Supplementary Materials

Plasma N-glycome shows continuous deterioration as the diagnosis of insulin

resistance approaches

Ana Cvetko¹*, Massimo Mangino^{2,3}*, Marko Tijardović¹, Domagoj Kifer¹, Mario Falchi², Toma Keser¹,

Markus Perola⁴, Tim D Spector², Gordan Lauc^{1,5}, Cristina Menni²*, Olga Gornik¹*

¹Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb 10000, Croatia

²Department of Twin Research and Genetic Epidemiology, King's College London, Westminster Bridge Road, SE17EH London, UK

³NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London SE1 9RT, UK

⁴National Institute for Health and Welfare, Helsinki, Finland

⁵Genos Glycoscience Research Laboratory, Zagreb 10000, Croatia

*These authors contributed equally

Corresponding author:

Olga Gornik

ogornik@pharma.unizg.hr

Faculty of Pharmacy and Biochemistry, University of Zagreb

A. Kovačića 1, 10 000 Zagreb, Croatia

Supplementary Table 1 Abbreviation and description of all glycan structures complementary to every plasma glycan peak.*

Sample	Glycan	Glycan	Glycan structure description	Glycan peak
	peak	structure		abundance
		abbreviation		formula
plasma	GP1	FA2	core fucosylated, biantennary	GP1 / GP * 100
plasma	GP2	FA2B; M5	core fucosylated, biantennary with bisecting GlcNAc;	GP2 / GP * 100
			oligomannose	
plasma	GP3	A2BG1	monogalactosylated, biantennary with bisecting GlcNAc	GP3 / GP * 100
plasma	GP4	FA2[6]G1	core fucosylated and monogalactosylated, biantennary	GP4 / GP * 100
plasma	GP5	FA2[3]G1	core fucosylated and monogalactosylated, biantennary	GP5 / GP * 100
plasma	GP6	FA2[6]BG1	core fucosylated and monogalactosylated, biantennary with bisecting GlcNAc	GP6 / GP * 100
plasma	GP7	M6;	oligomannose;	GP7 / GP * 100
		FA2[3]BG1	core fucosylated and monogalactosylated, biantennary with bisecting GlcNAc	
plasma	GP8	A2G2	digalactosylated, biantennary	GP8 / GP * 100
plasma	GP9	A2BG2	digalactosylated, biantennary with bisecting GlcNAc	GP9 / GP * 100
plasma	GP10	FA2G2	core fucosylated, digalactosylated, biantennary	GP10 / GP * 100
plasma	GP11	FA2BG2	core fucosylated, digalactosylated, biantennary with bisecting GlcNAc	GP11 / GP * 100
plasma	GP12	M7;	oligomannose;	GP12 / GP * 100
		A2G2S1;	digalactosylated, monosialylated, biantennary;	
		A1M4G1S1;	tetramannosylated, monogalactosylated, monosialylated, monoantennary;	
		A2BG1S1	monogalactosylated, monosialylated, biantennary with bisecting GlcNAc	
plasma	GP13	FA2G1S1;	core fucosylated, monogalactosylated and monosialylated biantennary;	GP13 / GP * 100
		FA2BG1S1	core fucosylated, monogalactosylated and monosialylated biantennary with bisecting	
			GlcNAc	
plasma	GP14	A2G2S1	digalactosylated and monosialylated biantennary	GP14 / GP * 100
plasma	GP15	A2BG2S1	digalactosylated and monosialylated biantennary with bisecting GlcNAc	GP15 / GP * 100
plasma	GP16	FA2G2S1	core fucosylated, digalactosylated and monosialylated biantennary	GP16 / GP * 100
plasma	GP17	FA2BG2S1	core fucosylated, digalactosylated and monosialylated biantennary with bisecting GlcNAc	GP17/ GP * 100
plasma	GP18	A2G2S2;	digalactosylated and disialylated biantennary;	GP18 / GP * 100
		FA2G2S2	core fucosylated, digalactosylated and disialylated biantennary	

plasma	GP19	M9	oligomannose	GP19 / GP * 100
plasma	GP20	A2G2S2	digalactosylated and disialylated biantennary	GP20 / GP * 100
plasma	GP21	A2G2S2;	digalactosylated and disialylated biantennary;	GP21 / GP * 100
		A3G3S1;	trigalactosylated and monosialylated triantennary;	
		FA2G2S2;	core fucosylated, digalactosylated and disialylated biantennary;	
		A2BG2S2;	digalactosylated and disialylated biantennary with bisecting GlcNAc;	
		A3F1G3S1	antennary fucosylated, trigalactosylated and monosialylated triantennary	
plasma	GP22	FA2G2S2	core fucosylated, digalactosylated and disialylated biantennary	GP22 / GP * 100
plasma	GP23	FA2BG2S2	core fucosylated, digalactosylated and disialylated biantennary with bisecting GlcNAc	GP23 / GP * 100
plasma	GP24	A3G3S2;	trigalactosylated and disialylated triantennary;	GP24 / GP * 100
		A3F1G3S1	antennary fucosylated, trigalactosylated and monosialylated triantennary	
plasma	GP25	A3G3S2;	trigalactosylated and disialylated triantennary;	GP25 / GP * 100
		FA2F1G2S2;	core fucosylated, antennary fucosylated, digalactosylated and disialylated biantennary;	
		A3F1G3S2	antennary fucosylated, trigalactosylated and disialylated triantennary	
plasma	GP26	A3G3S2;	trigalactosylated and disialylated triantennary;	GP26 / GP * 100
		FA3G3S2	core fucosylated, trigalactosylated and disialylated triantennary	
plasma	GP27	A3F1G3S2;	antennary fucosylated, trigalactosylated and disialylated triantennary;	GP27 / GP * 100
		A3G3S3	trigalactosylated and trisialylated triantennary	
plasma	GP28	A3G3S3;	trigalactosylated and trisialylated triantennary;	GP28 / GP * 100
		A3F1G3S2	antennary fucosylated, trigalactosylated and disialylated triantennary	
plasma	GP29	A3G3S3;	trigalactosylated and trisialylated triantennary;	GP29 / GP * 100
		A3F1G3S2	antennary fucosylated, trigalactosylated and disialylated triantennary	
plasma	GP30	A3G3S3;	trigalactosylated and trisialylated triantennary;	GP30 / GP * 100
		A3F1G3S3	antennary fucosylated, trigalactosylated and trisialylated triantennary	
plasma	GP31	FA3G3S3;	core fucosylated, trigalactosylated and trisialylated triantennary;	GP31 / GP * 100
		A3G3S3	trigalactosylated and trisialylated triantennary	
plasma	GP32	A3G3S3	trigalactosylated and trisialylated triantennary	GP32 / GP * 100
plasma	GP33	A3F1G3S3	antennary fucosylated, trigalactosylated and trisialylated triantennary	GP33 / GP * 100
plasma	GP34	FA3G3S3;	core fucosylated, trigalactosylated and trisialylated triantennary;	GP34 / GP * 100
		A4G4S3	tetragalactosylated and trisialylated tetraantennary	
plasma	GP35	FA3F1G3S3;	core fucosylated, antennary fucosylated, trigalactosylated and trisialylated triantennary;	GP35 / GP * 100
		A4F1G4S3	antennary fucosylated, tetragalactosylated and trisialylated tetraantennary	

plasma	GP36	A4G4S3;	tetragalactosylated and trisialylated tetraantennary;	GP36 / GP * 100
		A4F1G4S3	antennary fucosylated, tetragalactosylated and trisialylated tetraantennary	
plasma	GP37	A4G4S4;	tetragalactosylated and tetrasialylated tetraantennary;	GP37 / GP * 100
		A4F1G4S3	antennary fucosylated, tetragalactosylated and trisialylated tetraantennary	
plasma	GP38	A4G4S4;	tetragalactosylated and tetrasialylated tetraantennary;	GP38 / GP * 100
		A4F1G4S4;	antennary fucosylated, tetragalactosylated and tetrasialylated tetraantennary;	
		A4F1G4S3	antennary fucosylated, tetragalactosylated and trisialylated tetraantennary	
plasma	GP39	A4F1G4S4;	antennary fucosylated, tetragalactosylated and tetrasialylated tetraantennary;	GP39 / GP * 100
		A4F2G4S4	antennary difucosylated, tetragalactosylated and tetrasialylated tetraantennary;	

*structure abbreviations – all N-glycans have two core *N*-acetylglucosamines (GlcNAcs); F at the start of the abbreviation indicates a core-fucose α 1,6-linked to the inner GlcNAc; Mx, number (x) of mannose on core GlcNAcs; Ax, number of antenna (GlcNAc) on trimannosyl core; A2, biantennary with both GlcNAcs as β 1,2-linked; A3, triantennary with a GlcNAc linked β 1,2 to both mannose and the third GlcNAc linked β 1,4 to the α 1,3 linked mannose; A4, GlcNAcs linked as A3 with additional GlcNAc β 1,6 linked to α 1,6 mannose; B, bisecting GlcNAc linked β 1,4 to β 1,3 mannose; G(x), number (x) of β 1,4 linked galactose on antenna; F(x), number (x) of fucose linked α 1,3 to antenna GlcNAc; S(x), number (x) of sialic acids linked to galactose

Supplementary Table 2 Formulas for plasma N-glycome derived glycan traits calculation. 16 derived traits are calculated out of 39 directly measured initial plasma glycan traits.

Plasma N-glycome derived	Formula		
trait			
Low branching (mono- and	GP1+GP2+GP3+GP4+GP5+GP6+GP8+GP9+GP10+GP11+0.5xGP12+GP13+GP14+		
biantennary glycans) (LB)	GP15+GP16+GP17+GP18+GP20+GP21+GP22+GP23		
High branching (tri- and	GP24+GP25+GP26+GP27+GP28+GP29+GP30+GP31+GP32+GP33+GP34+		
tetraantennary glycans) (HB)	GP35+GP36+GP37+GP38+GP39		
Agalactosylation (G0)	GP1+GP2		
Monogalactosylation (G1)	GP3+GP4+GP5+GP6+GP13		
Digalactosylation (G2)	GP8+GP9+GP10+GP11+0.5xGP12+GP14+GP15+GP16+GP17+GP18+GP20+GP21+GP22+GP23		
Trigalactosylation (G3)	GP24+GP25+GP26+GP27+GP28+GP29+GP30+GP31+GP32+GP33+GP34+ GP35		
Tetragalactosylation (G4)	GP36+GP37+GP38+GP39		
Neutral glycans (SO)	GP1+GP2+GP3+GP4+GP5+GP6+GP8+GP9+GP10+GP11		
Monosialylation (S1)	0.5xGP12+GP13+GP14+GP15+GP16+GP17		
Disialylation (S2)	GP18+GP20+GP21+GP22+GP23+GP24+GP25+GP26+GP27		
Trisialylation (S3)	GP28+GP29+GP30+GP31+GP32+GP33+GP34+GP35+GP36		
Tetrasialylation (S4)	GP37+GP38+GP39		
Incidence of bisecting GlcNAc (B)	GP2+GP3+GP6+GP9+GP11+GP15+GP17+GP23		
Antennary fucosylation (AF)	GP27+GP33+GP35+GP39		
Core fucosylation (CF)	GP1+GP2+GP4+GP5+GP6+GP10+GP11+GP13+GP16+GP17+GP22+GP23+GP31+GP34+GP35		
Oligomannose glycans (M)	GP7+0.5xGP12+GP19		

Supplementary Table 3 The development of IR/T2DM induces significant changes in directly measured plasma N-glycans and plasma N-glycome derived traits in the TwinsUK cohort. Calculated effect size (natural logarithm of difference in relative area) for each of statistically significant derived trait is listed along with corresponding adjusted p-values.

Plasma N-glycome peak	Effect size	95% Confidence interval	Adjusted p value
GP10	-0.14	(-0.2134, -0.3488)	3.99 x10 ⁻⁰³
GP16	-0.08	(-0.126, -0.2096)	9.38 x10 ⁻⁰⁴
GP18	-0.08	(-0.1154, -0.1922)	9.38 x10 ⁻⁰⁴
GP19	0.07	(0.0366, 0.1086)	9.38 x10 ⁻⁰⁴
GP20	0.04	(0.0089, 0.0443)	4.48 x10 ⁻⁰²
GP26	0.09	(0.0446, 0.1367)	1.05 x10 ⁻⁰³
GP32	0.15	(0.0957, 0.2487)	9.52 x10 ⁻⁰⁶
GP34	0.12	(0.0636, 0.1859)	9.38 x10 ⁻⁰⁴
Plasma N-glycome derived trait	Effect size	95% Confidence interval	Adjusted p value
LB	-0.01	(-0.0169, -0.0266)	2.84 x10 ⁻⁰²
НВ	0.04	(0.0113, 0.0541)	2.84 x10 ⁻⁰²
G3	0.04	(0.0111, 0.0549)	2.84 x10 ⁻⁰²
S1	-0.04	(-0.0537, -0.0899)	1.07 x10 ⁻⁰³
S3	0.05	(0.0136, 0.0614)	2.84 x10 ⁻⁰²

Supplementary Table 4 Average age of both cases and controls for each temporal group created around the diagnosis.

Temporal group according to disease diagnosis	cases age (mean ± SD), years	controls age (mean ± SD), years	case samples, N	control samples, N
pre 8-10 years	53.35 ± 8.91	53.36 ± 8.97	23	115
pre 5-7 years	54.78 ± 8.40	54.77 ± 8.40	37	185
pre 2-4 years	53.98 ± 8.36	53.72 ± 8.05	40	198
post 0-2 years	59.69 ± 8.35	59.02 ± 7.60	49	237

Supplementary Table 5 ROC curve point data showing specificity, sensitivity, Youden's index, true neutrals (tn), true positives (tp), false negatives (n) and false positives (fp) for each cut-off threshold of the three tested models. Data for each model is listed on a separate document sheet. Available as a separate file.

Supplementary Table 6 The development of T2DM induces significant changes in directly measured plasma N-glycans in the FINRISK cohort. Calculated effect size (natural logarithm of difference in relative area) for each of statistically significant derived trait is listed along with corresponding adjusted p-values.

Plasma N-glycome peak	Effect size	95% Confidence interval	Adjusted p value
GP10	-0.33	(-0.8355, 0.1159)	5.92 x10 ⁻⁰¹
GP16	0.06	(-0.3139, 0.4017)	7.68 x10 ⁻⁰¹
GP18	-0.24	(-0.4553, -0.0325)	1.47 x10 ⁻⁰¹
GP19	0.04	(-0.0215, 0.0990)	5.92 x10 ⁻⁰¹
GP20	0.55	(-0.4580, 1.6736)	5.92 x10 ⁻⁰¹
GP26	0.14	(-0.0061, 0.2606)	3.02 x10 ⁻⁰¹
GP32	0.24	(0.1072, 0.3757)	6.62 x10 ⁻⁰³
GP34	0.04	(0.0078, 0.0728)	7.83 x10 ⁻⁰²

Supplementary Figure 1 Individual effects of T2DM and IR development on the identified significantly differentiated initial (A) and derived plasma Nglycan traits (B) from the TwinsUK cohort. Calculated effect size (natural logarithm of difference in relative area) of each presented initial or derived trait is shown on the y axis with error bar representing the 95% confidence interval, while glycan trait name is displayed on the x axis. (GP – glycan peak, LB – low branched glycans, HB – high branched glycans, G3 – trigalactosylated glycans, S1 – monosialylated glycans, S3 – trisialylated glycans)

Supplementary Figure 2 Time-to-diagnosis behaviour of the most significantly altered initial glycan traits in individuals who developed IR/T2DM compared with the control group of the corresponding age for each timepoint from the TwinsUK cohort. Glycan abundances are presented on the y axis with dots representing calculated means and lines representing 95% confidence intervals, while different temporal groups are presented on the x axis. The timepoint period in which the disease diagnosis occurred is labelled brown, while all pre-diagnosis timepoint periods are labelled blue. Glycan levels of control groups are labelled green. Numbers listed inside the brackets represent years of distance from diagnosis.

Supplementary Figure 3 Stratification performance of IR/type 2 diabetes prediction models created from the available TwinsUK cohort data. Comparison of prediction model based on glycan peaks independently associated with IR/type 2 diabetes (labelled green) with the model including the BMI, smoking status and blood pressure data alone (grouped as risk factors, labelled brown) and the model combining both mentioned risk factors and glycan data (labelled blue).

Supplementary Figure 4 Significant plasma protein N-glycan alterations externally validated on FINRISK confirmation cohort displayed with boxplots. Y axis represents the glycan abundances of FINRISK participants at baseline sampling. Participants who developed T2DM during follow-up are labelled brown. Participants who remained unaffected at follow-up sampling are labelled blue. Boxes in the boxplot are ranging from 25th to 75th percentile with the median represented as a line inside the box. The whiskers of the boxplot extend from both percentiles, 75th percentile for upper whisker and 25th for lower whisker, to the values within 1.5xIQR. IQR is the inter-quartile range, the distance from the first to the third quartile. Data outside the whiskers' ends are outliers and are plotted individually.