Supplemental data

Table of contents

Supplemental Methods online only

Treatment, follow-up strategies, and disease outcome DNA and RNA sequencing Variant detection Structural variation detection Fusion gene mutation analysis Thyroid differentiation score and ERK score Real-time quantitative polymerase-chain reaction

Supplemental Figures online only

Supplemental Figure 1. Schematic representation of the *VCL-RET* and *RBMS3-ALK* fusions Supplemental Figure 2. A 9-year-old boy with an *ERC1-RET* fusion resulting in progressively decreased uptake of radioactive iodine during repeated high-dose ¹³¹I therapy Supplemental Figure 3. Transcriptome data from 12 pediatric and 125 adult PTCs Supplemental Figure 4. *In vitro* effects of larotrectinib on radioiodine uptake capacity and cell growth Supplemental Figure 5. The human TPR-NTRK1 expression vector map Supplemental Figure 6. Relative expression by real-time PCR (qPCR) of *NTRK1* genes among Nthy^{WT} cells, normal thyroid tissue, Nthy^{TPR-NTRK} cells, and thyroid cancer tissue with a *TPR-NTRK* fusion

Supplemental Tables online only

Supplemental Table 1. Genetic analysis performed in available tumor tissue of 106 patients

Supplemental Table 2. Genetic alterations according to age at diagnosis

Supplemental Table 3. Breakpoint of fusion gene mutations identified from 28 patients

Supplemental Table 4. Genetic alterations of pediatric PTC patients based on previous studies

Supplemental Table 5. Clinicopathologic presentation and disease outcome in pediatric PTCs harboring $BRAF^{V600E}$

Supplemental Table 6. Comparison between pediatric and adult patients at SNUH harboring a fusion oncogene (*TRK*, *RET*, *or ALK*) and *BRAF*^{V600E}

Supplemental Table 7. Comparison between pediatric and adult patients in the TCGA database harboring a fusion oncogene (*TRK*, *RET*, *or ALK*) and *BRAF*^{V600E}

Supplemental Table 8. Nucleotide sequences of primers

Supplemental Table 9. Target gene lists of SNUH FIRST cancer panel (version 3)

Supplemental References online only

Supplemental Methods

Treatment, and follow-up strategies

As reported previously (1), all patients underwent total thyroidectomy (TT), subtotal thyroidectomy, or lobectomy with or without node dissection. Prophylactic central node dissection was introduced at Seoul National University Hospital (SNUH) in 2003 and has been performed in most patients with PTC ≥ 1 cm since 2007. The presence of lung metastasis was evaluated by radiological examinations (¹³¹I whole-body scans [WBSs] and/or chest computed tomography [CT]). Postoperative ¹³¹I therapy was provided for patients harboring tumors > 1 cm or locoregional and/or lung metastasis. The timing and number of the ¹³¹I doses administered were individualized. After completing the initial therapy, patients were followed up with a clinical examination, measurements of serum thyroglobulin and anti-thyroglobulin antibody levels, and neck ultrasonography. ¹³¹I WBS, CT, and positron emission tomography were performed if indicated.

Disease outcomes

Disease outcomes were categorized as no evidence of disease (NED), biochemical disease (BCD), and structural disease (SD, persistent or recurrent) based on the follow-up findings (2). NED was defined as the absence of structural abnormalities on imaging and an undetectable serum thyroglobulin level (suppressed or stimulated) for 12 months or longer until the last follow-up. BCD was defined as a detectable, suppressed, or stimulated thyroglobulin level in the absence of structural abnormalities on imaging. SD was defined as the presence of structural abnormalities. Stable and progressive disease was defined according to the Response Evaluation Criteria in Solid Tumors (RECIST) criteria (3).

DNA and RNA sequencing

Targeted sequencing of cancer-related genes was performed using the FRIST pancancer panel v3 developed at SNUH; this panel includes all exons and some introns of 188 and 71 genes, respectively, known to be important in tumorigenesis (4). All sequencing libraries were sequenced on the Illumina HiSeq platform as paired-end reads. The sequencing reads were aligned to the reference human genome (hg19) using the Burrows–Wheeler aligner (5) and the STAR aligner (6) for DNA and RNA, respectively. WGS and target sequencing followed the Genome Analysis Toolkit (GATK) best practices pipeline until the bam file was created using SAMtools (7), Picard (http://broadinstitute.github.io/picard/), and GATK (8). The average coverage for WGS was $34-50\times$ for blood DNA and $75\times$ for tumor DNA.

Variant detection

Somatic SNVs and short indels were detected by WGS and targeted sequencing using paired calls implemented in GATK MuTect2, annotated using ANNOVAR (9), and selected via several stages of in-house filters that consider the variant allele count and frequency, the possibility of an oxoG error (10) or strand bias, and the frequency in a normal population, such as the 1,000 Genomes Project (http://www.1000genomes.org), Exome Aggregation Consortium (ExAC) (http://exac.broadinstitute.org/), and NLHBI Exome Sequencing Project (ESP) (http://evs.gs.washington.edu/EVS/).

Structural variation detection

To detect the somatic copy number alteration (CNA) in the WGS data, the R package HMMcopy was used to count the number of reads with a fixed window size of 1,000 and to normalize the counts considering the GC content and average mappability of each bin. The log2 ratio was obtained from the normalized counts of tumor tissue and blood and was segmented using the R package DNAcopy. The targeted sequencing data were analyzed for CNA and SV according to the unique analysis pipeline at SNUH.

Fusion gene mutation analysis

Gene fusion was screened using STAR fusion, followed by manual review of chimeric reads using the Integrative Genomics Viewer (11), and the final call was determined by confirming the expression of the genes involved in fusion.

Fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC)

NTRK and *RET* rearrangements were examined by FISH using a break apart probes for the *NTRK1* and *RET* loci (ZytoVision, Bremerhaven, Germany) and *NTRK3* loci (Abnova, Taipei, Taiwan).(12, 13) IHC was performed using a BRAF V600E mutation-specific antibody (Ventana Medical Systems, Inc., Tucson, AZ, USA), an NRAS Q61R antibody (Bio SB, Santa Barbara, CA, USA), a monoclonal mouse anti-human ALK antibody (Novocastra,

Newcastle Upon Tyne, UK), and a monoclonal rabbit anti-human pan-Trk antibody (Cell Signaling Technology, Danvers, MA, USA).(14, 15)

Thyroid differentiation score

For the Ensembl gene set, the HTSeq-Count was used to count the number of reads mapped to each gene, and these counts were subsequently converted to RPKM and log2 values, respectively. The median-centered log2 values were applied to display the heatmap and to obtain the thyroid differentiation score (TDS) and ERK score according to previous studies (16, 17)

Real-time quantitative polymerase-chain reaction

RNA from cell lines or fresh frozen tissues was extracted using the RNeasy Mini kit (Qiagen, Hilden, Germany) or Trizol (Life Technologies, Carlsbad, USA). RNA was assessed for quality and concentration using the 2100 Bioanalyzer (Agilent Technologies Inc., Palo Alto, CA). To confirm mRNA expression of NTRK1, 1,000 ng RNA was reverse-transcribed into cDNA using the PrimeScript[™] First-strand cDNA Synthesis Kit (TaKaRa Bio Inc., Seoul, Korea). Reverse-transcribed cDNAs were quantified using TB Green Premix Ex TaqTM II (Tli RNaseH Plus, TaKaRa Bio). The levels of overexpression in Nthy^{TPR-NTRK} cells were similar to those in NTRK fusion cancer when we compared the NTRK mRNA levels among Nthy^{WT}, normal thyroid tissue, Nthy^{TPR-NTRK} cells, and thyroid cancer tissue harboring *TPR-NTRK* fusion.

Supplemental Figures

Supplemental Figure 1. Schematic representation of the VCL-RET and RBMS3-ALK fusions. Several fusions were identified in the COSMIC database among the tumors of 24 children with fusion oncogenes investigated by targeted or RNA sequencing, including *ETV6-NTRK3, TPM3-NTRK1, CCDC6-RET, NCOA4-RET, RET-NCOA4, TRIM24-RET, ERC1-RET, KTN1-RET, EML4-ALK and STRN-ALK*. We also confirmed *TPR-NTRK1* and *ANK3-RET* fusion in previously published reports (3, 18). However, to our knowledge, *VCL-RET* and *RBMS3-ALK* fusions have not previously been reported in thyroid cancer. Confirming chimeric reads by manual review allowed for identification of fusion breakpoints. (A) Schematic representation of the fusion of genes *VCL* and *RET* by duplication: in-frame fusion between chromosome 10 containing exons 1 to 18 of *VCL* and exons 12 to 19 of *RET*. (B) Schematic representation of the fusion of genes *RBMS3* and *ALK* by translocation: in-frame fusion between *ALK* exon20 and *RBMS3* exon3.

Supplemental Figure 2. A 9-year-old boy (P11) with an *ERC1-RET* fusion resulting in progressively decreased uptake of radioactive iodine during repeated high-dose ¹³¹I therapy. All images are anterior-view images obtained at 2 days after ¹³¹I administration.

Supplemental Figure 3. Transcriptome data from 12 pediatric and 125 adult PTCs. The data was included in patient age, histological subtype, molecular subtype, TDS score, ERK score, the expression profile of 16 TDS genes and 52 MARK signaling pathway genes.

Supplemental Figure 4. *In vitro* effects of larotrectinib on radioiodine uptake capacity and cell growth. (A and B) ¹²⁵I uptake at baseline and after larotrectinib treatment (10, 50, and 100 μ M) in Nthy^{WT} (A) and Nthy^{TPR-NTRK} cells (B). (C) ¹²⁵I uptake in Nthy^{WT} cells at baseline and after treatment with larotrectinib (50 μ M) and larotrectinib (50 μ M) + KClO4. (D) Western blots of NIS (fully glycosylated) in Nthy^{WT} and Nthy^{TPR-NTRK} cells at baseline, and after larotrectinib treatment (50, 75, and 100 μ M). Figure 4C included western blots of NIS at baseline, and after larotrectinib treatment (50 μ M only). (E) The colony-forming ability of Nthy^{TPR-NTRK} cells at baseline, and after ¹³¹I therapy alone (100 μ Ci), larotrectinib treatment alone (10, 25, 50, 75, and 100 μ M), and a combination of both therapies. LAR, larotrectinib; NS, not significant; *, *p* <0.05; **, *p* <0.01; ***, *p* <0.001 using One-way ANOVA with Bonferroni's multiple-comparison test. All data are expressed as mean ± SD.

Supplemental Figure 5. The human TPR-NTRK1 expression vector constructed by subcloning the corresponding cDNA into a pcDNA6/V5-His A expression vector (ThermoFisher).

Supplemental Figure 6. Relative expression by real-time PCR (qPCR) of NTRK1 genes among Nthy^{WT} cells, normal thyroid tissue, Nthy^{TPR-NTRK} cells, and thyroid cancer tissue with a TPR-NTRK fusion

Duppid				ieue anaiyois	perior mea m a		e tumor	clobue of 1	oo patiento									
ID	Age	S e x	RT histo ry	PTC subtypes	Genetic alterations	NG S	WGS	Targete d seq	RNAseq	BRA F seq or IHC	RA S seq	DICER 1 seq	TER T seq	RE T FIS H	TR K FIS H	TR KI HC	AL K IHC	RAS IHC
1	4.3	F	Neg	cPTC	TPR-NTRK1	Suc	TPR- NTR K1	TPR- NTRK1	TPR- NTRK1	Neg	ND	ND	Neg	ND	Pos	ND	ND	ND
2	5.2	F	Neg	FVPTC, infiltrative	ETV6-NTRK3	Suc	ND	ETV6- NTRK3	ETV6- NTRK3	Neg	ND	ND	Neg	Fail	Pos	Neg	Neg	Neg
3	10.3	F	Neg	FVPTC, infiltrative	ETV6-NTRK3	Suc	ND	ETV6- NTRK3	Neg	Neg	Neg	Neg	Neg	ND	ND	ND	ND	ND
4	14.2	F	Neg	cPTC	TPM3- NTRK1	Suc	ND	ND	TPM3- NTRK1	Neg	ND	ND	Neg	Neg	ND	Pos	Neg	ND
5	5.1	F	Neg	cPTC	VCL-RET	Suc	ND	VCL- RET	Neg	Neg	ND	ND	Neg	ND	ND	ND	ND	ND
6	6.4	М	Neg	DSV-PTC	NCOA4-RET	Suc	ND	NCOA4 -RET	NCOA4- RET	Neg	ND	ND	Neg	ND	ND	ND	ND	ND
7	7.1	F	Neg	DSV-PTC	TRIM24-RET	Suc	ND	Fail	TRIM24- RET	Neg	ND	ND	Neg	ND	ND	ND	ND	ND
8	7.4	F	Neg	DSV-PTC	CCDC6-RET	Suc	ND	ND	CCDC6- RET	Neg	ND	ND	Neg	Pos	ND	Neg	Neg	Neg
9	7.6	F	Neg	cPTC	RET-NCOA4	Suc	ND	RET- NCOA4	Neg	Neg	ND	ND	Neg	Neg	ND	Neg	Neg	Neg
10	7.8	М	Pos	cPTC	NCOA4-RET	Suc	ND	Fail	NCOA4- RET	Neg	ND	ND	Neg	Fail	ND	Neg	Neg	Neg
11	9.0	М	Neg	DSV-PTC	ERC1-RET	Suc	ND	ERC1- RET	ND	Neg	ND	ND	ND	ND	ND	ND	ND	ND
12	9.6	М	Neg	cPTC	TRIM24-RET	Suc	ND	Fail	TRIM24- RET	Neg	ND	ND	Neg	ND	ND	ND	ND	ND

Supplemental Tables Supplemental Table 1. Genetic analysis performed in available tumor tissue of 106 patients

13	9.9	М	Neg	DSV-PTC	NCOA4-RET	Suc	ND	NCOA4 -RET	Neg	Neg	ND	ND	Neg	Pos	ND	Neg	Neg	Neg
14	10.1	F	Neg	cPTC	NCOA4-RET	Suc	ND	NCOA4 -RET	ND	Neg	ND	ND	Neg	Neg	ND	Neg	Neg	Neg
15	10.3	F	Neg	DSV-PTC	CCDC6-RET	Suc	ND	CCDC 6-RET	ND	Neg	ND	ND	Neg	ND	ND	ND	ND	ND
16	10.4	F	Neg	DSV-PTC	NCOA4-RET	Suc	ND	NCOA4 -RET	NCOA4- RET	Neg	ND	ND	Neg	Pos	ND	Neg	Neg	ND
17	10.5	F	Neg	DSV-PTC	CCDC6_RET	Suc	ND	CCDC 6_RET	ND	Neg	ND	ND	Neg	Pos	ND	Neg	Neg	Neg
18	13.3	F	Pos	cPTC	CCDC6-RET	Suc	ND	CCDC 6-RET	CCDC6- RET	Neg	ND	ND	Neg	ND	ND	ND	ND	ND
19	13.7	F	Neg	DSV-PTC	ANK3_RET	Suc	ND	ANK3_ RET	ANK3_RE T	Neg	ND	ND	Neg	Neg	ND	Neg	Neg	Neg
20	14.3	F	Neg	DSV-PTC	KTN1-RET	Suc	ND	KTN1- RET	ND	Neg	ND	ND	Neg	Pos	ND	Neg	Neg	ND
21	14.5	F	Neg	cPTC	CCDC6-RET	Suc	ND	CCDC 6-RET	ND	Neg	ND	ND	Neg	Pos	ND	Neg	Neg	Neg
22	16.1	М	Neg	cPTC	CCDC6-RET	Suc	ND	CCDC 6-RET	ND	Neg	ND	ND	Neg	Neg	ND	Neg	Neg	Neg
23	16.1	F	Neg	DSV-PTC	CCDC6-RET	Suc	ND	CCDC 6-RET	ND	Neg	ND	ND	Neg	ND	ND	ND	ND	ND
24	17.2	F	Neg	cPTC	CCDC6_RET	Suc	ND	CCDC 6-RET	ND	Neg	ND	ND	Neg	Neg	ND	Neg	Neg	Neg
25	18.9	F	Neg	DSV-PTC	CCDC6-RET	Suc	ND	CCDC 6-RET	ND	Neg	ND	ND	Neg	ND	ND	ND	ND	ND
26	4.5	F	Neg	DSV-PTC	STRN-ALK	Suc	ND	STRN- ALK	STRN-ALK	Neg	ND	ND	Neg	Neg	ND	Neg	Pos	Neg
27	8.9	F	Neg	cPTC	EML4-ALK	Suc	ND	EML4- ALK	EML4- ALK	Neg	ND	ND	Neg	Neg	ND	Neg	Neg	Neg
28	12.1	F	Neg	cPTC	ALK*	Fail	ND	Fail	Fail	Neg	Neg	Neg	Neg	Neg	ND	Neg	Pos	Neg

29	15.6	F	Neg	cPTC	RBMS3-ALK	Suc	ND	RBMS3 -ALK	ND	Neg	ND	ND	Neg	Neg	ND	Neg	Neg	Neg
30	15.9	F	Neg	cPTC	ALK*	Fail	ND	Fail	Fail	Neg	Neg	Neg	Neg	ND	ND	Neg	Pos	Neg
31	18.1	F	Pos	cPTC	ALK*	Fail	ND	Fail	Fail	Neg	Neg	Neg	Neg	Neg	ND	Neg	Pos	Neg
32	11.3	Μ	Neg	cPTC	$BRAF^{V600E}$	ND	ND	ND	ND	Pos	ND	ND	Neg	Neg	ND	Neg	Neg	Neg
33	12.2	F	Neg	cPTC	$BRAF^{V600E}$	ND	ND	ND	ND	Pos	ND	ND	Neg	ND	ND	Neg	Neg	Neg
34	12.5	F	Neg	cPTC	$BRAF^{V600E}$	ND	ND	ND	ND	Pos	ND	ND	Neg	Neg	ND	Neg	Neg	Neg
35	12.9	F	Neg	cPTC	BRAF ^{V600E}	ND	ND	ND	ND	Pos	ND	ND	Neg	ND	ND	ND	ND	ND
36	13.1	F	Neg	cPTC	$BRAF^{V600E}$	ND	ND	ND	ND	Pos	ND	ND	ND	ND	ND	ND	ND	ND
37	13.5	F	Neg	PTC, tall cell variant	BRAF ^{V600E}	ND	ND	ND	ND	Pos	ND	ND	Neg	Neg	ND	Neg	Neg	Neg
38	13.9	F	Neg	cPTC	BRAF ^{V600E}	ND	ND	ND	ND	Pos	ND	ND	Neg	Neg	ND	Neg	Neg	Neg
39	13.9	F	Neg	N/A	BRAF ^{V600E}	ND	ND	ND	ND	Pos	ND	ND	Neg	ND	ND	ND	ND	ND
40	14.3	F	Neg	cPTC	BRAF ^{V600E}	ND	ND	ND	ND	Pos	ND	ND	Neg	Fail	ND	Neg	Neg	Neg
41	14.5	F	Pos	cPTC	BRAF ^{V600E}	ND	ND	ND	ND	Pos	ND	ND	Neg	Neg	ND	Neg	Neg	Neg
42	14.5	F	Neg	PTC, tall cell variant	BRAF ^{V600E}	ND	ND	ND	ND	Pos	ND	ND	Neg	ND	ND	ND	ND	ND
43	15.0	Μ	Neg	cPTC	BRAF ^{V600E}	ND	ND	ND	ND	Pos	ND	ND	Neg	Fail	ND	Neg	Neg	Neg
44	15.2	F	Neg	cPTC	BRAF ^{V600E}	ND	ND	ND	ND	Pos	ND	ND	Neg	ND	ND	ND	ND	ND
45	15.4	F	Neg	cPTC	$BRAF^{V600E}$	ND	ND	ND	ND	Pos	ND	ND	Neg	Neg	ND	Neg	Neg	Neg
46	15.7	F	Neg	cPTC	$BRAF^{V600E}$	ND	ND	ND	ND	Pos	ND	ND	Neg	ND	ND	ND	ND	ND
47	15.8	F	Neg	cPTC	BRAF ^{V600E}	ND	ND	ND	ND	Pos	ND	ND	Neg	Neg	ND	Neg	Neg	Neg
48	15.9	F	Neg	cPTC	$BRAF^{V600E}$	ND	ND	ND	ND	Pos	ND	ND	Neg	Neg	ND	Neg	Neg	Neg
49	16.0	Μ	Neg	cPTC	$BRAF^{V600E}$	ND	ND	ND	ND	Pos	ND	ND	Neg	Fail	ND	Neg	Neg	Neg
50	16.1	F	Neg	cPTC	$BRAF^{V600E}$	ND	ND	ND	ND	Pos	ND	ND	Neg	Neg	ND	Neg	Neg	Neg
51	16.2	F	Neg	cPTC	$BRAF^{V600E}$	Suc	ND	ND	BRAF ^{V600E}	Pos	ND	ND	Neg	ND	ND	ND	ND	ND
52	16.6	F	Neg	cPTC	BRAF ^{V600E}	ND	ND	ND	ND	Pos	ND	ND	Neg	Fail	ND	Neg	Neg	Neg
53	16.7	F	Neg	cPTC	BRAF ^{V600E}	ND	ND	ND	ND	Pos	ND	ND	Neg	Neg	ND	Neg	Neg	Neg
54	16.7	F	Neg	cPTC	$BRAF^{V600E}$	ND	ND	ND	ND	Pos	ND	ND	Neg	ND	ND	ND	ND	ND

55	16.8	F	Neg	cPTC	$BRAF^{V600E}$	ND	ND	ND	ND	Pos	ND	ND	Neg	Fail	ND	Neg	Neg	Neg
56	17.1	F	Neg	cPTC	BRAF ^{V600E}	ND	ND	ND	ND	Pos	ND	ND	ND	ND	ND	ND	ND	ND
57	17.3	F	Neg	cPTC	BRAF ^{V600E} /T ERT C228T	ND	ND	ND	ND	Pos	ND	ND	Pos	Fail	ND	Neg	Neg	Neg
58	17.3	F	Neg	PTC, Hobnail variant	BRAF ^{V600E}	ND	ND	ND	ND	Pos	ND	ND	Neg	Fail	ND	Neg	Neg	Neg
59	17.6	Μ	Neg	cPTC	BRAF ^{V600E}	ND	ND	ND	ND	Pos	ND	ND	Neg	Neg	ND	Neg	Neg	Neg
60	17.7	F	Neg	cPTC	BRAF ^{V600E}	ND	ND	ND	ND	Pos	ND	ND	Neg	Neg	ND	Neg	Neg	Neg
61	18.0	F	Neg	cPTC	BRAF ^{V600E}	ND	ND	ND	ND	Pos	ND	ND	Neg	Neg	ND	Neg	Neg	Neg
62	18.1	F	Neg	cPTC	BRAF ^{V600E}	ND	ND	ND	ND	Pos	ND	ND	Neg	Fail	ND	Neg	Neg	Neg
63	18.7	F	Neg	cPTC	BRAF ^{V600E}	ND	ND	ND	ND	Pos	ND	ND	Neg	Fail	ND	Neg	Neg	Neg
64	18.8	F	Neg	cPTC	BRAF ^{V600E}	ND	ND	ND	ND	Pos	ND	ND	Neg	Neg	ND	Neg	Neg	Neg
65	19.1	F	Neg	PTC, tall cell variant	BRAF ^{V600E}	Suc	ND	ND	BRAF ^{V600E}	Pos	ND	ND	Neg	ND	ND	ND	ND	ND
66	19.2	Μ	Neg	cPTC	BRAF ^{V600E}	ND	ND	ND	ND	Pos	ND	ND	Neg	Fail	ND	Neg	Neg	Neg
67	19.2	Μ	Neg	cPTC	BRAF ^{V600E}	ND	ND	ND	ND	Pos	ND	ND	Neg	Neg	ND	Neg	Neg	Neg
68	19.5	F	Neg	cPTC	BRAF ^{V600E}	ND	ND	ND	ND	Pos	ND	ND	Neg	Fail	ND	Neg	Neg	Neg
69	19.5	F	Neg	cPTC	BRAF ^{V600E}	ND	ND	ND	ND	Pos	ND	ND	Neg	Neg	ND	Neg	Neg	Neg
70	19.7	F	Neg	cPTC	BRAF ^{V600E}	Suc	ND	ND	BRAF ^{V600E}	Pos	ND	ND	Neg	ND	ND	ND	ND	ND
71	19.8	F	Neg	cPTC	BRAF ^{V600E}	ND	ND	ND	ND	Pos	ND	ND	Neg	Neg	ND	Neg	Neg	Neg
72	19.8	F	Neg	N/A	BRAF ^{V600E}	ND	ND	ND	ND	Pos	ND	ND	ND	ND	ND	ND	ND	ND
73	9.0	F	Neg	cPTC	TERT C228T	Suc	ND	Fail	Neg	Neg	ND	ND	Pos	Neg	ND	Neg	Neg	Neg
74	12.4	F	Neg	cPTC	DICER1 c.5378delA, p.E1793fs	Fail	ND	Fail	Fail	Neg	Neg	c.5378 delA, p.E179 3fs	Neg	Fail	ND	Neg	Neg	Neg
75	16.1	F	Neg	FVPTC, encapsulat	DICER1 c.5113 G>A, p.E1705K	Fail	ND	Fail	Fail	Neg	Neg	c.5113 G>A,	Neg	Neg	ND	Neg	Neg	Neg

				ed invasive								p.E170 5K						
76	17.7	F	Neg	cPTC	DICER1 c.5113 G>A, p.E1705K	Fail	ND	Fail	Fail	Neg	Neg	c.5113 G>A, p.E170 5K	Neg	Fail	ND	Neg	Neg	Neg
77	19.0	М	Pos	cPTC	DICER1 c.5126 A>G, p.D1709G, LOH chr14q, chr16q, chr21, chr22	Suc	ND	DICER 1 c.5126 A>G, p.D170 9G,	ND	Neg	ND	c.5126 A>G, p.D170 9G	Neg	ND	ND	ND	ND	ND
78	19.6	F	Neg	cPTC	DICER1 c.5437 G>A, p.E1813K	Suc	ND	DICER 1 c.5437 G>A, p.E181 3K	ND	Neg	ND	ND	Neg	ND	ND	ND	ND	ND
79	11.5	М	Pos	cPTC	FGFR1 amp	Suc	ND	FGFR1 amp	ND	Neg	ND	ND	Neg	ND	ND	ND	ND	ND
80	17.7	М	Pos	cPTC	EGFR amp	Suc	ND	EGFR amp	ND	Neg	ND	ND	Neg	ND	ND	ND	ND	ND
81	10.8	F	Neg	cPTC	Neg	Suc	ND	Neg	Fail	Neg	Neg	Neg	Neg	Neg	ND	Neg	Neg	Neg
82	11.3	F	Neg	cPTC	Neg	Suc	ND	Neg	Fail	Neg	ND	Neg	Neg	Neg	ND	Neg	Neg	Neg
83	11.3	F	Neg	cPTC	Neg	Suc	ND	Neg	Fail	Neg	Neg	Neg	Neg	Neg	ND	Neg	Neg	Neg
84	12.5	Μ	Neg	cPTC	Neg	Suc	ND	Neg	Fail	Neg	ND	Neg	Neg	Neg	ND	Neg	Neg	Neg
85	12.7	F	Neg	cPTC	Neg	Suc	ND	Neg	Fail	Neg	Neg	Neg	Neg	Neg	ND	Neg	Neg	Neg
86	13.5	F	Neg	PTC, solid	Neg	Suc	ND	Neg	Fail	Neg	ND	Neg	Neg	Neg	ND	Neg	Neg	Neg
87	13.8	F	Neg	cPTC	Neg	Suc	ND	Neg	Fail	Neg	Neg	Neg	Neg	Neg	ND	Neg	Neg	Neg
88	15.0	F	Neg	FVPTC, infiltrative	Neg	Suc	ND	Neg	Fail	Neg	ND	Neg	Neg	ND	ND	ND	ND	ND

89	16.0	М	Neg	cPTC, FVPTC	Neg	Suc	ND	Neg	Fail	Neg	ND	Neg	Neg	ND	ND	ND	ND	ND
90	17.0	F	Neg	cPTC	Neg	Suc	ND	Fail	Neg	Neg	Neg	Neg	ND	ND	ND	ND	ND	ND
91	18.0	М	Neg	FVPTC, encapsulat ed invasive	Neg	Suc	ND	Neg	Fail	Neg	ND	Neg	Neg	Neg	ND	Neg	Neg	Neg
92	10.9	F	Neg	DSV-PTC	Fail	Fail	ND	Fail	Fail	Neg	Neg	Neg	Neg	Fail	ND	Neg	Neg	Neg
93	11.7	F	Neg	PTC, solid variant	Fail	Fail	ND	Fail	Fail	Neg	Neg	Neg	Neg	Fail	ND	ND	ND	ND
94	12.0	М	Neg	FVPTC, encapsulat ed invasive	Fail	Fail	ND	Fail	Fail	Neg	Neg	Neg	Neg	ND	ND	ND	ND	ND
95	12.4	F	Neg	cPTC	Fail	Fail	ND	Fail	Fail	Neg	Neg	Neg	Neg	Neg	ND	Neg	Neg	Neg
96	13.0	Μ	Pos	cPTC	Fail	Fail	ND	Fail	Fail	Neg	Neg	Neg	Neg	ND	ND	ND	ND	ND
97	13.7	Μ	Neg	cPTC	Fail	Fail	ND	Fail	Fail	Neg	Neg	Neg	Neg	Fail	ND	Neg	Neg	Neg
98	14.0	F	Pos	cPTC, PTC, solid variant	Fail	Fail	ND	Fail	Fail	Neg	Neg	Neg	Neg	ND	ND	ND	ND	ND
99	14.4	F	Neg	cPTC	Fail	Fail	ND	Fail	Fail	Neg	Neg	Neg	Neg	Neg	ND	Neg	Neg	Neg
100	14.5	F	Neg	cPTC	Fail	Fail	ND	Fail	Fail	Neg	Neg	Neg	Neg	Fail	ND	Neg	Neg	Neg
101	16.2	F	Neg	FVPTC, infiltrative	Fail	Fail	ND	Fail	Fail	Neg	Neg	Neg	Neg	Fail	ND	Neg	Neg	Neg
102	16.3	F	Neg	FVPTC, infiltrative	Fail	Fail	ND	Fail	Fail	Neg	Neg	Neg	Neg	Neg	ND	Neg	Neg	Neg
103	16.6	F	Neg	cPTC	Fail	Fail	ND	Fail	Fail	Neg	Neg	Neg	Neg	Neg	ND	Neg	Neg	Neg
104	17.5	F	Neg	cPTC	Fail	Fail	ND	Fail	Fail	Neg	Neg	Neg	Neg	Neg	ND	Neg	Neg	Neg
105	18.3	Μ	Neg	cPTC	Fail	Fail	ND	Fail	Fail	Neg	Neg	Neg	Neg	Neg	ND	Neg	Neg	Neg
106	18.4	F	Neg	cPTC	Fail	Fail	ND	Fail	Fail	Neg	Neg	Neg	Neg	Fail	ND	Neg	Neg	Neg

* Fusions where no 5' partner specified

RT, radiation therapy; NGS, next generation sequencing; WGS, whole genome sequencing; seq, sequencing, IHC, immunohistochemistry; FISH, *fluorescence in situ hybridization ;* Suc, success; Neg, negative; ND, not done; Pos, positive; cPTC, classic PTC; FVPTC, follicular variant PFC; DSV-PTC, diffuse sclerosing variant PTC; amp, amplification

Age	Fusion			Point mutation	1			Amplification	Identified	No driver identified
	TRK	RET	ALK	BRAF V600E	TERT	DICER1	RAS			
<10 years (n = 14)	2	9	2	0	1	0	0	0	14	0
10-14.9 years $(n = 40)$	2	8	1	11	0	1	0	1	24	16
15-19.9 years (n = 52)	0	4	3	30	1*	4	0	1	42	10
Total, n (detected/evaluated)	4/90	21/70	6/90	41/106	2(1ª)/102	5/66	0/94	2/45	80/106	26/106
Total, % (detection)	4.4	30	6.7	38.7	2.0	7.6	0	5.0	75.5	24.5

Supplemental Table 2. Genetic alterations according to age at diagnosis

^aCoexist with *BRAF*^{V600E} (1.0%)

ID	GeneA_GeneB	Targeted	RNA	5' Partner ge	ene		3' Partner	gene	
		sequencing	sequencing	Gene	Last Observed	Inferred	Gene	First Observed	Inferred
				Name	Exon	Breakpoint	Name	Exon	Breakpoint
1	TPR-NTRK1	Positive	Positive	TPR	Exon21	chr1:186,317,649	NTRK1	Exon10	chr1:156,844,312
2	ETV6-NTRK3	Negative	Positive	ETV6	Exon4	-	NTRK3	Exon14	-
3	ETV6-NTRK3	Positive	Negative	ETV6	Exon4	chr12:12,019,359	NTRK3	Exon14	chr13:88,636,734
4	TPM3-NTRK1	ND	Positive	TPM3	Exon7	-	NTRK1	Exon10	
5	VCL-RET ^a	Positive	Negative	VCL	Exon18	chr10:75,870,829	RET	Exon12	chr10:43,610,293
6	NCOA4-RET	Positive	Positive	NCOA4	Exon8	chr10:51,582,992	RET	Exon12	chr10:43,611,619
7	TRIM24-RET	Fail	Positive	TRIM24	Exon9	-	RET	Exon12	-
8	CCDC6-RET	ND	Positive	CCDC6	Exon1	-	RET	Exon12	-
9	RET-NCOA4	Positive	Negative	RET	Exon11	chr10:43,610,159	NCOA4	Exon8	chr10:51,584,672
10	NCOA4-RET	Fail	Positive	NCOA4	Exon8	-	RET	Exon12	-
11	ERC1-RET	Positive	ND	ERC1	Exon18	-	RET	Exon12	-
12	TRIM24-RET	Fail	Positive	TRIM24	Exon9	-	RET	Exon12	-
13	NCOA4-RET	Positive	Negative	NCOA4	Exon8	chr10:51,582,527	RET	Exon12	chr10:43,611,276
14	NCOA4-RET	Positive	ND	NCOA4	Exon8	chr10:51,584,750	RET	Exon12	chr10:43,611,312
15	CCDC6-RET	Positive	ND	CCDC6	Exon2	chr10:61,641,920	RET	Exon12	chr10:43,610,676
16	NCOA4-RET	Positive	Positive	NCOA4	Exon8	-	RET	Exon12	
17	CCDC6_RET	Positive	ND	CCDC6	Exon2	chr10:61,638,687	RET	Exon12	chr10:43,610,820
18	CCDC6-RET	Positive	ND	CCDC6	Exon2	chr10:61,627,804	RET	Exon12	chr10:43,611,457
19	ANK3_RET	Positive	ND	ANK3	Exon2	chr10:62,451,714	RET	Exon11	chr10:43,610,112
20	KTN1-RET	Positive	ND	KTN1	Exon12	chr14:56,105,452	RET	Exon12	chr10:43,611,421
21	CCDC6-RET	Positive	ND	CCDC6	Exon2	chr10:61,649,689	RET	Exon12	chr10:43,611,478
22	CCDC6-RET	Positive	ND	CCDC6	Exon2	chr10:61,661,536	RET	Exon12	chr10:43,610,671
23	CCDC6-RET	Positive	ND	CCDC6	Exon2	chr10:61,618,874	RET	Exon12	chr10:43,610,001
24	CCDC6_RET	Positive	ND	CCDC6	Exon2	chr10:61,660,861	RET	Exon12	chr10:43,610,186
25	CCDC6-RET	Positive	ND	CCDC6	Exon2	chr10:61,627,124	RET	Exon12	chr10:43,611,275
26	STRN-ALK	Positive	Positive	STRN	Exon3	chr2:37,132,992	ALK	Exon20	chr2:29,446,975

Supplemental Table 3. Breakpoint of fusion gene mutations identified from 28 patients

27	EML4-ALK	Positive	Positive	EML4	Exon13	chr2:42,527903	ALK	Exon20	chr2:29,448,236
29	RBMS3-ALK ^a	Positive	ND	RBMS3	Exon3	chr3:29,572,596	ALK	Exon20	chr2:29,447,452

^a*VCL/RET* and *RBMS3-ALK* fusion have not been reported in COSMIC or TCGA Fusion Gene database or previous reports. '- Accurate breakpoint is not known

Author	Age	Evalu	Detec	ction	Fusic	n				Point n	iutatior	ı			Ampli	Radiation or	Methods
date	(yrs)	ated (n)	n	%	RE T	NT RK	AL K	BR AF	PPA RG	BRAF V600E	RAS	DIC ER1	TERT	Oth ers	ficati on	sporadic	
Fugazzola L, 1995 (19)	1-8	6	4	66.7	4	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	Radiation	Southern blot
Williams, G.H. 1996 (20)	7-14	21	10	47.6	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	Sporadic	RT-PCR
Nikiforov,	5-18	38	33	86.8	33	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	Radiation	RT-PCR
Y.E. 1997 (21)	5-18	17	12	70.6	12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	Sporadic	RT-PCR
Motomura,	9	1	1	100	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	Sporadic	
T. 1998 (22)	10- 14	9	2	22.2	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	Sporadic	RT-PCR
Thomas, G.A. 1999 (23)	6-18	67	37	55.2	37	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	Radiation	RT-PCR
Fenton. C.,	6-9	2	0	0.0	ND	ND	ND	ND	ND	ND	0	ND	ND	ND	ND	Sporadic	
1999 (24)	10- 21	29	2	6.9	ND	ND	ND	ND	ND	ND	2	ND	ND	ND	ND	Sporadic	nested PCR
Santoro, M., 2000 (25)	<15	106	36	34.0	36	ND	ND	ND	ND	ND	0	ND	ND	ND	ND	Radiation	RT-PCR
Fenton	6-9	1	1	100	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	Sporadic	
C.L. 2000 (25)	10- 21	32	14	43.8	14	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	Sporadic	RT-PCR
	10- 21	1	1	100	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	Radiation	

Supplemental Table 4. Genetic alterations of pediatric PTC patients based on previous studies

Rabes, H.M. 2000 (26)	0-14	99	54	54.5	50	4	ND	Radiation	RT-multiplex PCR								
Pauws, E. 2001 (27)	9-16	8	0	0	ND	ND	ND	ND	ND	ND	0	ND	ND	ND	ND	Sporadic	SSCP-analysis
Elisei, R.	<18	25	19	76.0	19	ND	Radiation	RT-PCR,									
2001 (28)	<18	25	10	40.0	10	ND	Sporadic	Southern blot									
Lima, J. 2004 (29)	<18	17	1	5.9	ND	ND	ND	ND	ND	1	ND	ND	ND	ND	ND	Sporadic	SSCP and sequencing analysis
Kumagai A, 2004 (30)	≤15	46	6	13.0	5	ND	ND	ND	ND	1	0	ND	ND	ND	ND	Radiation	PCR, RT-PCR
Penko K, 2005 (31)	10- 21	14	7	50.0	ND	ND	ND	ND	ND	7	ND	ND	ND	ND	ND	Radiation (1) sporadic (13)	BRAF (PCR)
Rosenbaum E, 2005 (32)	10- 17	20	4	20.0	ND	ND	ND	ND	ND	4	ND	ND	ND	ND	ND	Sporadic	BRAF (PCR)
Espadinha, C, 2009 (33)	5-21	15	1	6.7	ND	ND	ND	ND	ND	1	ND	ND	ND	ND	ND	Unknown	BRAF (PCR)
Sassolas G, 2012 (34)	<20	28	11	39.3	8	0	ND	ND	ND	2	1	ND	ND	ND	ND	Radiation (5) Sporadic (23)	PCR, RT-PCR
Ricarte-	5-9	2	0	0.0	0	0	0	0	0	0	0	ND	ND	ND	ND	Sporadic (2)	
Filho JC, 2013 (35)	10- 23	25	18	66.7	7	2	ND	0	0	7	2	ND	ND	ND	ND	Sporadic (27)	RT-PCR, NGS
(00)	10- 23	26	25	96.2	15	3	ND	2	1	2	0	ND	ND	2	0	Radiation (26)	

Givens DI	<10	1	0	0.0	ND	ND	ND	ND	ND	0	ND	ND	ND	ND	ND	Unknown	BRAF (PCR)
2014 (36)	10- 18	18	7	38.9	ND	ND	ND	ND	ND	7	ND	ND	ND	ND	ND	Unknown	BRAF (PCR)
Henke LE, 2014 (37)	<21	27	17	63.0	ND	ND	ND	ND	ND	17	ND	ND	ND	ND	ND	Sporadic	BRAF (PCR)
Ballester LY, 2016 (38)	10- 19	25	15	60.0	5	ND	ND	ND	ND	10	0	ND	ND	1	0	Radiation (2) Sporadic (23)	NGS (cancer panel)
Picarsic JL,	<10	2	2	100	0	2	0	0	0	0	0	0	0	ND	ND	Sporadic	NGS (cancer
2016 (39)	10- 17	16	12	81.3	3	2	0	0	1	3	3	0	0	0	0	Sporadic	panel)
Mitsutake, N. 2015 (40)	9-22	67	54	80.6	7	4	ND	0	ND	43	0	ND	0	ND	ND	Radiation	PCR, RT-PCR
Nikita ME, 2016 (41)	7-18	34	19	55.9	6	ND	ND	ND	3	9	1	ND	ND	ND	ND	Radiation (2), Sporadic (37)	PCR, RT-PCR
Alzahrani AS, 2016 (42)	9-18	52	13	25.0	ND	ND	ND	ND	ND	12	0	ND	1	ND	ND	Unknown	PCR
Prasad ML	<10	1	1	100	0	1	0	0	0	0	0	0	0	0	0	Sporadic	NGS (cancer
2016 (43)	10- 18	26	25	96.2	6	6	0	0	0	13	0	0	0	0	0	Sporadic	panel)
Gertz, R.J. 2016 (44)	8-18	14	7	50.0	2	ND	ND	ND	ND	5	0	ND	ND	ND	ND	Sporadic	PCR, RT-PCR, FISH
Onder, S. 2016 (45)	0-18	50	15	30.0	ND	ND	ND	ND	ND	15	ND	ND	0	ND	ND	Radiation (3), Sporadic (47)	PCR
	4-10	12	1	8.3	ND	ND	ND	1	ND	Sporadic	RT-PCR, FISH						

Cordioli MI, 2016 (46)	10- 18	18	2	11.1	ND	ND	ND	2	ND	Sporadic							
Alzahrani AS, 2017 (47)	8-17	79	25	31.6	ND	ND	ND	ND	ND	19	2	0	1	3	0	Unknown	PCR
Cordioli	<10	12	6	50.0	4	1	ND	1	ND	0	0	ND	ND	ND	ND	Sporadic	PCR, RT-PCR, FISH
MI, 2017 (48)	10- 19	23	18	78.3	10	2	ND	3	ND	3	0	ND	ND	ND	ND	Radiation (3) sporadic (20)	PCR, RT-PCR, FISH
Oishi, N, 2017 (49)	0-20	81	44	54.3	ND	ND	ND	ND	ND	44	ND	ND	0	ND	ND	Sporadic	PCR (BARF TERT)
Hardee, S. 2017 (50)	0-21	50	24	48.0	ND	ND	ND	ND	ND	24	ND	ND	ND	ND	ND	Unknown	PCR
Mostoufi- Moab, S.2018 (51)	0-18	62	30	48.4	12	ND	ND	ND	2	12	4	ND	ND	ND	ND	Radiation (3) Sporadic (59)	PCR, RT-PCR
Wasserman JD, 2018 (52)	5-18	30	15	40.0	7	ND	ND	ND	ND	5	ND	3	0	ND	ND	Radiation (2), Sporadic(28)	PCR, RT-PCR
Pozdeyev	<10	5	5	100	3	0	2	0	0	0	0	0	0	ND	ND	Unknown	NGS (cancer
(53)	10- 19	10	4	40.0	1	0	3	0	0	0	0	0	0	0	0	Unknown	panel)
Huang, M. 2018 (54)	<21	30	16	53.3	ND	ND	ND	ND	ND	16	ND	ND	ND	ND	ND	Unknown	BRAF (PCR)
Sisdelli, L. 2019 (55)	0-18	80	27	33.8	ND	ND	ND	15	ND	12	ND	ND	ND	ND	ND	Radiation (3), Sporadic (77)	PCR, RT-PCR, FISH
	6-9	9	5	55.6	2	2	1	0	ND	0	0	ND	0	0	0		

Pekova B, 2020 (56)	10- 19	84	64	79.8	24	15	5	2	ND	18	2	ND	0	1	0	Radiation (2) Sporadic (89)	NGS (RNA and DNA targeted sequencing)
Lee YA et	4-9	14	14	100	9	2	2	0	0	0	0	0	1	0	0	Radiation (1) Sporadic (13)	PCR, FISH, NGS
study	10- 19	92	66	71.7	12	2	4	0	0	41	0	5	1 ^a	0	2	Radiation (8) Sporadic (84)	RNAseq), IHC
Pooled	<10	68	40	58.8	24	8	5	2	0	0	0	0	1	0	0		
analysis (June,	10- 23	468	289	61.8	100	32	12	12	2	112	9	5	1 ^a	4	2		
2020)	<23	1704	866	50.8	379	47	17	29	7	350	17	8	4(1 ^a)	7	2		

^aCoexist with *BRAF*^{V600E}

ID	Age	Sex	Sporadic or	PTC	Genetic	Size	Multi-	ETE	LN	Distant	FU	Disease	Disease
	(yrs)		radiotherapy	Subtype	alteration	(cm)	focality		meta	meta	years	outcome (any	outcome (at last
												event)	follow-up)
1	11.3	М	Sporadic	cPTC	BRAF ^{V600E}	0.6	no	yes	no	no	4.3	NED	NED
2	12.2	F	Sporadic	cPTC	BRAF ^{V600E}	3	yes	yes	yes	no	19.5	SD	NED
3	12.5	F	Sporadic	cPTC	BRAF ^{V600E}	0.9	no	yes	no	no	8	NED	NED
4	12.9	F	Sporadic	cPTC	BRAF ^{V600E}	0.5	no	no	no	no	2.4	NED	NED
5	13.1	F	Sporadic	cPTC	BRAF ^{V600E}	0.6	no	no	yes	no	7.3	NED	NED
6	13.5	F	Sporadic	PTC, tall	BRAF ^{V600E}	2	no	yes	yes	no	12.4	NED	NED
				cell									
7	13.9	F	Sporadic	cPTC	BRAF ^{V600E}	0.2	no	no	yes	no	4.6	Recur	Recur
8	14	F	Sporadic	N/A	BRAF ^{V600E}	0.8	no	no	yes	no	2	NED	NED
9	14.3	F	Sporadic	cPTC	BRAF ^{V600E}	2.6	yes	yes	yes	no	11.2	BCD	BCD
10	14.5	F	Radiotherapy	cPTC	BRAF ^{V600E}	0.6	no	yes	yes	no	8.8	BCD	BCD
11	14.5	F	Sporadic	PTC, tall cell	BRAF ^{V600E}	0.5	yes	no	no	no	0.9	Ongoing	Ongoing
12	15	М	Sporadic	cPTC	BRAF ^{V600E}	0.8	no	yes	no	no	8.9	NED	NED
13	15.2	F	Sporadic	cPTC	BRAF ^{V600E}	0.6	no	no	no	no	3.8	NED	NED
14	15.4	F	Sporadic	cPTC	BRAF ^{V600E}	1.1	yes	no	yes	no	11	BCD	BCD
15	15.7	F	Sporadic	cPTC	BRAF ^{V600E}	0.6	no	yes	no	no	3.2	NED	NED
16	15.8	F	Sporadic	cPTC	BRAF ^{V600E}	2.2	no	no	yes	no	16.6	NED	NED
17	15.9	F	Sporadic	cPTC	BRAF ^{V600E}	1.6	no	yes	yes	no	1.5	Ongoing	Ongoing
18	16	М	Sporadic	cPTC	BRAF ^{V600E}	2.4	yes	yes	yes	no	4.9	BCD	BCD
19	16.1	F	Sporadic	cPTC	BRAF ^{V600E}	0.3	no	no	no	no	7	NED	NED
20	16.2	F	Sporadic	cPTC	BRAF ^{V600E}	4.1	no	no	yes	no	1.6	Ongoing	Ongoing

Supplemental Table 5. Clinicopathological presentation and disease outcome in pediatric PTCs harboring BRAF^{V600E}

21	16.6	F	Sporadic	cPTC	BRAF ^{V600E}	1.6	no	yes	yes	no	14.5	NED	NED
22	16.7	F	Sporadic	cPTC	BRAF ^{V600E}	1.7	no	yes	yes	no	18.2	NED	NED
23	16.7	F	Sporadic	cPTC	BRAF ^{V600E}	0.9	yes	yes	no	no	4.8	NED	NED
24	16.8	F	Sporadic	cPTC	BRAF ^{V600E}	1.1	yes	yes	NA	no	11.6	NED	NED
25	17.1	F	Sporadic	cPTC	BRAF ^{V600E}	1.5	yes	yes	yes	no	7.5	NED	NED
26	17.3	F	Sporadic	cPTC	BRAF ^{V600E} TERT ^{C228T}	1.5	no	yes	no	no	9.5	NED	NED
27	17.3	F	Sporadic	PTC, Hobnail	BRAF ^{V600E}	0.9	no	yes	yes	yes	7.1	NED	NED
28	17.6	М	Sporadic	cPTC	BRAF ^{V600E}	3	yes	yes	yes	NA	1	NA	NA
29	17.7	F	Sporadic	cPTC	BRAF ^{V600E}	1.8	no	no	yes	no	7.8	NED	NED
30	18	F	Sporadic	cPTC	BRAF ^{V600E}	0.7	no	yes	yes	no	7.4	NED	NED
31	18.1	F	Sporadic	cPTC	BRAF ^{V600E}	NA	no	NA	NA	no	14.9	Recur	Recur
32	18.7	F	Sporadic	cPTC	BRAF ^{V600E}	0.4	yes	no	no	no	11.3	NED	NED
33	18.8	F	Sporadic	cPTC	BRAF ^{V600E}	NA	yes	NA	yes	no	18.4	Recur	NED
34	19.1	F	Sporadic	PTC, tall cell	BRAF ^{V600E}	4.3	no	yes	yes	no	4.5	NED	NED
35	19.2	М	Sporadic	cPTC	BRAF ^{V600E}	0.7	no	no	yes	no	9.9	NED	NED
36	19.2	М	Sporadic	cPTC	BRAF ^{V600E}	2.5	no	no	yes	no	17.9	NED	NED
37	19.5	F	Sporadic	cPTC	BRAF ^{V600E}	NA	NA	NA	NA	no	37.3	Recur	BCD
38	19.5	F	Sporadic	cPTC	BRAF ^{V600E}	2.6	no	yes	no	no	19.8	Recur	BCD
39	19.7	F	Sporadic	cPTC	BRAF ^{V600E}	0.7	yes	no	yes	no	7	NED	NED
40	19.8	F	Sporadic	cPTC	BRAF ^{V600E}	1.4	yes	yes	yes	no	14.4	NED	NED
41	19.8	F	Sporadic	NA	BRAF ^{V600E}	0.8	no	yes	yes	no	10.3	NED	NED

ETE, extrathyroidal extension; LN, lymph node; meta, metastasis; FU, follow-up; cPTC, classic variant PTC; FVPTC, follicular variant PTC; DSV-PTC, diffuse sclerosing variant PTC; NED, no evidence disease; BCD, biochemical disease; and SD, structural disease.

	Adult F	TC patients	Fus	ion (TRK, RET,	or Al	LK)		$BRAF^{V600E}$				
	(Total	125 cases in SNUH)	ped	iatric vs. adult p	atient	S		pedia	tric vs. adult pat	ients		
	No.	Total patients	Ν	Adult	Ν	Pediatric	p-value	Ν	Adult	Ν	Pediatric	р-
	evalu	(n = 125)		(n = 12)		(n = 31)			(n = 68)		(n=41)	value
	ated											
Age (yrs)	125	47.0 ± 12.9	12	40.6 ± 15.7	29	11.1 ± 4.2	< 0.001	68	46.9 ± 12.1	41	16.3 ± 2.3	< 0.00
												1
Females, n (%)	125	91 (72.8)	12	10 (83.3)	29	25 (80.6)	1.000	68	50 (73.5)	41	35 (85.4)	0.163
Thyroidectomy (total	125	114/11 (91.2/8.8)	12	12/0 (100/0)	29	30/1	1.000	68	65/3	41	38/3	0.670
thyroidectomy/ lobectomy)						(96.8/3.2)			(95.6/4.4)		(92.7/7.3)	
LN dissection, total, n (%)	125	9/116 (7.2/92.8)	12	12 (100)	31	28 (90.3)	0.548	68	67 (98.5)	41	33 (82.5)	0.004
Lateral LN dissection, n (%)	125	19 (15.2)	12	5 (41.7)	31	22 (71.0)	0.092	68	11 (16.2)	40	11 (29.7)	0.133
Radioiodine therapy, n (%)	125	69 (55.2)	12	10 (83.3)	31	27 (87.1)	1.000	68	37 (54.4)	40	23 (57.5)	0.842
PTC subtype (classic variant/	125	77/0/48	12	8/0/4	31	16/13/2	0.634	68	55/0/13	39	35/0/4	0.281
diffuse sclerosing variant/ other		(61.6/0/38.4)		(66.7/0/33.3)		(51.6/41.9/			(80.9/0/19.1)		(89.7/0/10.3)	
subtypes), n (%)						6.5)						
Size (cm)	124	1.5 ± 1.0	12	1.8 ± 0.9	31	2.8 ± 1.5	0.055	67	1.2 ± 0.5	38	1.4 ± 1.0	0.232
Size > 2cm, n (%)	124	26 (21)	12	5 (41.7)	31	20 (64.5)	0.301	67	7 (10.4)	38	10 (26.3)	0.052
Multifocality, n (%)	125	34 (27.2)	12	4 (33.3)	31	14 (45.2)	0.731	68	20 (29.4)	40	13 (32.5)	0.829
Extrathyroidal extension, n (%)	125	59 (47.2)	12	6 (50.0)	31	26 (86.7)	0.020	68	43 (63.2)	38	23 (60.5)	0.836
No/ minimal/ gross, n (%)	125	66/42/17	12	6/5/1	31	4/17/9	0.014	68	25/31/12	38	15/17/6	0.752
		(52.8/33.6/13.6)		(50.0/41.7/8.		(13.3/56.7/			(36.8/45.6/1		(39.5/44.7/1	
				3)		30.0)			7.6)		5.8)	
LN metastasis, n (%)	125	59 (47.2)	12	9 (75.0)	31	29 (93.5)	0.123	68	23 (33.8)	38	26 (68.4)	0.001
Lateral LN metastasis, n (%)	125	15 (12.0)	12	6 (50.0)	31	11 (35.5)	0.492	68	8 (11.8)	35	6 (17.1)	0.546
Distant metastasis, n (%)	125	3 (2.4)	12	1 (8.3)	31	13 (41.9)	0.067	68	1 (1.5)	40	1 (2.5)	1.000
Follow-up years, median	125	7.4 (0.1-13.3)	12	6.3 (1.2-	31	4.8 (0.9-	0.443	68	8.0 (0.1-	41	8.0 (0.6-	0.070
(range)				13.2)		34.3)			13.3)		37.3)	
Disease outcome at any event	112	100/9/3	12	12/0/0	29	6/6/17	< 0.001	60	50/8/2	37	27/4/6	0.108

Supplemental Table 6. Comparison between pediatric and adult patients at SNUH harboring a fusion oncogene (TRK, RET, or ALK) and BRAF^{V600E}

(NED/ BCD/ SD), n (%)		(89.3/8.0/2.7)		(100/0/0)		(20.7/20.7/			(83.3/13.3/3.		(73.0/10.8/1	
						58.6)			3)		6.2)	
Disease outcome at last follow-	112	100/9/3	12	12/0/0	29	8/6/15	< 0.001	60	50/8/2	37	29/7/1	0.607
up (NED/ BCD/ SD), n (%)		(89.3/8.0/2.7)		(100/0/0)		(27.6/20.7/			(83.3/13.3/3.		(78.4/18.9/2.	
						51.7)			3)		7)	

Data are expressed as means \pm standard deviation (means \pm SD) or number (%).

LN, lymph node; NED, no evidence disease; BCD, biochemical disease; and SD, structural disease.

	Adult PTC	patients	Fus	ion (TRK, RET,	or AL	.K)		$BRAF^{V600E}$				
	(Total 485	cases in TCGA	ped	iatric vs. adult pa	atient	S		pedia	atric vs. adult pation	ents		
	database)											
	No. of	Total patients	Ν	Adult	Ν	Pediatric	p-	Ν	Adult	Ν	Pediatric	p-
	evaluated	(n = 485)		(n = 42)		(n = 31)	value		(n = 241)		(n=41)	value
Age (yrs)	485	47.8 ± 15.3	42	38.8 ± 13.5	31	11.1 ± 4.2	< 0.001	241	48.0 ± 15.3	41	16.3 ± 2.3	< 0.001
Females, n (%)	485	355 (73.2)	42	32 (76.2)	31	25 (80.6)	0.778	241	172 (71.4)	41	35 (85.4)	0.084
Radioiodine therapy, n (%)	325	182 (56.0)	27	12 (44.4)	31	27 (87.1)	0.001	164	88 (53.7)	40	23 (57.5)	0.725
PTC subtype (classic variant	485	344/4/137	42	37/1/4	31	16/13/2	0.026	241	194/1/46	39	35/0/4	0.173
/ diffuse sclerosing variant /		(70.9/0.8/28.2)		(69.8/2.4/9.5)		(51.6/41.9/6.5)			(80.5/0.4/19.1)		(89.7/0/10.3)	
other subtypes), n (%)												
Size (cm)	485	2.8 ± 1.6	42	2.7 ± 1.3	31	2.8 ± 1.5	0.830	241	2.8 ± 1.7	38	1.4 ± 1.0	< 0.001
Size > 2cm, n (%)	484	326 (67.2)	42	28 (66.7)	31	20 (64.5)	1.000	241	156 (64.7)	38	10 (26.3)	< 0.001
Multifocality, n (%)	484	222 (45.9)	41	16 (39.0)	31	14 (45.2)	0.636	241	111 (46.1)	40	13 (32.5)	0.124
Extrathyroidal extension, n	485	148 (30.5)	42	10 (23.8)	30	26 (86.7)	< 0.001	241	94 (39.0)	38	23 (60.5)	0.014
(%)												
Lymph node metastasis, n	439	217 (49.4)	41	28 (68.3)	31	29 (93.5)	0.010	221	118 (53.4)	38	26 (68.4)	0.111
(%)												
Distant metastasis, n (%)	280	7 (2.5)	25	0 (0)	31	13 (41.9)	< 0.001	150	4 (2.7)	40	1 (2.5)	1.000
Follow-up years, median	485	2.6 (0.1-14.8)	42	2.7 (0.1-9.7)	31	4.8 (0.9-34.3)	0.006	241	2.9 (0-14.9)	41	8.0 (0.6-	< 0.001
(range)											37.3)	
Outcome (disease free/	471	43 (9.1)	41	40/1	29	12/17	< 0.001	233	26 (11.2)	37	6 (16.2)	0.410
recurred or progressed), n				(97.6/2.4)		(41.4/58.6)						
(%)												

Supplemental Table 7. Comparison between pediatric and adult patients in the TCGA database harboring a fusion oncogene (TRK, RET, or ALK) and BRAF^{V600E}

Data are expressed as means \pm standard deviation (means \pm SD) or number (%).

Suj	plemental	Table 8	Nucleotide se	quences of p	orimers
-----	-----------	---------	---------------	--------------	---------

For direct sequencing		
Gene	Forward	Reverse
TERT promoter	CCCTTCACCTTCCAGCTC	CAGCGCTGCCTGAAACTC
NRAS 12/13	TACTGTACATGTGGCTCGCC	CCGACAAGTGAGAGACAGGA
NRAS 61	CCAGATAGGCAGAAATGGGC	CCTTCGCCTGTCCTCATGT
HRAS 12/13	CAGTCCTTGCTGCCTGGC	CTCCCTGGTACCTCTCATGC
HRAS 61	GCATGAGAGGTACCAGGGAG	TGATGGCAAACACACAGG
KRAS 12/13	AAGCGTCGATGGAGGATTT	TGTATCAAAGAATGGTCCTGCA
KRAS 61	CGTCATCTTTGGAGCAGGAA	ACTCCACTGCTCTAATCCCC
BRAF 15	GCTTGCTCTGATAGGAAAATGAG	GATACTCAGC AGCATCTCAGG
DICER1 12	CCTAAATGCAGAACCCGAGA	TGACACATTTTAAAAGATAACAATCA
DICER1 16	TCTTCGGCTTGAAAAACCTG	TCCAAAGTGCTGGAGTCATT
DICER1 20	CTTTTGTGTGTGCGCTTTGT	CTGCAGTCAAAAGGCAGTGA
DICER1 21	GCTGCACATCAAGGTGCTAA	CCATTGGCGAGATTTTGATT
DICER1 23	GCTATGTTTCCCCTCCTTCC	CATAGTCAGCCTCTTCCTTCG
DICER1 24	ACTTCGGATCCCCTCAGATT	CGATGCAAAGATGGTGTTGT
DICER1 25	TGGACTGCCTGTAAAAGTGG	ACACCTGCCAGACTGTCTCC
For RT-PCR		
Fusion gene	Forward	Reverse
SLC5A5 (NIS)	CTGCCCCACTCCAGTACATGCC	TGACGGTGAAGGAACCCTGAAG
NTRK1	GGTGGAGAAGAAGGACGAAA	TTGTTGAGCACAAGGAGCAG
GAPDH	CAGCCTCAAGATCATCAGCA	TGTGGTCATGAGTCCTTCCA
cDNA cloning		
TPR-NTRK1	TAAAAGCTTATGACTCAAGATTTGAGAGGAGCA	AAACTCGAGTTGCAGCCGGGCGTGCACATCCTT

PCR sequencing was performed with the BigDye Terminator 3.1 cycle sequencing ready reaction kit (Applied Biosystems, Foster City, Calif) and the ABI-Prism 3130xl genetic analyzer (Applied Biosystems).

ABL1	AKT1	AKT2	AKT3	ALK	APC	AR	ARAF	ARIDIA	ATM
ATR	AURKA	AURKB	AURKC	AXL	BAP1	BARD1*	BCL2	BRAF	BRCA1
CDK6	CDKNIA	CDKN1B	CDKN2A	CDKN2B	CHEK1	CHEK2	CREBBP	CSF1R	CTNNB1
DDR1	DDR2	DICER1	DPYD	EGFR	EIF1AX	EMSY	EP300	EPCAM	ERBB2
ERBB3	ERBB4	ERCC2	ERG	ESR1	ETV1	EWSR1	EZH2	FAM175A	FANCA
FANCC	FANCD2	FANCG	FANCI	FANCL	FANCM	FBXW7	FGF19	FGF23	FGFR1
FGFR2	FGFR3	FGFR4	FOXA1	GNAQ	GNAS	GNB2L1	HDAC1	HRAS	IDH1
IDH2	IGF1R	IGF2	IGFBP3	INPP4B	IRF1	JAK1	JAK2	JAK3	JUN
KDM5C	KDM6A	KDR	KEAP1	KIT	KMT2D	KRAS	LATS1	LATS2	MAP2K1
MAP2K2	MAP2K4	MAP3K1	MAP3K4	MAPK1	MAPK8	MCL1	MDM2	MET	MLH1
MRE11A	MSH2	MSH6	MTOR	MUTYH	МҮС	MYCN	NF1	NF2	NFE2L2
NOTCH1	NOTCH2	NOTCH3	NOTCH4	NRAS	NRG1	NTRK1	NTRK2	NTRK3	NUTM1
PAK2	PALB2	PARP1	PARP2	PBRM1	PDGFB	PDGFRA	PDGFRB	РІКЗСА	PMS2
POLD1	POLE	POLQ	PPARG	PPP2R2A	PRKCB	PTEN	RAD21	RAD50	RAD51
RAD51B	RAD51C	RAD51D	RAD54L	RB1	RelA	RET	RHEB	RICTOR	RIT1
RNF43	ROS1	RPTOR	SDHB	SETD2	SMAD4	SMARCA4	SMARCB1	SOX2	SPOP
SQSTM1	SRC	<i>SS18</i>	STAT1	STAT6	STK11	SUMO1	SYK	TERT	TFE3
TOP2A	<i>TP53</i>	<i>TP63</i>	TSC1	TSC2	TSHR	UGTIA1	VHL	XRCC2	ZBTB16

Supplemental Table 9. Target gene lists of SNUH FIRST cancer panel (version 3)

Supplemental References

- 1. Lee YA, Jung HW, Kim HY, Choi H, Kim HY, Hah JH, et al. Pediatric patients with multifocal papillary thyroid cancer have higher recurrence rates than adult patients: a retrospective analysis of a large pediatric thyroid cancer cohort over 33 years. *J Clin Endocrinol Metab.* 2015;100(4):1619-29.
- 2. Jeon MJ, Kim YN, Sung TY, Hong SJ, Cho YY, Kim TY, et al. Practical Initial Risk Stratification Based on Lymph Node Metastases in Pediatric and Adolescent Differentiated Thyroid Cancer. *Thyroid*. 2018;28(2):193-200.
- 3. Xing M, Alzahrani AS, Carson KA, Viola D, Elisei R, Bendlova B, et al. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. *JAMA*. 2013;309(14):1493-501.
- 4. Yoo S-K, Song YS, Lee EK, Hwang J, Kim HH, Jung G, et al. Integrative analysis of genomic and transcriptomic characteristics associated with progression of aggressive thyroid cancer. *Nature Communications*. 2019;10(1):2764.
- 5. Li H, and Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. *Bioinformatics*. 2010;26(5):589-95.
- 6. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. *Bioinformatics*. 2013;29(1):15-21.
- 7. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. *Bioinformatics*. 2009;25(16):2078-9.
- 8. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing nextgeneration DNA sequencing data. *Genome Res.* 2010;20(9):1297-303.
- 9. Wang K, Li M, and Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. *Nucleic Acids Res.* 2010;38(16):e164.
- 10. Costello M, Pugh TJ, Fennell TJ, Stewart C, Lichtenstein L, Meldrim JC, et al. Discovery and characterization of artifactual mutations in deep coverage targeted capture sequencing data due to oxidative DNA damage during sample preparation. *Nucleic Acids Res.* 2013;41(6):e67.
- 11. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24-6.
- 12. Lee SE, Hwang TS, Choi YL, Kim WY, Han HS, Lim SD, et al. Molecular Profiling of Papillary Thyroid Carcinoma in Korea with a High Prevalence of BRAF(V600E) Mutation. *Thyroid*. 2017;27(6):802-10.
- Dugay F, Llamas-Gutierrez F, Gournay M, Medane S, Mazet F, Chiforeanu DC, et al. Clinicopathological characteristics of ROS1- and RET-rearranged NSCLC in caucasian patients: Data from a cohort of 713 non-squamous NSCLC lacking KRAS/EGFR/HER2/BRAF/PIK3CA/ALK alterations. *Oncotarget*. 2017;8(32):53336-51.
- 14. Kim MJ, Won JK, Jung KC, Kim JH, Cho SW, Park DJ, et al. Clinical Characteristics of Subtypes of Follicular Variant Papillary Thyroid Carcinoma. *Thyroid*. 2018;28(3):311-8.
- 15. Park G, Kim TH, Lee HO, Lim JA, Won JK, Min HS, et al. Standard immunohistochemistry efficiently screens for anaplastic lymphoma kinase rearrangements in differentiated thyroid cancer. *Endocr Relat Cancer*. 2015;22(1):55-63.
- 16. Yoo SK, Lee S, Kim SJ, Jee HG, Kim BA, Cho H, et al. Comprehensive Analysis of the Transcriptional and Mutational Landscape of Follicular and Papillary Thyroid Cancers. *PLoS Genet*. 2016;12(8):e1006239.
- 17. Cancer Genome Atlas Research N. Integrated genomic characterization of papillary thyroid carcinoma. *Cell*. 2014;159(3):676-90.
- 18. Xing M, Alzahrani AS, Carson KA, Shong YK, Kim TY, Viola D, et al. Association between BRAF V600E mutation and recurrence of papillary thyroid cancer. J

Clin Oncol. 2015;33(1):42-50.

- 19. Bahk J, and Khang YH. Trends in childhood obesity and central adiposity between 1998-2001 and 2010-2012 according to household income and urbanity in Korea. *BMC public health*. 2016;16:18.
- 20. Yi KH. The Revised 2016 Korean Thyroid Association Guidelines for Thyroid Nodules and Cancers: Differences from the 2015 American Thyroid Association Guidelines. *Endocrinology and metabolism.* 2016;31(3):373-8.
- 21. Francis GL, Waguespack SG, Bauer AJ, Angelos P, Benvenga S, Cerutti JM, et al. Management Guidelines for Children with Thyroid Nodules and Differentiated Thyroid Cancer. *Thyroid*. 2015;25(7):716-59.
- 22. Park S, Jeon MJ, Song E, Oh HS, Kim M, Kwon H, et al. Clinical Features of Early and Late Postoperative Hypothyroidism After Lobectomy. *J Clin Endocrinol Metab.* 2017;102(4):1317-24.
- 23. Lee DY, Seok J, Jeong WJ, and Ahn SH. Prediction of thyroid hormone supplementation after thyroid lobectomy. *The Journal of surgical research*. 2015;193(1):273-8.
- 24. Choi H, Lim JA, Ahn HY, Cho SW, Lee KE, Kim KW, et al. Secular trends in the prognostic factors for papillary thyroid cancer. *European journal of endocrinology*. 2014;171(5):667-75.
- 25. Hoffman K, Lorenzo A, Butt CM, Hammel SC, Henderson BB, Roman SA, et al. Exposure to flame retardant chemicals and occurrence and severity of papillary thyroid cancer: A case-control study. *Environment international*. 2017;107:235-42.
- 26. Rabes HM, Demidchik EP, Sidorow JD, Lengfelder E, Beimfohr C, Hoelzel D, et al. Pattern of radiation-induced RET and NTRK1 rearrangements in 191 postchernobyl papillary thyroid carcinomas: biological, phenotypic, and clinical implications. *Clin Cancer Res.* 2000;6(3):1093-103.
- 27. Jung KW, Won YJ, Kong HJ, and Lee ES. Cancer Statistics in Korea: Incidence, Mortality, Survival, and Prevalence in 2016. *Cancer Res Treat.* 2019;51(2):417-30.
- 28. Kim J, Gosnell JE, and Roman SA. Geographic influences in the global rise of thyroid cancer. Nat Rev Endocrinol. 2020;16(1):17-29.
- 29. Lima J, Trovisco V, Soares P, Maximo V, Magalhaes J, Salvatore G, et al. BRAF mutations are not a major event in post-Chernobyl childhood thyroid carcinomas. *J Clin Endocrinol Metab.* 2004;89(9):4267-71.
- 30. Kumagai A, Namba H, Saenko VA, Ashizawa K, Ohtsuru A, Ito M, et al. Low frequency of BRAFT1796A mutations in childhood thyroid carcinomas. *J Clin Endocrinol Metab.* 2004;89(9):4280-4.
- 31. Penko K, Livezey J, Fenton C, Patel A, Nicholson D, Flora M, et al. BRAF mutations are uncommon in papillary thyroid cancer of young patients. *Thyroid*. 2005;15(4):320-5.
- 32. Rosenbaum E, Hosler G, Zahurak M, Cohen Y, Sidransky D, and Westra WH. Mutational activation of BRAF is not a major event in sporadic childhood papillary thyroid carcinoma. *Mod Pathol.* 2005;18(7):898-902.
- 33. Espadinha C, Santos JR, Sobrinho LG, and Bugalho MJ. Expression of iodine metabolism genes in human thyroid tissues: evidence for age and BRAFV600E mutation dependency. *Clin Endocrinol (Oxf)*. 2009;70(4):629-35.
- 34. Sassolas G, Hafdi-Nejjari Z, Ferraro A, Decaussin-Petrucci M, Rousset B, Borson-Chazot F, et al. Oncogenic alterations in papillary thyroid cancers of young patients. *Thyroid*. 2012;22(1):17-26.

- 35. Ricarte-Filho JC, Li S, Garcia-Rendueles ME, Montero-Conde C, Voza F, Knauf JA, et al. Identification of kinase fusion oncogenes in post-Chernobyl radiationinduced thyroid cancers. *J Clin Invest*. 2013;123(11):4935-44.
- 36. Givens DJ, Buchmann LO, Agarwal AM, Grimmer JF, and Hunt JP. BRAF V600E does not predict aggressive features of pediatric papillary thyroid carcinoma. *Laryngoscope*. 2014;124(9):E389-93.
- 37. Henke LE, Perkins SM, Pfeifer JD, Ma C, Chen Y, DeWees T, et al. BRAF V600E mutational status in pediatric thyroid cancer. *Pediatr Blood Cancer*. 2014;61(7):1168-72.
- 38. Ballester LY, Sarabia SF, Sayeed H, Patel N, Baalwa J, Athanassaki I, et al. Integrating Molecular Testing in the Diagnosis and Management of Children with Thyroid Lesions. *Pediatr Dev Pathol.* 2016;19(2):94-100.
- 39. Picarsic JL, Buryk MA, Ozolek J, Ranganathan S, Monaco SE, Simons JP, et al. Molecular Characterization of Sporadic Pediatric Thyroid Carcinoma with the DNA/RNA ThyroSeq v2 Next-Generation Sequencing Assay. *Pediatr Dev Pathol.* 2016;19(2):115-22.
- 40. Mitsutake N, Fukushima T, Matsuse M, Rogounovitch T, Saenko V, Uchino S, et al. BRAF(V600E) mutation is highly prevalent in thyroid carcinomas in the young population in Fukushima: a different oncogenic profile from Chernobyl. *Sci Rep.* 2015;5:16976.
- 41. Nikita ME, Jiang W, Cheng SM, Hantash FM, McPhaul MJ, Newbury RO, et al. Mutational Analysis in Pediatric Thyroid Cancer and Correlations with Age, Ethnicity, and Clinical Presentation. *Thyroid*. 2016;26(2):227-34.
- 42. Alzahrani AS, Qasem E, Murugan AK, Al-Hindi HN, AlKhafaji D, Almohanna M, et al. Uncommon TERT Promoter Mutations in Pediatric Thyroid Cancer. *Thyroid*. 2016;26(2):235-41.
- 43. Prasad ML, Vyas M, Horne MJ, Virk RK, Morotti R, Liu Z, et al. NTRK fusion oncogenes in pediatric papillary thyroid carcinoma in northeast United States. *Cancer.* 2016;122(7):1097-107.
- 44. Gertz RJ, Nikiforov Y, Rehrauer W, McDaniel L, and Lloyd RV. Mutation in BRAF and Other Members of the MAPK Pathway in Papillary Thyroid Carcinoma in the Pediatric Population. *Arch Pathol Lab Med.* 2016;140(2):134-9.
- 45. Onder S, Ozturk Sari S, Yegen G, Sormaz IC, Yilmaz I, Poyrazoglu S, et al. Classic Architecture with Multicentricity and Local Recurrence, and Absence of TERT Promoter Mutations are Correlates of BRAF (V600E) Harboring Pediatric Papillary Thyroid Carcinomas. *Endocr Pathol.* 2016;27(2):153-61.
- 46. Cordioli MI, Moraes L, Carvalheira G, Sisdelli L, Alves MT, Delcelo R, et al. AGK-BRAF gene fusion is a recurrent event in sporadic pediatric thyroid carcinoma. *Cancer Med.* 2016;5(7):1535-41.
- 47. Alzahrani AS, Murugan AK, Qasem E, Alswailem M, Al-Hindi H, and Shi Y. Single Point Mutations in Pediatric Differentiated Thyroid Cancer. *Thyroid*. 2017;27(2):189-96.
- 48. Cordioli MI, Moraes L, Bastos AU, Besson P, Alves MT, Delcelo R, et al. Fusion Oncogenes Are the Main Genetic Events Found in Sporadic Papillary Thyroid Carcinomas from Children. *Thyroid*. 2017;27(2):182-8.
- 49. Oishi N, Kondo T, Nakazawa T, Mochizuki K, Inoue T, Kasai K, et al. Frequent BRAF (V600E) and Absence of TERT Promoter Mutations Characterize Sporadic Pediatric Papillary Thyroid Carcinomas in Japan. *Endocr Pathol.* 2017;28(2):103-11.
- 50. Hardee S, Prasad ML, Hui P, Dinauer CA, and Morotti RA. Pathologic Characteristics, Natural History, and Prognostic Implications of BRAF(V600E) Mutation in Pediatric Papillary Thyroid Carcinoma. *Pediatr Dev Pathol.* 2017;20(3):206-12.

- 51. Mostoufi-Moab S, Labourier E, Sullivan L, LiVolsi V, Li Y, Xiao R, et al. Molecular Testing for Oncogenic Gene Alterations in Pediatric Thyroid Lesions. *Thyroid*. 2018;28(1):60-7.
- 52. Wasserman JD, Sabbaghian N, Fahiminiya S, Chami R, Mete O, Acker M, et al. DICER1 Mutations Are Frequent in Adolescent-Onset Papillary Thyroid Carcinoma. *J Clin Endocrinol Metab.* 2018;103(5):2009-15.
- 53. Pozdeyev N, Gay LM, Sokol ES, Hartmaier R, Deaver KE, Davis S, et al. Genetic Analysis of 779 Advanced Differentiated and Anaplastic Thyroid Cancers. *Clin Cancer Res.* 2018;24(13):3059-68.
- 54. Huang M, Yan C, Wei H, Lv Y, and Ling R. Clinicopathological characteristics and prognosis of thyroid cancer in northwest China: A population-based retrospective study of 2490 patients. *Thorac Cancer*. 2018;9(11):1453-60.
- 55. Sisdelli L, Cordioli M, Vaisman F, Moraes L, Colozza-Gama GA, Alves PAG, Jr., et al. AGK-BRAF is associated with distant metastasis and younger age in pediatric papillary thyroid carcinoma. *Pediatr Blood Cancer*. 2019;66(7):e27707.
- 56. Pekova B, Sykorova V, Dvorakova S, Vaclavikova E, Moravcova J, Katra R, et al. RET, NTRK, ALK, BRAF and MET fusions in a large cohort of pediatric papillary thyroid carcinomas. *Thyroid*. 2020.