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Supplementary Figure 1. CTCF protein and its chromatin binding in cfcfknockout
zebrafish embryos. a, Western blot of CTCF using an antibody recognizing the N-
terminal domain of CTCF (PA5-88115, ThermoFisher Scientific). Left, protein
electrophoresis and blot with anti-CTCF of whole-embryo extracts from wild type (WT),
ctef- and ctcf” embryos at 48 hours post fertilization (hpf). Right, magnification of the
band corresponding to CTCF and protein quantification normalized to protein loading
showing average and standard deviation of three independent experiments. Source data
are provided as a Source Data file. b, Heatmaps of CTCF ChIP-seq in WT embryos at
24 and 48 hpf and in ctcf”- embryos at 48 hpf, showing the signal around the called peaks
divided in 4 categories: persistent (peaks called in ctcf~ embryos), specific 24 hpf,
specific 48 hpf (peaks called only in WT at either 24 or 48 hpf) and stable (peaks called
in WT embryos both at 24 and 48 hpf). ¢, Motif enrichment analyses of the peak
categories in b showing the top-3 most enriched motifs and their associated P values
calculated with a one-sided binomial distribution by HOMER software. d, Whole-mount
embryo immunofluorescence of CTCF (red) and phalloidin (green) in WT, ctcf+- and ctcf
- zebrafish embryos at the stages of 1,000 cells (1K cells), 30% of epiboly (30% epib.),
80% of epiboly (80% epib.), 18 somites (18 som.) and 24 hpf showing the maternal
contribution of CTCF protein. Relative quantification of CTCF/dapi signal from Figure 1b
distinguishing between anterior and posterior regions of the embryo (delimited by dashed
white lines in embryo pictures) at 18 som. and 24 hpf stages. Average values +/-
standard error are shown. Statistical significance was measured using two-sided
Student’s t-test. The number of embryos for WT, ctcf- and ctcf used for quantification
are as follows: 18 som. (n=5, n=5, n=7) and 24 hpf (n=5, n=17, n=5). Source data are

provided as a Source Data file.
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Supplementary Figure 2. Analysis of TAD boundaries in cfcf knockout embryos.
a, HiC normalized contact maps at 10-Kb resolution showing the signal difference
between ctcf~ and WT zebrafish embryos at 24 and 48 hpf. A 3-Mb genomic region in
chr11 is plotted, aligned with the insulation score difference. b, HiC normalized contact
maps at 10-Kb resolution showing the observed/expected ratio of WT and ctcf’- zebrafish
embryos at 24 and 48 hpf. The same genomic region from a is plotted. ¢, Aggregate
analysis of normalized HiC signal in WT and ctcf” embryos at 24 and 48 hpf for the TADs
detected in WT embryos at these stages, rescaled and surrounded by windows of the
same size. d, Aggregate analysis of observed/expected HiC signal in WT and ctcf”
embryos at 24 and 48 hpf for the TADs detected in WT embryos. e, Box plots showing
the boundary scores of the TAD boundaries called in WT and ctcf”~ embryos at 24 and
48 hpf. Box plots represent: center line, median; box limits, upper and lower quatrtiles;
whiskers, 1.5x interquartile range; notches, 95% confidence interval of the median.
Statistical significance was assessed using a two-sided Wilcoxon’s rank sum test. f,
Venn diagrams showing the overlap between the TAD boundaries called in WT and ctcf
~embryos at 24 and 48 hpf. For the calculation of these overlaps, TAD boundaries were
first extended +/- 1 bin (10 Kb). g, Percentage of TAD boundaries containing or not CTCF
sites (ChIP-seq peaks) for WT-specific, common and mutant-specific boundaries at 24
and 48 hpf, as well as shuffle controls. Statistical significance was calculated using a
two-sided Fisher’s exact test. h, Average insulation score profiles and normalized RNA-
seq signal (counts per million, CPM) around WT-specific, common and mutant-specific

boundaries at 24 and 48 hpf, as well as shuffle controls.
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Supplementary Figure 3. Knockout of cifcf in zebrafish affects higher-order
chromatin architecture. a, Pearson’s correlation matrices from HiC data at 100-Kb
resolution in WT and ctcf~ embryos at 24 and 48 hpf. The whole chromosome 12 is
plotted, together with the 24 eigenvector demarcating A and B compartments. b,
Boxplots showing the enrichment of histone marks (H3K27ac, H3K27me3 and
H3K4me3), RNA-seq and ATAC-seq used to define the genomic regions demarcated as
A and B compartments in WT. Box plots represent: center line, median; box limits, upper
and lower quartiles; whiskers, 1.5x interquartile range; notches, 95% confidence interval
of the median. Statistical significance was assessed using a two-sided Wilcoxon’s rank
sum test. ¢, Saddle plots showing the genome-wide interaction enrichments between
active and inactive genomic regions from HiC data at 100-Kb resolution in WT and ctcf*
embryos at 24 and 48 hpf. Black lines represent the transition from negative to positive
eigenvalues from the 2" eigenvector in each plot. d, Bar plots showing the average
interactions between A and B compartments defined by the 2" eigenvector at 500-Kb
resolution of WT and ctcf- embryos at 24 and 48 hpf. Average and individual data points

of two replicates per condition are shown.
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Supplementary Figure 4. CTCF is enriched at TAD boundaries of zebrafish
embryos and contributes to the formation of chromatin loops. a, Heatmaps and
average profiles of CTCF sites within or outside TAD boundaries. b, Pie charts showing
the percentage of TAD boundaries overlapping with CTCF sites (left) and the percentage
of CTCF sites overlapping with TAD boundaries (right) in WT embryos at 24 and 48 hpf.
¢, CTCF peak count of those peaks containing CTCF motifs located in the positive
(CTCF +) or negative (CTCF -) strands around TAD boundaries in WT embryos at 24
and 48 hpf, showing a clear preference for CTCF + motifs in the 3’ side of the boundary
and for CTCF - motifs in the 5’ side of the boundary. d, Average CTCF ChlP-seq signal
around TAD boundaries (green) and shuffle controls (brown) using the following
experiments: left, ChlP-seq from this study and TAD boundaries of zebrafish embryos at
24 hpf from Kaalij et al., 2018; middle, ChlIP-seq of HA-tagged CTCF embryos at 24 hpf
from Pérez-Rico et al., 2020 and TAD boundaries from this study; right, ChlP-seq from
Pérez-Rico et al., 2020 and TAD boundaries from Kaalij et al., 2018. Enrichment of the
CTCF maotif from ChIP-seq peaks of this study and Pérez-Rico et al., 2020 is shown
below. b, e, Aggregate peak analysis of chromatin loops called by HICCUPs with or
without CTCF binding in WT and ctcf- embryos at 24 and 48 hpf.
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Supplementary Figure 5. CTCF is required for the expression of developmental
genes. a, Differential analysis of gene expression in WT embryos between 24 and 48
hpf from RNA-seq data (n = 2 biological replicates per condition). The log> normalized
read counts of 24-hpf transcripts versus the log. fold-change of expression are plotted.
Transcripts showing a statistically significant differential expression (adjusted P-value <
0.01) are highlighted in blue (up-regulated) or red (down-regulated). The number of
genes that correspond to the up- and down-regulated transcripts are shown inside the
boxes. b, GO enrichment analyses of biological processes for the up- and down-
regulated genes in WT embryos from 24 to 48 hpf. Terms showing an FDR < 0.05 are
considered as enriched. ¢, Venn diagrams showing the overlap between the genes up-
and down-regulated in WT embryos from 24 to 48 hpf and the genes up- and down-
regulated in ctcf” embryos at 48 hpf (see Fig. 2b). d, Scatter plots showing the correlation
between the expression fold change of all transcripts in WT embryos from 24 to 48 hpf,
and their expression fold change in ctcf- embryos at 48 hpf. Up- and down-regulated
transcripts in ctcf- embryos are highlighted in blue or red, respectively. e, GO enrichment
analyses of biological processes for the up- and down-regulated genes in ctcf~ embryos
at 24 (left) and 48 hpf (right), distinguishing between those genes with (top) or without
(bottom) CTCF binding at their TSS. Terms showing a false discovery rate (FDR) < 0.05

are considered as enriched.
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Supplementary Figure 6. Overlap of HiChIP loops with HiC loops and DEGs. a,
Percentage of H3K4me3 HiChIP loops overlapping HiC loops called in WT embryos at
48 hpf for increased, stable and decreased HiChIP loops. Statistical significance was
assessed using a two-sided Fisher’s exact test. b, Percentage of H3K4me3 HiChlIP loops
overlapping the TSS of DEGs bound or not by CTCF. ¢, GO enrichment analyses of
biological processes for the DEGs overlapping HiChIP loop anchors for the increased,

stable and decreased loops.
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Supplementary Figure 7. CTCF loss affects developmental dynamics of chromatin
accessibility. a, Differential analysis of chromatin accessibility in WT embryos between
24 and 48 hpf from ATAC-seq data (n = 2 biological replicates per condition). The logz
normalized read counts of 24-hpf ATAC peaks versus the log. fold-change of
accessibility are plotted. Regions showing a statistically significant differential
accessibility (adjusted P-value < 0.01, according to the Wald’s test performed by the
DESeq2 package) are highlighted in blue (increased) or red (decreased). The number of
peaks that correspond to the increased and decreased sites are shown inside the boxes.
b, Motif enrichment analyses for the increased and decreased ATAC peaks in WT
embryos from 24 to 48 hpf. The 3 motifs with the lowest p-values are shown for each
case. ¢, Heatmaps and average profiles plotting normalized ATAC-seq signal in WT
embryos at 24 and 48 hpf and in ctcf”- embryos at 48 hpf for the increased and decreased
peaks from (a). d, Motif enrichment analyses for the increased and decreased ATAC
peaks in ctcf embryos at 48 hpf (see Figure 4b) with or without CTCF binding detected
by ChlP-seq. The 5 motifs with the lowest p-values (calculated with a one-sided binomial
distribution by HOMER software) are shown for each case. e, Distribution of distances
to the closest TSS using the GREAT tool for the ATAC peaks in d.
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Supplementary Figure 8. The p53 pro-apoptotic response in the absence of CTCF
does not suppress defects in chromatin accessibility. a, Heatmaps and average
profiles plotting normalized ATAC-seq signal in WT, control ctcf” and p53 morpholino
(p53MO)-injected ctcf~ embryos at 48 hpf for the increased and decreased peaks in
control ctcf”- embryos (see Fig. 4b). b, Motif enrichment analyses for the increased ATAC
peaks in control ctcf- and p53MO-injected ctcf”- embryos at 48 hpf. The 3 motifs with the
lowest p-values (calculated with a one-sided binomial distribution by HOMER software)
are shown for each case. ¢, Gene expression fold change from RNA-seq data of the {p53
gene and the p53 target genes mdm2, cdknia, bbc3, bcl2a and bdl2l1, in control ctcf”
and p53MO-injected ctcf”~ embryos at 48 hpf. Average and standard error of the
differential expression analysis, which is performed by DESeqg2 on the four conditions

(WT and ctef”, injected or not with p53MO) with two biological replicates each, is shown.
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Supplementary Figure 9. CTCF loss reduces accessibility at clustered cis-
regulatory elements around developmental genes. a, Bar plots showing the level of
clustering of the increased and decreased ATAC-seq peaks in ctcf”- embryos at 48 hpf,
with or without CTCF binding. Peaks were considered as clustered when located less
than 30 Kb from each other. b, Box plots showing the expression fold-change in ctcf”
embryos at 48 hpf of all DEGs or only those associated with decreased DARs not
overlapping with CTCF sites, grouped in less or more than 4 peaks per cluster. Center
line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range;
notches, 95% confidence interval of the median. Statistical significance was assessed
using a two-sided Wilcoxon’s rank sum test. ¢, GO enrichment analyses of biological
processes for the genes associated with the decreased DARs in ctcf” embryos at 48 hpf
not overlapping with CTCF sites, grouped in less or more than 4 peaks per cluster. Top-
5 terms showing an FDR < 0.05 are plotted. d-e, Top, heatmaps showing HiC signal in
WT and ctcf embryos at 48 hpf in a 1.5-Mb region of chromosomes 15 (d) or 20 (e).
Bottom, zoom within the Ihx7a TAD (d) or the sox11b TAD (e) showing tracks with CTCF
ChiIP-seq, ATAC-seq and RNA-seq at 48 hpf in WT and ctcf”- embryos, as well as ATAC-

seq increased and decreased peaks. The down-regulated genes are shown in red.
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Supplementary Figure 10. Expression of transcription factor gene families in the
absence of CTCF. a, Boxplots showing the expression fold change using RNA-seq for
the transcription factor (TF) gene families whose motifs are enriched in the DARs at 48
hpf (see Fig. 4b). All transcripts with curated expression in the ZFIN database were
plotted and compared with genes at 48 hpf (see Fig. 2b). Center line, median; box limits,
upper and lower quartiles; whiskers, 1.5x interquartile range; notches, 95% confidence
interval of the median. Statistical significance was assessed using a two-sided
Wilcoxon’s rank sum test. b, Percentage of the transcription factor genes that are

differentially expressed in ctcf”- embryos.
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Supplementary Figure 11. Footprinting analyses of ATAC-seq in cfcf knockout
reveals CTCF transcription factor network. a, Differential transcription factor (TF)
binding analysis in WT and ctcf”- embryos using TOBIAS. Left, volcano plot representing
the differential binding score versus the -logio p-value. TF motifs with increased (blue)
and decreased (red) binding in mutant embryos are highlighted. Right, TF motifs whose
genes show curated expression in zebrafish embryos at 48 hpf according to the ZFIN
database. b, Average profile showing normalized ATAC-seq signal of WT embryos at 48
hpf for the peaks containing motifs with increased or decreased binding. ¢, Distribution
of fold changes for the ATAC peaks containing the motifs of CTCF (decreased), Neurod1
(decreased) and RXRy (increased) in WT and ctcf” embryos at 48 hpf. d, Aggregate
footprint signal for the peaks containing the motifs in c. e, TF network of CTCF based on
the presence of footprints at gene promoters. Two levels are represented, since the third
level did not increase number of involved TFs. Ellipses contain the TF genes that are
differentially expressed in ctcf embryos, and squares contain those not differentially
expressed. Blue and red colors represent the expression fold change according to RNA-
seq data at 48 hpf (Fig. 2b). f, Venn diagrams plotting the overlap between TF genes of
the CTCF network from e and all the TF genes that are differentially expressed in ctcf”
embryos at 48 hpf (top), or the overlap between the putative target genes of the CTCF
TF network detected by GREAT and all DEGs at 48 hpf (Fig. 2b).
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Supplementary Figure 12. CTCF is required for the establishment of regulatory
landscapes at the HoxA locus and hoxa gene expression. a, Top, UMI-4C assays in
WT and ctcf~ embryos at 48 hpf using the hoxaba and hoxa9a gene promoters as
viewpoints. Black lines and grey shadows represent the average normalized UMI counts
and their standard deviation, respectively. Domainograms below UMI counts represent
contact frequency between pairs of genomic regions. Bottom, tracks with CTCF ChIP-
seq, ATAC-seq and RNA-seq at 48 hpf in WT and ctcf- embryos, as well as increased
and decreased ATAC-seq peaks in ctcf- embryos. b, Whole-mount in situ hybridization
of the hoxa5a and hoxa9a genes in WT and ctcf”- embryos at 48 hpf. Anterior is to the

right and scale bars represent 500 ym.
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Supplementary Figure 13. Enhancer-promoter distances at the pfch2 and HoxD
loci are decreased upon CTCF loss. a-b, UMI-4C tracks showing the differential
contacts between WT and ctcf- embryos at 48 hpf for all viewpoints used to model the
ptch2 (a) and HoxD (b) loci. T-Dom and C-Dom represent the telomeric and centromeric
TADs, respectively, flanking the HoxD locus. ¢-d, Violin plots showing the distances
between different subsets of ATAC-seq peaks in the ptch2 (c) and HoxD (d) loci and
ptch2, hoxd4a, hoxd9a and hoxd13a promoters. Statistical significance was assessed

using a two-sided Student’s t-test. *, P<0.05; ***, P<0.001; n.s., non-significant.



Supplementary Table 1 — Primer sequences (5’-t0-3’) used in this study.

Primer name
sgRNA_CTCFexon4

sg_RNACTCFexon5
sgRNA_univ

genotyping_CTCFpF
genotyping_CTCFpR
ISH_probe_ptch2F
ISH_probe_ptch2R

ISH_probe_hoxa5aF
ISH_probe_hoxa5aR

ISH_probe_hoxa9aF
ISH_probe_hoxa9aR

ISH_probe_hoxc1aF
ISH_probe_hoxc1aR

umi4C-ptch2-US
umi4C-ptch2-DS
umi4C-hoxd4a-US
umi4C-hoxd4a-DS
umi4C-hoxd13a-US
umi4C-hoxd13a-DS
umi4C-hoxa9a-US
umi4C-hoxa9a-DS
umi4C-hoxaba-US
umi4C-hoxa5a-DS
umi4C-ptch_v1-US
umi4C-ptch_v1-DS
umi4C-ptch_v2-US
umi4C-ptch_v2-DS
umi4C-ptch_v3-US
umi4C-ptch_v3-DS
umi4C-ptch_v4-US
umi4C-ptch_v4-DS
umi4C-ptch_v5-US
umi4C-ptch_v5-DS
umi4C-ptch_v6-US
umi4C-ptch_v6-DS

Primer sequence
AATACGACTCACTATAGGAGTTACACTTGCCCACGCGTTTTA
GAGCTAGAA
TAATACGACTCACTATAGGCATGGCCTTTGTCACCAGGTTTT
AGAGCTAGAA
AAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGA
CTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC
CAAGCTGCGCTACAACACAG

CTCCTGTGTGGGAGCGAATG

TCCTGTGCTGTTTCTACAGG
GGATCCATTAACCCTCACTAAAGGGAATGCGCAGAACAAGTT
ATAGG

GGCGTGGACTATCCCTTAC
GGATCCATTAACCCTCACTAAAGGGAAGGAGGCCAATCACAC
CTTAC

CCCTTCCCTCTACCTTTTCC
GGATCCATTAACCCTCACTAAAGGGAAGAAGGTCAACAGACCA
TGAGG

GTCTGTGGATGGAGTTTCG
GGATCCATTAACCCTCACTAAAGGGAAGGTGCTTTAACGGTA
CGTG

CATCAAACCACCCTTTTCAG

*GGGCTACCTCTCCAAATGTT
TTTCCTACCTTCAGAAATTAATGG
*TCGTACATGGTGAACTCCAA

GAGCGTGAATACAACACCACTA
*CCACTAAGTTCATTACAAAGGAGA
CAGAAGGCAACTACATGAGAATC

*TCCGACAATTTGGTCAGC

AAATTGGAAAGCAGCGGAGA

*CAGCGGAGACTAACTTTCAGAG

TGCAGAAGAGAGATTTTGAGGT

*GAGATTTTGAGGTAAGCAGCAC

AGAAAACAAGCACAGCCAAC

*CGTGCATGAAGAGTGAAAGA

TCGACCATTTCCTCTTTCAC

*TCCCGGAGGTCTGTATTATTT

CAAACACAAACCACACTGAGC

*CTGGCCCTGCGAATGTTTA

TGGTCTGCACATGTAACACC

*GTCTGTGAGTGTAGGTGTGTG

GAAAGCGGGATGTTCAAAT

*TTTTTCGCTCGGTGTGTT



umi4C-hoxd_v1-US
umi4C-hoxd_v1-DS
umi4C-hoxd_v2-US
umi4C-hoxd_v2-DS
umi4C-hoxd_v3-US
umi4C-hoxd_v3-DS
umi4C- hoxd9a-US
umi4C- hoxd9a-DS
umi4C-hoxd_v4-US
umi4C-hoxd_v4-DS
umi4C-hoxd_v5-US
umi4C-hoxd_v5-DS
umi4C-hoxd_v6-US
umi4C-hoxd_v6-DS
(*) P5 adapter 5’ of
umi-DS primers

ACATCATTTGCCCTTTGAAC
*TCATGTCAAATGTGTGTCACC
CCTCTACTGACCACAACTGGA
*GCACATAAACAAAACGGAAAA
CCGGTTTGAGTGTAAGTGTGT
*GCTGCAGTGGAGGTGAAG
AAGCCCGTTAAAGAGATATGGT
*GGTTTGCGACTGGCTCTAT
CTCAGTGCTTCCCCTCAAC
*TCCTGGAAGTCATCAGAGCA
ATTTGTCCTGGAAGCATTGA
*TTGCGGCGGATGTTTTCA
GGGAAGCTAGGCACTCTAGG
*GGAGGGTCTGGGACTAAAGA
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACG
CTCTTCCGATCT



