Supplementary File B

1 Factor analysis formulation

One of the goals of factor analysis methods is to quantify the association of each variable with more fundamental entities that explain the correlations among observations [1]. Let the vector $\mathbf{y}_{\mathbf{i}} \in \mathbb{R}^{m \times 1}$ be the *i*-th observation of *m* variables, and $\mathbf{z}_{\mathbf{i}} \in \mathbb{R}^{p \times 1}$ the unobserved measures of *p* factors. The common factor model states:

$$\mathbf{y}_{\mathbf{i}} = \mathbf{F}\mathbf{z}_{\mathbf{i}} + \mathbf{e}_{\mathbf{i}} \tag{1}$$

Or component-wise:

$$y_{ij} = \sum_{k=1}^{m} f_{jk} z_{ik} + e_{ij}$$
(2)

Matrix $\mathbf{F} \in \mathbb{R}^{m \times p}$ contains the *factor loadings*, also known as the factor structure. Residuals $e_{.j} \in \mathbb{R}^{1 \times m}$ contain the portion of the *j*-th variable that is not defined by the factors and matrix of residuals correlations $\mathbf{C}_{\mathbf{e}} \in \mathbb{R}^{m \times m}$ is assumed diagonal. Therefore, components of the correlation matrix between observed variables $\mathbf{C}_{\mathbf{y}} \in \mathbb{R}^{m \times m}$ are given by:

$$\begin{bmatrix} \mathbf{C}_{\mathbf{y}} \end{bmatrix}_{jl} = \operatorname{corr}(y_{\cdot j}, y_{\cdot l}) = \sum_{s=1}^{m} \sum_{t=1}^{m} f_{js} f_{lt} \begin{bmatrix} \mathbf{C}_{\mathbf{z}} \end{bmatrix}_{st} \quad \text{for } j \neq l$$
(3)

Exploratory Factor Analysis (EFA) consists in estimating the matrices \mathbf{F} , $\mathbf{C}_{\mathbf{z}}$, and $\mathbf{C}_{\mathbf{e}}$ to find out an underlying factor structure, while Confirmatory Factor Analysis (CFA) estimates the coefficients for an hypothesized model from Equation 3. The resulting factor structure matrix $\mathbf{F} \in \mathbb{R}^{m \times p}$ quantifies the influence of the p unobserved factors over the m observed variables.

1.1 Factor scores

Given the factor model, \mathbf{F} , $\mathbf{C}_{\mathbf{z}}$, and $\mathbf{C}_{\mathbf{e}}$, the unobserved factor scores \mathbf{z} can be estimated with various methods [2] that are based on the linear relations between factors $\mathbf{z}_{\mathbf{i}}$ and standardized observations $\mathbf{y}_{\mathbf{i}}$. That is, the estimated vector of factors, $\hat{\mathbf{z}}_{\mathbf{i}}$, for a particular case *i* is estimated as:

$$\widehat{\mathbf{z}_i} = \mathbf{W} \mathbf{y}_i$$
 (4)

The weight matrix $\mathbf{W} \in \mathbb{R}^{p \times m}$ that minimizes the sum of squares of the uniqueness [3], *i.e.*, the portion of the observations variance that is not explained by the factors, is given by:

$$\mathbf{W} = \left(\mathbf{F}^T \mathbf{C}_{\mathbf{e}}^{-1} \mathbf{F}\right)^{-1} \mathbf{F}^T \mathbf{C}_{\mathbf{e}}^{-1}$$
(5)

where C_e is the residuals covariance matrix.

2 Factor analysis in this work

Inputs:

- $\mathbf{y}_i \in \mathbb{R}^{35 \times 1}$: vector of observed sub-scores transformed into standardized regression based (SRB) z-scores for each subject i.
- $\mathbf{C}_{\mathbf{v}} \in \mathbb{R}^{35 \times 35}$: matrix of correlations between SRB *z*-scores.

Outputs:

- $\mathbf{F} \in \mathbb{R}^{35 \times 6}$: factor structure matrix quantifying the influence of each domain in the observed SRB z-scores.
- $\mathbf{W} \in \mathbb{R}^{6 \times 35}$: matrix of weights for domain score calculation.
- $\mathbf{z}_{\mathbf{i}} \in \mathbb{R}^{6 \times 1}$: vector of un-observed domain scores for each subject *i*.

	Domain					
Sub-score	Memory	Language	Executive	Visuospatial	Orientation	Attention
Q1SCORE	0.126	0	0	0	0	0
Q4SCORE	0.125	0	0	0	0	0
MOCADLREC	0.061	0	0	0	0	0
RAVLT.IMMED	0.15	0	0	0	0	0
AVTOT6	0.128	0	0	0	0	0
AVTOTB	0.052	0	0	0	0	0
AVDEL30MIN	0.068	0	0	0	0	0
AVDELTOT	0.052	0	0	0	0	0
LIMMTOTAL	0.085	0	0	0	0	0
LDELTOTAL	0.113	0	0	0	0	0
MMRECALL	0.039	0	0	0	0	0
Q5SCORE	0	0.097	0	0	0	0
MOCANAM	0	0.093	0	0	0	0
BMNOCUE	0	0.291	0	0	0	0
CATANIMSC	0	0.306	0	0	0	0
Q13SCORE	0	0	0.026	0	0	0
TRAASCOR	0	0	0.065	0	0	0
TRABSCOR	0	0	0.224	0	0	0
MOCASERIAL	0	0	0.036	0	0	0
TRAILS	0	0	0.025	0	0	0
CLOCKSCOR	0	0	0	0.395	0	0
COPYSCOR	0	0	0	0.229	0	0
MOCACLOCK	0	0	0	0.448	0	0
Q3SCORE	0	0	0	0.157	0	0
CUBE	0	0	0	0.164	0	0
MMDRAW	0	0	0	0.048	0	0
Q7SCORE	0	0	0	0	0.331	0
MMORITIME	0	0	0	0	0.313	0
MMORISPACE	0	0	0	0	0.114	0
MOCAORI	0	0	0	0	0.418	0
Q9SCORE	0	0	0	0	0	0.074
Q10SCORE	0	0	0	0	0	0.092
Q11SCORE	0	0	0	0	0	0.204
Q12SCORE	0	0	0	0	0	0.148
Q2SCORE	0	0	0	0	0	0.085

Table 1: Weight of each sub-score in the calculation of the 6 domain scores (Matrix \mathbf{W}^T). Complete description of each sub-score code is presented in Supplementary File A.

References

- R. Cudeck, "Exploratory factor analysis," in *Handbook of Applied Multivariate Statistics and Mathematical Modeling* (H. E. Tinsley and S. D. Brown, eds.), pp. 265 296, San Diego: Academic Press, 2000.
- [2] J. W. Grice, "Computing and evaluating factor scores.," Psychological Methods, vol. 6, 2001.
- [3] M. S. Bartlett, "The statistical conception of mental factors," British Journal of Psychology. General Section, vol. 28, pp. 97–104, jul 1937.