bottom 1/3), and middle

(the rest 1/3) baseline exploration rates. H before hot streak is consistently larger than H

during hot streak.
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Supplymentary Figure 20: The distribution of rescaled entropy P (〈H〉) before and

during hot streak for 1000 realizations of the randomized careers before and during hot

streak for individuals with high (top 1/2) and low (bottom 1/2) baseline exploration rates

ni/N . Given that the sample size for scientists is larger than artists and directors, we split

scientists into high (top 1/3), low (bottom 1/3), and middle (the rest 1/3) baseline

exploration rates. 〈H〉 measured from real careers (vertical line) is significantly larger than

expected before hot streak and smaller than expected during hot streak.
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Supplymentary Figure 21: We compare the relative entropy distribution between data

P (H) and the null model Pr(H), denoted as R(H) = P (H)/Pr(H) for works produced

(a-c) before and (d-f) during hot streak. Individuals with low exploration rates tend to

explore more than expected before hot streak, and individuals with high exploration rates

tend to exploit more than expected during hot streak.
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Supplymentary Figure 22: Regression coefficient of entropy change on the timing of hot

streak from linear regressions for data and the null model.
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Supplymentary Figure 23: The distribution of topic entropy P (H) for works produced

before and during the (a) first and (b) second hot streak for scientists.

a b

Supplymentary Figure 24: The dynamics of average entropy in a sliding window of 5

papers for scientists with hot streak initiating at the beginning of their careers, compared

to the entropy at the beginning of a career for (a) the null model, and (b) other scientists

whose hot streak come later.

61



0.35 0.36 0.37
⟨H⟩

0

100

200

300

P(
⟨H
⟩)

t →↑
t →r↑

0.37 0.38 0.39
⟨H⟩

0

100

200

300
P(
⟨H
⟩)

t ←↑
t ←r↑

a b

Supplymentary Figure 25: The distribution of rescaled entropy P (〈H〉) before and

during hot streak for 1000 realizations of the randomized scientific careers before and

during hot streak using topics measured by Infomap. 〈H〉 measured from real careers

(vertical line) is significantly larger than expected before hot streak and smaller than

expected during hot streak.
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Supplymentary Figure 26: The distribution of rescaled entropy P (〈H〉) before and

during hot streak for 1000 realizations of the randomized careers measured by fixed

five-year time window before and after the onset of hot streak.
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Supplymentary Figure 27: The distribution of rescaled entropy P (〈H〉) before and

during hot streak for 1000 realizations of the randomized careers measured by fixed sample

size before and after the onset of hot streak (8 for artists, 5 for directors and scientists).

64



0.73 0.74 0.75
⟨Simpson⟩

0

20

40

60

80

100
P(
⟨S

im
ps

on
⟩)

Data
Null

0.46 0.48
⟨Simpson⟩

0

20

40

60

80

P(
⟨S

im
ps

on
⟩)

Data
Null

0.505 0.510 0.515 0.520
⟨Simpson⟩

0

100

200

300

P(
⟨S

im
ps

on
⟩)

Data
Null

0.72 0.73 0.74 0.75
⟨Simpson⟩

0

25

50

75

100

P(
⟨S

im
ps

on
⟩)

Data
Null

0.44 0.46 0.48 0.50
⟨Simpson⟩

0

20

40

60
P(
⟨S

im
ps

on
⟩)

Data
Null

0.50 0.51 0.52 0.53
⟨Simpson⟩

0

50

100

150

200

P(
⟨S

im
ps

on
⟩)

Data
Null

Artists Directors Scientists
Be

fo
re

D
ur

in
g

a b c

d e f

Supplymentary Figure 28: The distribution of Simpsons diversity P (〈Simpsons〉)

before and during hot streak for 1000 realizations of the randomized careers for the three

domains. 〈Simpsons〉 measured from real careers (vertical line) is significantly larger than

expected before hot streak (a-c) and smaller than expected during hot streak (d-f).
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Supplymentary Figure 29: (a-f) The distribution of number of topics normalized by

productivity P (〈m/n〉) before and during hot streak for 1000 realizations of the

randomized careers for the three domains. 〈m/n〉 measured from real careers (vertical line)

is significantly larger than expected before hot streak (a-c) and smaller than expected

during hot streak (d-f). (g-l) Cumulative distribution P (≤ m/n) for (g-i) data and (j-l) the

randomized careers.
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Supplymentary Figure 30: The distribution for the number of styles/topics in a career.
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Supplymentary Figure 31: The distribution for the number of styles/topics in a career.
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Supplymentary Figure 32: (a-f) The distribution of average fraction in the most

popular topic P (〈fraction〉) before and during hot streak for 1000 realizations of the

randomized careers for the three domains. 〈fraction〉 measured from real careers (vertical

line) is significantly larger than expected before hot streak (a-c) and smaller than expected

during hot streak (d-f). (g-l) Cumulative distribution P (≤ fraction) for (g-i) data and

(j-l) the randomized careers.
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Supplymentary Figure 33: (a-f) The distribution of switching probability before and

during hot streak for 1000 realizations of the randomized careers for the three domains.

〈Probabilityofswitch〉 measured from real careers (vertical line) is significantly larger than

expected before hot streak (a-c) and smaller than expected during hot streak (d-f). (g-l)

Cumulative distribution P (≤ probabilityofswitch) for (g-i) data and (j-l) the randomized

careers.
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Supplymentary Figure 34: The distribution of rescaled entropy P (〈H〉) before and

during hot streak for 1000 realizations of the randomized careers using different numbers of

centroids n for (a-d) artists and (e-h) directors. 〈H〉 measured from real careers (vertical

line) is significantly larger than expected before hot streak and smaller than expected

during hot streak.
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Supplymentary Figure 35: The distribution of rescaled entropy P (〈H〉) (a) before and

(b) during hot streak for 1000 realizations of the randomized scientific careers including

papers without references. 〈H〉 measured from real careers (vertical line) is significantly

larger than expected before hot streak and smaller than expected during hot streak.

0.60 0.61
⟨H⟩

0

20

40

60

80

100

P(
⟨H
⟩)

t →↑

0.60 0.61 0.62
⟨H⟩

0

20

40

60

80

100

P(
⟨H
⟩)

t ←↑
a b

Supplymentary Figure 36: The distribution of rescaled entropy P (〈H〉) (a) before and

(b) during hot streak for 1000 realizations of the randomized artistic careers using art style

labels predicted by the VGG16. 〈H〉 measured from real careers (vertical line) is

significantly larger than expected before hot streak and smaller than expected during hot

streak.
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Supplymentary Figure 37: The distribution of rescaled entropy P (〈H〉) (a) before and

(b) during hot streak for 1000 realizations of the randomized directors’ careers using film

genre labels. 〈H〉 measured from real careers (vertical line) is significantly larger than

expected before hot streak and smaller than expected during hot streak.
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Supplymentary Figure 38: Log-log plot of the team size distribution
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Supplymentary Figure 39: Regression coefficient of team size change on the timing of

hot streak from linear regressions for data and the null model.
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Supplymentary Figure 40: Regression coefficient of team size change on the timing of

hot streak from linear regressions for scientists from six different disciplines.
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Supplymentary Figure 41: (a) The turnover rate of coauthors and (b) the rate of new

collaborators around hot streak.
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Supplymentary Figure 42: (a) Scatter plot between raw and self-citation adjusted C10

for 10000 random papers in the dataset. (b) The distribution of logarithmic self-citation

adjusted C10 for papers published during hot streaks and normal phases.
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Supplymentary Figure 43: (a) Cumulative distribution of entropy H for all papers

during hot streaks and the first and last-authorship papers. (b) Cumulative entropy

distribution before and during a hot streak for lead-author papers.
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Supplymentary Figure 44: (a) The dynamics of paper density within a career for a

scientist in our dataset. (b) The topic trajectory in the embedding space by the same

scientist in (a). Each data point denotes the average location for papers published in a

two-year window. Stars denote her hot streak and dots denote the normal period. Color

captures the most frequent topic in each window. (c) The probability for the topic

exploited to be the (left) most recently initiated and (right) most frequently studied before

a hot streak begins for real and randomized careers. (d) The probability for the topic

exploited to be low-, median- and high-impact among prior topics. (e) The probability for

the topic exploited to fall into low-, median- and high-density region or (Inset) momentum

among prior explored topics. (f) The ROC curve for the prediction task.
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Supplymentary Figure 45: Illustration on how to define normal, exploration and

exploitation phase. For any period of the same length in real careers, we compare its

entropy to the null model distribution, and assign it as exploitation if the entropy is below

the 25th quantile of the null model, normal phase if the entropy is between the 25th and

75th quantile, and exploration if the entropy is above the 75th quantile.
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Supplymentary Figure 46: (a-c) Comparing the probability to observe the onset of hot

streak for different combinations of exploration, normal and exploitation phases to the

baseline. Color denotes the percentage change, where blue is below the baseline and red is

above the baseline. Dashed box indicates the percentage change is not significantly

different zero (chi-square test, p− value ≥ 0.05) (d-f) The total percentage change of

exploration, normal and exploitation phases before and during the hot streaks. The value

of the bar plot is the sum of the matrix in each row (before) and each column (during).
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Supplymentary Figure 47: (a) We measure the relative position for the top three

highest impact papers during hot streak, and calculate their probability to order first

among the three. We find equal probability for the three highest impact papers to appear

first. (b) The probability for the hot streak to begin with a new topic for data and the null

model. (c) The distribution of the highest h-index among collaborators for publications

during hot streak in real and randomized careers is virtually indistinguishable. (d) The

probability for an individual to work in a new institution during hot streak for data and

the null model. (e) The distribution for the number of new grants at the year when a hot

streak begins for data and the null model is virtually indistinguishable. (f) The

distribution for new funding amount at the year when a hot streak begins for data and the

null model is virtually indistinguishable. (g) The ratio between the distribution of topic

impact during hot streak and that of the topics before. Compared to the ratio between the

distribution of paper impact during hot streak and that of papers before, the improvement

of topic impact appears negligible.
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Ñ

0.0

0.1

0.2

0.3

0.4

0.5

P(
Ñ
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Supplymentary Figure 48: (a-c) The impact distribution for the first and the second

half of a hot streak across three domains. (d-f) The distribution of the relative position

P (Ñ) of the three highest-impact works among the six highest-impact works within a

career for artists, where Ñ denotes the relative order among the top six hits.
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Supplymentary Figure 49: Comparison between autoregressive model and real careers.

(a-i) The relative timing between the two biggest hits N∗ and N∗∗ for (a-c) data, (d-f)

AR(1), and (h-i) AR(5). We measured the correlation between the N∗ and N∗∗, and

compared it with a null hypothesis in which N∗ and N ( ∗ ∗) each occurred at random. The

matrix denotes the value for the normalized joint probability,

Φ(N∗, N∗∗) = P (N∗, N∗∗)/(P (N∗)P (N∗∗)). (j-r) The distribution of the length of streaks

P (L) of real and shuffled impact sequences for (j-l) data, (m-o) AR(1), and (p-r) AR(5).
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