Supplementary Information

July 28, 2021

Contents

Supplementary Note 1: Correlation of PC betas across sex groups	6
Supplementary Note 2: Correlation of PC betas with different traits	7
Supplementary Note 3: Phenotypic correlation	8
Supplementary Note 4: Comparison of exposure effects using cross-sex IVW MR	10
4.1 Effects on diseases	$\begin{array}{c} 10\\ 31 \end{array}$
Supplementary Note 5: Sex-specific effects 5.1 In dietary habits 5.2 In diseases 5.3 In lifestyle phenotypes 5.4 In continuous measures of health	52 52 57 62 67
Supplementary Note 6: Disease prediction 6.1 Within-sample 6.2 Out-of-sample/population	72 72 74
Supplementary Note 7: Robustness of causal effect estimates for low prevalence diseases	75
Supplementary Note 8: Cross-sex vs. standard MR in a single sample	76
Supplementary Note 9: Cross-sex vs. standard MR in two samples	83

Supplementary Note 10: Heterogeneity filtering alternatives	87
10.1 No heterogeneity filtering	87
10.2 Weighted median MR	88
10.3 Cochran's Q vs. exact Q statistic	91
Supplementary Note 11: Sex-specific estimates, IVW vs. cross-	

Supplementary 1000 11	bex-specific	V5. CI055-
sex MR		93

List of Figures

1	Correlation of PC betas across sex groups	6
2	Correlation of PC betas with different traits	$\overline{7}$
3	Phenotypic correlation between PCs and single traits	8
4	Phenotypic correlation of PCs and traits (separate)	9
5	Comparison of the effects of PC1 and PC2 on diseases	10
6	Comparison of the effects of PC1 and PC3 on diseases	11
7	Comparison of the effects of PC1 and PC4 on diseases	12
8	Comparison of the effects of PC1 and weight on diseases	13
9	Comparison of the effects of PC1 and BMI on diseases	14
10	Comparison of the effects of PC1 and WHR on diseases	15
11	Comparison of the effects of PC2 and PC3 on diseases	16
12	Comparison of the effects of PC2 and PC4 on diseases	17
13	Comparison of the effects of PC2 and weight on diseases	18
14	Comparison of the effects of PC2 and BMI on diseases	19
15	Comparison of the effects of PC2 and WHR on diseases	20
16	Comparison of the effects of PC3 and PC4 on diseases	21
17	Comparison of the effects of PC3 and weight on diseases	22
18	Comparison of the effects of PC3 and BMI on diseases	23
19	Comparison of the effects of PC3 and WHR on diseases \ldots .	24
20	Comparison of the effects of PC4 and weight on diseases	25
21	Comparison of the effects of PC4 and BMI on diseases	26
22	Comparison of the effects of PC4 and WHR on diseases \ldots .	27
23	Comparison of the effects of weight and BMI on diseases	28
24	Comparison of the effects of weight and WHR on diseases	29
25	Comparison of the effects of BMI and WHR on diseases \ldots .	30
26	Comparison of the effects of PC1 and PC2 on lifestyle phenotypes	31
27	Comparison of the effects of PC1 and PC3 on lifestyle phenotypes	32
28	Comparison of the effects of PC1 and PC4 on lifestyle phenotypes	33
29	Comparison of the effects of PC1 and weight on lifestyle phenotypes	34
30	Comparison of the effects of PC1 and BMI on lifestyle phenotypes	35
31	Comparison of the effects of PC1 and WHR on lifestyle phenotypes	36
32	Comparison of the effects of PC2 and PC3 on lifestyle phenotypes	37
33	Comparison of the effects of PC2 and PC4 on lifestyle phenotypes	38
34	Comparison of the effects of PC2 and weight on lifestyle phenotypes	39
35	Comparison of the effects of PC2 and BMI on lifestyle phenotypes	40
36	Comparison of the effects of PC2 and WHR on lifestyle phenotypes	41
37	Comparison of the effects of PC3 and PC4 on lifestyle phenotypes	42
38	Comparison of the effects of PC3 and weight on lifestyle phenotypes	43
39	Comparison of the effects of PC3 and BMI on lifestyle phenotypes	44
40	Comparison of the effects of PC3 and WHR on lifestyle phenotypes	45
41	Comparison of the effects of PC4 and weight on lifestyle phenotypes $% \left({{{\bf{F}}_{{\rm{c}}}}} \right)$	46
42	Comparison of the effects of PC4 and BMI on lifestyle phenotypes	47
43	Comparison of the effects of $\mathrm{PC4}$ and WHR on lifestyle phenotypes	48
44	Comparison of the effects of weight and BMI on lifestyle phenotypes	49

45	Comparison of the effects of weight and WHR on lifestyle phenotypes	50
46	Comparison of the effects of BMI and WHR on lifestyle phenotypes	51
47	Sex-specific effects of PC1 on dietary habits	52
48	Sex-specific effects of PC2 on dietary habits	53
49	Sex-specific effects of PC4 on dietary habits	54
50	Sex-specific effects of BMI on dietary habits	55
51	Sex-specific effects of weight on dietary habits	56
52	Sex-specific effects of PC1 on diseases	57
53^{-}	Sex-specific effects of PC2 on diseases	58
54	Sex-specific effects of PC4 on diseases	59
55	Sex-specific effects of BMI on diseases	60
56	Sex-specific effects of weight on diseases	61
57	Sex-specific effects of PC1 on lifestyle phenotypes	62
58	Sex-specific effects of PC2 on lifestyle phenotypes	63
59	Sex specific effects of PC4 on lifestyle phenotypes	64
60	Sex specific effects of BMI on lifestyle phenotypes	65
61	Sex specific effects of weight on lifestyle phenotypes	66
62	Sex specific effects of PC1 on continuous measures of health	67
63	Sex-specific effects of PC2 on continuous measures of health	68
64	Sex-specific effects of PC4 on continuous measures of health	60
65	Sex-specific effects of PMI on continuous measures of health	70
66	Sex-specific effects of maight on continuous measures of health	70
67	Discosso prediction POC survey (within sample)	71
69	Disease prediction ROC curves (within sample)	12
00	Disease prediction PR curves (within-sample)	13
09 70	Disease prediction PR curves (out of sample)	14
70	Comparison of effect estimates including or excluding low MAF	75
771	SINFS for rare diseases \dots $f D(1 - n - i - i - i - i - i - i - i - i - i$	10
(1 70	Cross-sex vs. IV W MR effects of PC1 on disease risk (one sample) C UVW MR effects of PC1 on disease risk (one sample)	70
12	Cross-sex vs. IV W MR effects of PC2 on disease risk (one sample) C UVW MR effects of PC2 of disease risk (one sample)	70
13	Cross-sex vs. IV W MR effects of PC3 on disease risk (one sample)	18
(4	Cross-sex vs. IV W MR effects of PC4 on disease risk (one sample)	19
() 70	Cross-sex vs. IV W MR effects of weight on disease risk (one sample)	80
76	Cross-sex vs. IV W MR effects of BMI on disease risk (one sample)	81
77	Cross-sex vs. IVW MR effects of WHR on disease risk (one sample)	82
78	Cross-sex vs. IVW MR effects of BMI on dietary habits (two	0.0
-	samples)	83
79	Cross-sex vs. IVW MR effects of BMI on diseases (two samples)	84
80	Cross-sex vs. IVW MR effects of BMI on lifestyle phenotypes	
	(two samples)	85
81	Cross-sex vs. IVW MR effects of BMI on continuous measures of	
	health (two samples)	86
82	Impact of heterogeneity filtering	87
83	Weighted median vs. IVW MR (with heterogeneity filtering)	88
84	Weighted median vs. IVW MR (no heterogeneity filtering)	89
85	Weighed median (no filtering) vs. IVW MR (heterogeneity filtering)	90
86	Cochran's Q vs. exact Q filtering (stringent)	91

87	Cochran's Q vs. exact Q filtering (relaxed)	92
88	Comparison of sex-specific effects estimated using cross-sex or	
	IVW MR in two samples	93
89	Comparison of sex-specific effects estimated using cross-sex or	
	IVW MR in two samples	94

Supplementary Note 1: Correlation of PC betas across sex groups

Supplementary figure 1: Correlation of PC effect estimates obtained using PC loadings from different sex groups. The SNP effects for the anthropometric traits were estimated in the combined sex group, from which their effects on the top four PCs were calculated using the loadings from each of the three sex groups, i.e. both sexes combined, men, and women. The correlation was calculated across SNPs which were selected in the combined sex group.

Supplementary Note 2: Correlation of PC betas with different traits

Supplementary figure 2: Correlation of PC effect estimates obtained using PC loadings from all 14 anthropometric traits or without height or waist-to-hip ratio (WHR). The SNP effects for the anthropometric traits were estimated in the combined sex group, from which their effects on the top four PCs were calculated. The correlation was calculated across SNPs which were selected in the PCs using all traits (thereby providing more SNPs).

Supplementary Note 3: Phenotypic correlation

Supplementary figure 3: Phenotypic correlation between PCs and common measures of obesity. The phenotypic PCs were obtained by applying the genetic PC loadings to the anthropometric traits in a subset of 371,529 unrelated white individuals in the UK Biobank. The full matrix of phenotypic correlations is available in Supplementary Table 11.

Supplementary figure 4: Comparison of the phenotypic correlation of PCs and the individual traits most similar to each. The phenotypic PCs were obtained by applying the genetic PC loadings to the anthropometric traits in a subset of 371,529 unrelated white individuals in the UK Biobank. The full matrix of phenotypic correlations is available in the Supplementary Table 11.

Supplementary Note 4: Comparison of exposure effects using cross-sex IVW MR

4.1 Effects on diseases

Supplementary figure 5: Comparison of effects of PC1 and PC2 on diseases estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 6: Comparison of effects of PC1 and PC3 on diseases estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 7: Comparison of effects of PC1 and PC4 on diseases estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 8: Comparison of effects of PC1 and weight on diseases estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 9: Comparison of effects of PC1 and BMI on diseases estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 10: Comparison of effects of PC1 and WHR on diseases estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 11: Comparison of effects of PC2 and PC3 on diseases estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 12: Comparison of effects of PC2 and PC4 on diseases estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 13: Comparison of effects of PC2 and weight on diseases estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 14: Comparison of effects of PC2 and BMI on diseases estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 15: Comparison of effects of PC2 and WHR on diseases estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 16: Comparison of effects of PC3 and PC4 on diseases estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 17: Comparison of effects of PC3 and weight on diseases estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 18: Comparison of effects of PC3 and BMI on diseases estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 19: Comparison of effects of PC3 and WHR on diseases estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 20: Comparison of effects of PC4 and weight on diseases estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 21: Comparison of effects of PC4 and BMI on diseases estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 22: Comparison of effects of PC4 and WHR on diseases estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 23: Comparison of effects of weight and BMI on diseases estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 24: Comparison of effects of weight and WHR on diseases estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 25: Comparison of effects of BMI and WHR on diseases estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

4.2 Effects on lifestyle phenotypes

Supplementary figure 26: Comparison of effects of PC1 and PC2 on lifestyle phenotypes estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 27: Comparison of effects of PC1 and PC3 on lifestyle phenotypes estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 28: Comparison of effects of PC1 and PC4 on lifestyle phenotypes estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 29: Comparison of effects of PC1 and weight on lifestyle phenotypes estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 30: Comparison of effects of PC1 and BMI on lifestyle phenotypes estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 31: Comparison of effects of PC1 and WHR on lifestyle phenotypes estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 32: Comparison of effects of PC2 and PC3 on lifestyle phenotypes estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 33: Comparison of effects of PC2 and PC4 on lifestyle phenotypes estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 34: Comparison of effects of PC2 and weight on lifestyle phenotypes estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 35: Comparison of effects of PC2 and BMI on lifestyle phenotypes estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 36: Comparison of effects of PC2 and WHR on lifestyle phenotypes estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 37: Comparison of effects of PC3 and PC4 on lifestyle phenotypes estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 38: Comparison of effects of PC3 and weight on lifestyle phenotypes estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 39: Comparison of effects of PC3 and BMI on lifestyle phenotypes estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 40: Comparison of effects of PC3 and WHR on lifestyle phenotypes estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 41: Comparison of effects of PC4 and weight on lifestyle phenotypes estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 42: Comparison of effects of PC4 and BMI on lifestyle phenotypes estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 43: Comparison of effects of PC4 and WHR on lifestyle phenotypes estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 44: Comparison of effects of weight and BMI on lifestyle phenotypes estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 45: Comparison of effects of weight and WHR on lifestyle phenotypes estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 46: Comparison of effects of BMI and WHR on lifestyle phenotypes estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and weighted median MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary Note 5: Sex-specific effects

5.1 In dietary habits

Supplementary figure 47: Comparison of sex-specific effects of PC1 on dietary habits, estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 48: Comparison of sex-specific effects of PC2 on dietary habits, estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 49: Comparison of sex-specific effects of PC4 on dietary habits, estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 50: Comparison of sex-specific effects of BMI on dietary habits, estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 51: Comparison of sex-specific effects of weight on dietary habits, estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

5.2 In diseases

Supplementary figure 52: Comparison of sex-specific effects of PC1 on diseases, estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 53: Comparison of sex-specific effects of PC2 on diseases, estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 54: Comparison of sex-specific effects of PC4 on diseases, estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 55: Comparison of sex-specific effects of BMI on diseases, estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 56: Comparison of sex-specific effects of weight on diseases, estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

5.3 In lifestyle phenotypes

Supplementary figure 57: Comparison of sex-specific effects of PC1 on lifestyle phenotypes, estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 58: Comparison of sex-specific effects of PC2 on lifestyle phenotypes, estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 59: Comparison of sex-specific effects of PC4 on lifestyle phenotypes, estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 60: Comparison of sex-specific effects of BMI on lifestyle phenotypes, estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 61: Comparison of sex-specific effects of weight on lifestyle phenotypes, estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

5.4 In continuous measures of health

Supplementary figure 62: Comparison of sex-specific effects of PC1 on continuous measures of health, estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 63: Comparison of sex-specific effects of PC2 on continuous measures of health, estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 64: Comparison of sex-specific effects of PC4 on continuous measures of health, estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 65: Comparison of sex-specific effects of BMI on continuous measures of health, estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 66: Comparison of sex-specific effects of weight on continuous measures of health, estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary Note 6: Disease prediction

6.1 Within-sample

Supplementary figure 67: ROC curves for within-sample PC-, BMI-, and WHR-based prediction of diabetes, hypercholesterolemia, and hypertension. The indicated p-values for the difference between the PC- and single trait-based curves were obtained using the DeLong method.

Supplementary figure 68: Precision-Recall curves for within-sample PC-, BMI-, and WHR-based prediction of diabetes, hypercholesterolemia, and hypertension.

$6.2 \quad {\rm Out-of-sample/population}$

Supplementary figure 69: Precision-Recall curves for out-of-sample/population PC-, BMI-, and WHR-based prediction of diabetes, hypercholesterolemia, and hypertension.

Supplementary Note 7: Robustness of causal effect estimates for low prevalence diseases

Supplementary figure 70: Comparison of estimates for the causal effect of standing height on diseases with low prevalence (1-2%), using all IVs (X-axis) or excluding SNPs with a MAF < 1% (comprising 88 of 1704 SNPs, Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both sets of IVs. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary Note 8: Cross-sex vs. standard MR in a single sample

Supplementary figure 71: Comparison of effects of PC1 on disease estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and standard IVW MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 72: Comparison of effects of PC2 on disease estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and standard IVW MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 73: Comparison of effects of PC3 on disease estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and standard IVW MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 74: Comparison of effects of PC4 on disease estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and standard IVW MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 75: Comparison of effects of weight on disease estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and standard IVW MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 76: Comparison of effects of BMI on disease estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and standard IVW MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 77: Comparison of effects of WHR on disease estimated using cross-sex inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and standard IVW MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary Note 9: Cross-sex vs. standard MR in two samples

Supplementary figure 78: Comparison of effects of BMI on phenotypes related to dietary habits estimated using standard inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and cross-sex IVW MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. Summary statistics for BMI were taken from the GIANT consortium, while those for the outcomes were taken from the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 79: Comparison of effects of BMI on phenotypes related to diseases estimated using standard inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and cross-sex IVW MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. Summary statistics for BMI were taken from the GIANT consortium, while those for the outcomes were taken from the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 80: Comparison of effects of BMI on phenotypes related to lifestyle phenotypes estimated using standard inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and cross-sex IVW MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. Summary statistics for BMI were taken from the GIANT consortium, while those for the outcomes were taken from the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 81: Comparison of effects of BMI on phenotypes related to continuous measures of health estimated using standard inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis) and cross-sex IVW MR (Y-axis). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. Summary statistics for BMI were taken from the GIANT consortium, while those for the outcomes were taken from the UK Biobank. The error bars show the 95 confidence interval.

Supplementary Note 10: Heterogeneity filtering alternatives

10.1 No heterogeneity filtering

Supplementary figure 82: Comparison of estimates for the causal effect of BMI on disease using IVW MR with or without heterogeneity filtering with a p-value threshold of 0.001. Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 83: Comparison of estimates for the causal effects of BMI on diseases using IVW MR (X-axis) and weighted median MR (Y-axis), both with heterogeneity filtering (p-value threshold of 0.001). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 84: Comparison of estimates for the causal effect of BMI on disease using IVW or weighted median MR, both without heterogeneity filtering. Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 85: Comparison of estimates for the causal effect of BMI on diseases using IVW MR with heterogeneity filtering (p-value threshold of 0.001) or weighted median without heterogeneity filtering. Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

10.3 Cochran's Q vs. exact Q statistic

Supplementary figure 86: Comparison of estimates for the causal effect of BMI on disease, using exact Q vs. Cochran's Q statistics with a p-value threshold of 0.001. Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 87: Comparison of estimates for the causal effect of BMI on disease, using exact Q (p < 0.001) vs. Cochran's Q statistics (p < 0.05). Each point is a distinct outcome, its coordinates showing the estimated causal effects from both methods. All summary statistics were calculated in the UK Biobank. The error bars show the 95 confidence interval.

Supplementary Note 11: Sex-specific estimates, IVW vs. cross-sex MR

Supplementary figure 88: Comparison of female-specific effects of BMI on diseases, estimated using standard inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis, female-specific summary statistics for both exposure and outcome) and cross-sex IVW MR (Y-axis, male-specific summary statistics for exposure but female-specific ones for outcome). Each point is a distinct outcome phenotype, its coordinates showing the estimated causal effects from both methods. Summary statistics for BMI were taken from the GIANT consortium, while those for the outcomes were taken from the UK Biobank. The error bars show the 95 confidence interval.

Supplementary figure 89: Comparison of male-specific effects of BMI on diseases, estimated using standard inverse-variance weighted (IVW) Mendelian randomization (MR) (X-axis, male-specific summary statistics for both exposure and outcome) and cross-sex IVW MR (Y-axis, female-specific summary statistics for exposure but male-specific ones for outcome). Each point is a distinct outcome phenotype, its coordinates showing the estimated causal effects from both methods. Summary statistics for BMI were taken from the GIANT consortium, while those for the outcomes were taken from the UK Biobank. The error bars show the 95 confidence interval.