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Supplementary information 

 

Supplementary Figure 

 

Supplementary Figure 1. Illustration of different types of the local background used for 

SnapHiC loop calling. For each 10Kb bin pair of interest (red), its horizontal background, 

vertical background, lower left background and donut background are the blue, green, yellow 

and grey areas, respectively. The circle background, which is also the local neighborhood, is the 

union of the blue, green, yellow and grey areas. 

 

Supplementary Figure 2. Performance of SnapHiC with different parameter 

configurations on 742 mES cells. The number of identified loops (a), precision (b), recall (c) 

and F1 score (d).  
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Supplementary Figure 3. Comparison of the performance of SnapHiC with default 

parameter and P>15% on different numbers of mES cells. Line plots showing the number of 

identified loops (a), precision (b), recall (c) and F1 score (d) on different number of mES cells 

(N=10, 25, 50, 75, 100, 200, 300, 400, 500, 600, 700 and 742).  
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Supplementary Figure 4. The relationship between the number of cells and the running 

time of SnapHiC analysis. We tested the running time of SnapHiC on scHi-C data from 25, 50, 

100, 200, 300 and 400 mES cells (10Kb resolution, searching for loops between 100Kb and 

1Mb 1D genomic distance). SnapHiC consists of two steps: (1) applying the random walk with 

restart (RWR) algorithm to impute contact probability within every single cell, and (2) integrating 

imputed contact probability matrices from all single cells to identify chromatin loops. The running 

time of each step and the sum of both steps against the number of cells is plotted.  

 

Supplementary note  

Optimization of HiCCUPS parameters for loop calling from aggregated single cell Hi-C 

(scHi-C) data 

As recommended in Rao et al. 2014 study1, The default parameter of HiCCUPS running at 10Kb 

resolution is “-f .1 -p 2 -i 5 -t 0.02,1.5,1.75,2 -d 20000”. Since the default parameters are tuned 

using deeply sequenced bulk Hi-C data with over billions of raw reads, applying HiCCUPS with 

default parameter finds very few loops on the aggregated scHi-C, resulting in low recall and low 

F1 score (Fig. 1b, 1c).  

 

To improve the performance of HiCCUPS on sparse data, we examined how changes of each 

parameter may affect the number of loops identified from the aggregated scHi-C data of the 742 

mES cells. Specifically, the following parameters are considered:  
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1) The window width used for finding enriched pixels (-i) from 1 to 4;  

2) Peak width used for finding enriched pixels (-p) from 3 to 15;  

3) Threshold allowed for the sum of FDR values of the horizontal, vertical, donut, and bottom left 

filters (1st value in -t) from 0.02 to 0.4;  

4) The threshold ratios for three types of local background (2nd to 4th values in -t) of “1.5,1.75,2” 

and “1.2,1.33,1.33”.  

 

Notably, we did not change the default false discovery rate threshold 10% (-f), since FDR<10% 

is already lenient and has been widely used; we also did not change the default distance 20Kb 

(-d) to merge nearby pixels, since SnapHiC also applied the same 20Kb distance for merging. 

We only made change to one parameter each time for test, and kept the other parameters as 

default values. 

 

We found that for most parameters mentioned above, applying HiCCUPS with more lenient 

thresholds results in more loops with a higher F1 score compared to the default parameters 

(Extended Data Fig. 1). The only exception is the threshold ratios for three types of local 

background: using “1.2,1.33,1.33” instead of the default “1.5,1.75,2” identified only ~1% more 

loops. To maximize the number of identified loops on aggregated scHi-C data, we chose the 

most lenient thresholds of each parameter and termed such combination as the “optimal” 

parameter (“-f .1 -p 4 -i 15 -t 0.4,1.5,1.75,2 -d 20000”) for comparison with SnapHiC.  

 

Comparison of SnapHiC with additional computation tools designed for bulk Hi-C to 

identify chromatin interactions 

In addition to HiCCUPS which identifies chromatin loops based on the local background model, 

many methods have been developed to identify significant chromatin interactions based on the 

global background model. Therefore, we selected three representative methods, FastHiC2, 

FitHiC23 and HiC-ACT4, and compared them with SnapHiC. FastHiC is a hidden Markov 

random field (HMRF) based Bayesian method which can explicitly model the spatial 

dependency of chromatin interactions among adjacent bin pairs. FastHiC used posterior 

probability to determine the statistical significance of chromatin interactions. FitHiC2, the latest 

reimplementation of Fit-Hi-C5, first fitted a non-parametric spline to estimate the 1D genomic 

distance effect of Hi-C contact frequency, and then used p-value from Binomial distribution and 

the corresponding false discovery rate (FDR) to determinate the statistical significance of 

chromatin interactions. HiC-ACT is an aggregated Cauchy test (ACT)-based approach to 
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improve the accuracy of chromatin interactions by post-processing the results from other 

methods. HiC-ACT used the local neighborhood smoothed p-value to determine the statistical 

significance of chromatin interactions. 

 

These three methods were selected because: (1) FastHiC has the best performance with down-

sampled bulk Hi-C data as shown in Li et al. study6; (2) Based on the results from previous 

review paper that compare the performance of different computational methods for Hi-C data7, 

Fit-Hi-C performs well in interaction identification and it is also one of the most used methods; 

FitHiC2 is its improved version; (3) HiC-ACT is a recently developed method to identify 

significant chromatin interactions from bulk Hi-C data and it has been shown to achieve 

improved sensitivity with controlled type I error.   

 

It is notable that, unlike HiCCUPS or SnapHiC, these three methods use the global background 

model and treat nearby significant chromatin interactions as independent units. Therefore, to 

make a fair comparison between the results from these three methods and those from SnapHiC 

and HiCCUPS, we only selected summits from their default output for our analysis (see details 

in Methods). Since these methods are designed for bulk Hi-C and their default significance 

thresholds may not be optimized for single cell Hi-C data, we also tested different significance 

thresholds for each method.  

 

Justification of threshold values used in the SnapHiC 

The current default parameters recommended in SnapHiC were optimized using mES cells, 

because it has a rich set of deeply sequenced Hi-C, PLAC-seq and HiChIP datasets8-11, 

allowing us to empirically evaluate the performance of SnapHiC with different parameters. When 

we optimized SnapHiC, the goal is to achieve an overall high F1 score across different cell 

numbers, especially when the cell number is low. In addition, we also aim to have a minimum 

precision of ~65%, considering the reproducibility of HiCCUPS loops between deeply 

sequenced biological replicates is about this level (Fig. 3B in Rao et al. 2014 study1). 

 

Below is a list of key threshold values that affect the performance of SnapHiC, and the 

alternative values. To demonstrate the effect of each parameter, we only made change to one 

parameter each time, and kept the other parameters as the default values.  
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(1) Paired T-test statistics. The default is T>3. We evaluated four alternatives: T>1, T>2, T>4 

and T>5. 

(2) Proportion of outlie cells (i.e., cells with Z-score>1.96). The default is P>10%. We evaluated 

four alternatives: P>5%, P>15%, P>20% and P>25%. 

(3) Fold change enrichment over five types of local background models. 

Default:  Circle>1.33, Donut>1.33, lower left>1.33, horizontal>1.2, vertical>1.2 

We evaluated two alternatives with more stringent threshold values: 

FC1:   Circle>1.38, Donut>1.38, lower left>1.38, horizontal>1.25, vertical>1.25 

FC2:   Circle>1.43, Donut>1.43, lower left>1.43, horizontal>1.3, vertical>1.3 

(4) Merging nearby loop candidates into loop clusters. The default gap in merging is 10Kb. We 

evaluated two alternatives: gap = 20Kb and gap = 30Kb. 

 

Supplementary Fig. 2 shows the number of loops, precision, recall and F1 score for each 

parameter configuration on 742 mES cells. The default SnapHiC parameters achieved a good 

balance between precision and recall with the highest F1 score. If more conservative loops are 

preferred, users may change the proportion of outlier cells from >10% to >15%. From test 

results on different number of mES cells, such change yields a lower F1 score but increased 

precision (Supplementary Fig. 3). 

 

Evaluation of systematic biases for contact probability imputed by the RWR algorithm 

We further evaluated whether the contact probability imputed by the RWR algorithm in each 

single cell contains systematic biases, including effective fragment size, GC content and 

mappability, which are known systematic biases in bulk Hi-C data12. Specifically, for each of the 

742 mES scHi-C profiles, we used the RWR algorithm to impute the contact probability between 

all intra-chromosomal 10Kb bin pairs (𝑖, 𝑗) within 1Mb at 1D genomic distance, denoted as 𝑥𝑖𝑗. 

Let 𝐹𝑖 , 𝐺𝐶𝑖  and 𝑀𝑖  represent the effective fragment size, GC content and mappability of the 

10Kb bin 𝑖, which are calculated according to our previous work12. We define 𝑓𝑖𝑗 = 𝐹𝑖 ∗ 𝐹𝑗, 𝑔𝑐𝑖𝑗 =

𝐺𝐶𝑖 ∗ 𝐺𝐶𝑗 , and 𝑚𝑖𝑗 = 𝑀𝑖 ∗ 𝑀𝑗 , as the measure of three types of bias for each 10Kb bin pair. We 

then calculated the Pearson Correlation Coefficient between the contact probability 𝑥𝑖𝑗 and 𝑓𝑖𝑗, 

𝑔𝑐𝑖𝑗 and 𝑚𝑖𝑗 , respectively, for each of the 19 autosomal chromosomes in one cell. Next, we 

used the average Pearson Correlation Coefficient (aPCC) across all chromosomes as the 

measurement of bias in each cell. Among all 742 cells, the mean of aPCC is 0.0110, 0.0085 and 

-0.0016 for effective fragment size, GC content and mappability, respectively. The standard 

deviation of aPCC is 0.0068, 0.0113 and 0.0029 for effective fragment size, GC content and 
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mappability, respectively. These results suggest that the systematic biases in imputed contact 

probabilities in scHi-C data are negligible, thus normalization against effective fragment size, 

GC content or mappability is not needed. 

 

Computational cost (memory, time) of SnapHiC 

To assess the relationship between the number of cells and running time, we tested the running 

time of SnapHiC on 25, 50, 100, 200, 300 and 400 mES cells (10Kb resolution, searching for 

loops between 100Kb to 1Mb) and found its running time increases linearly with the increase of 

cell number (Supplementary Fig. 4). 

 

As described in our GitHub website (https://github.com/HuMingLab/SnapHiC), SnapHiC 

consists of two steps: (1) applying the random walk with restart (RWR) algorithm to impute 

contact probability within each single cell, and (2) integrating imputed contact probability 

matrices from all single cells to identify significant chromatin loops. Since the RWR algorithm 

can be applied to each chromosome in each single cell in parallel, in step 1, using as many 

processors as possible (e.g., maximal N = # of cells * # of chromosomes) can speed up the 

computation. Resolution and chromosome size are two important factors to determine the 

required memory per processor in step 1. For human or mouse genome at 10Kb resolution, we 

recommend allocating at least 30GB of memory for each processor. In the benchmarking 

experiments shown in Supplementary Fig. 4, we used 45 processors (15 nodes, 3 processors 

per node) for step 1, where each node has 96GB of memory, and it takes around 2.4 hours to 

process 100 cells.   

 

In step 2, since the computation is performed jointly for all cells and separately for each 

chromosome, we recommend using the same number of processors as the number of 

chromosomes. Using more processors than that will be a waste of computing resources. It is 

also important to ensure that each processor has access to sufficient memory for the 

computation over all cells, and the amount of memory needed is correlated with the range of 1D 

genomic distance, the bin resolution, and to a less extent to the number of cells. Increasing the 

number of cells, slightly adds to the memory usage, however, since we only load the indices in 

the matrix that are used in each step of the computation, this increase in memory usage is 

sublinear in regard to the increase in the number of cells. In the benchmarking experiments 

shown in Supplementary Fig. 4, we used 20 processors (5 nodes, 4 processors per node) for 

https://github.com/HuMingLab/SnapHiC
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step 2, where each node has 96GB of memory, and it takes around 0.7 hours to process 100 

cells in step 2.    

 

The performance of SnapHiC beyond 1Mb at 1D genomic distance or at a different 

resolution  

When we extended the maximal 1D genomic distance from 1Mb to 2Mb for loop calling on scHi-

C data from 742 mES cells, only 4.6% SnapHiC-identified loops (758 out of 16,654) are 

between 1Mb and 2Mb. Therefore, we restricted our loop calling from 100Kb to 1Mb for all the 

datasets mentioned in this study. In practice, we also suggest using 1Mb as the maximal 1D 

genomic distance for loop calling to save computational cost.  

 

We also tested the performance of SnapHiC of calling chromatin loops at 20Kb resolution on 

742 mES cells. At 20Kb resolution, SnapHiC identified 17,078 loops, with 63.8% precision, 35.9% 

recall and F1-score of 0.460. These results are comparable with those from the default 10Kb 

resolution (15,896 loops with 65.5% precision, 27.8% recall and F1-score of 0.391). In addition, 

8,280 out of 17,078 (48.5%) 20Kb loops overlapped with 10Kb loops. Given the robust 

performance of SnapHiC at both 10Kb and 20Kb resolutions, the SnapHiC pipeline allows users 

to choose from two different bin sizes (10Kb and 20Kb) with 10Kb as the default 

(https://github.com/HuMingLab/SnapHiC/tree/master/ext).  

 

Use of single cell 3D structures to identify chromatin loops. 

Recent studies13-15 have shown that computational methods can predict full 3D genome 

structures in every single cell, providing another promising way to identify chromatin loops. 

Without relying on the random walk with restart imputation, one may use the 3D coordinates of 

each genomic locus in the predicted 3D model to calculate the Euclidean distance between any 

loci pairs, and define loci pairs with close spatial proximity as chromatin loops. However, 

besides the requirement of sufficient unique contacts per cell, haplotype information is also 

needed for 3D modeling based on previous studies13-15, which is usually hard, if not impossible, 

to obtain. Moreover, it is still not clear exactly how the 3D model information should be used to 

infer high-resolution chromatin loops, an aspect that needs further exploration in the future. 

 

Use of other scHi-C preprocessing methods 

When our manuscript was under revision, three scHi-C data preprocessing methods, Higashi16, 

BandNorm and 3DVI17, were posted in bioRxiv. Although these methods achieved promising 
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results for mapping large-scale chromatin organization features, such as the identification of A/B 

compartments and TAD-like structures at 50Kb resolution, their performance on normalization 

and imputation of scHi-C data at 10Kb resolution has not been fully evaluated. In addition, 

Higashi, BandNorm and 3DVI are still under active development, and may have major updates 

in the near future. Therefore, in this study, we only used the RWR18 algorithm to impute the 

contact probability at 10Kb bin resolution within each cell. Considering the rapid advances in the 

scHi-C data preprocessing methods, SnapHiC can also take the imputed contact matrices 

generated by methods other than the RWR algorithm as input. Future studies are needed to 

benchmark the performance of different scHi-C preprocessing methods, and evaluate their 

impacts on loop detection.   
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