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1 Model for dependence5

To include dependence between the the Test-It Leptospira and Leptocheck WB tests we6

include an interaction within a log-linear model. We describe the model for M = 2 classes.7

∗E-mail: matthew.schofield@otago.ac.nz.
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In particular, we assume that the definition of q = (q1, . . . , qS) becomes8

qk =
2∑

c=1

πcp
∗
ck, k = 1, . . . , S.

The term p∗ck is defined by a multinomial logit model, where we treat the Sth combination9

of test results (0 . . . 0) as the reference,10

log

(
p∗ck
p∗cS

)
=

T∑
j=1

αcjxkj + γcxk3xk4, c = 1, 2, k = 1, . . . , S − 1.

The terms γ1 and γ2 describe the dependence between tests 3 and 4 (Test-It Leptospira and11

Leptocheck WB). The sensitivities and specificities are shown in Figure 1. The posterior12

median for π1, the prevalence of disease, was 0.11.13
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Figure 1: The vertical lines represent the central 90% credible intervals for sensitivity (black)
and specificity (grey) for each of the four tests for the Tanzania data using the latent class
model, allowing for dependence between Test-It Leptospira and Leptocheck WB. The hori-
zontal line represents the median of the posterior distribution.
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2 Pairwise posterior predictive checks14

To assess lack-of-fit with respect to undiagnosed dependence we compare the observed pair-15

wise counts to their posterior predictive distribution. Pairwise counts are defined as the16

number of patients that tested positive any given pair of tests. This approach is in the17

spirit of Qu et al. (1996) who define a correlation residual between any given pair of tests.18

The observed pairwise counts appear to be consistent to their respective posterior predictive19

distributions (Figure 2).20
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Figure 2: Posterior predictive distributions for the pairwise counts. Pairwise counts are
defined as the number of patients that tested positive for both tests specified in the title of
the plot. The vertical blue line gives the observed pairwise counts.

3 Label switching21

To account for label switching, we use the algorithm of Stephens (2000) as implemented22

in the R package label.switching (Papastamoulis 2016). This algorithm is run after the23
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MCMC sampling is complete and assigns labels in order to minimize KL-divergence.24

For the motivating data, we implement the algorithm on the full 30 000 draw from the25

posterior (three chains of 10 000 draws).26

For the simulations, we thin the posterior samples. This increases the speed of the label27

switching algorithm and allows the simulation to be run in a reasonable time.28

4 Additional simulation29

A further simulation was performed at different parameter values (Table 1). They reflect30

a situation where all four tests have sensitivities ranging 0.50 to 0.90 for state 1. The31

sensitivities (state 2) range from 0.88 to 0.99. If an individual is in state 3, the probability of32

a positive test ranges from 0.20 to 0.6. The parameters used for the two-state and three-state33

model lead to similar expected counts (Table 2).34

As with the simulation in the manuscript, we generate 1000 data sets under each the35

following four scenarios:36

1. True model has two-states; sample size is N = 225.37

2. True model has two-states; sample size is N = 1000.38

3. True model has three-states; sample size is N = 225.39

4. True model has three-states; sample size is N = 1000.40

We follow the same process for fitting and summarizing the simulation results as in the41

manuscript. In particular, we find (i) the bias of the point estimates (Figure 3 and Table 3);42

(ii) the coverage of the interval estimates (Table 3); and (iii) the proportion of models that43

were assessed as ill-fitting (Table 4).44
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Parameter M = 2 M = 3
p11 0.63 0.80
p21 0.57 0.56
p31 0.40 0.50
p41 0.72 0.90
p12 0.01 0.01
p22 0.06 0.02
p32 0.05 0.05
p42 0.12 0.12
p13 – 0.23
p23 – 0.60
p33 – 0.20
p43 – 0.30
π1 0.14 0.08
π2 0.86 0.80
π3 – 0.12

Table 1: True parameter values for two-state (M = 2) simulation and the three-state (M = 3)
simulation. The first two classes represent the disease of interest and no disease, respectively.
The third class represents individuals with an alternate disease that triggers a response at
a rate higher than the ‘no disease’ state. The value pjc represents the probability of testing
positive for test j when in class c and πc is the probability of being in class c.
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Expected count
Test 1 Test 2 Test 3 Test 4 M = 2 M = 3

1 1 1 1 3.3 3.9
1 1 1 0 1.3 0.9
1 1 0 1 4.9 4.5
1 1 0 0 2.0 2.5
1 0 1 1 2.5 3.0
1 0 1 0 1.0 0.7
1 0 0 1 3.9 3.6
1 0 0 0 3.0 3.2
0 1 1 1 2.0 1.7
0 1 1 0 1.2 2.0
0 1 0 1 4.2 4.3
0 1 0 0 10.7 10.1
0 0 1 1 2.5 2.3
0 0 1 0 8.5 8.9
0 0 0 1 22.7 22.6
0 0 0 0 151.4 150.7

Table 2: The expected counts for the two true simulation models when N = 225. The
expected counts are similar between the two-state (M = 2) and three-state (M = 3) models.

The broad conclusions are the same as with the simulation in the manuscript. The45

estimates are close to unbiased and coverage near nominal when data are simulated and46

fitted under a two-state latent class model (Figure 3 and Table 3). In contrast, many of47

the parameters, including sensitivities, specificities and prevalence are biased with very low48

coverage when data are simulated under the three-state model where we assume disease49

corresponds to state 1 (Figure 3 and Table 3).50

We are unable to routinely identify the model misspecification with standard goodness-51

of-assessment approaches (Table 4), with nearly 90% of simulations showing no evidence of52

lack of fit when N = 225. That number is more than 70% when N = 1000.53

As in the manuscript, we again consider the alternative definition that disease is a com-54

bination of state 1 and state 3. The bias is non-negligible and the coverage rates are poor,55

particularly when N = 1000 (Figure 4 and Table 5).56
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Figure 3: The difference between the true sensitivity/specificity and estimated sensitiv-
ity/specificity in each of the 1000 simulations when the true model had two-states (M = 2)
and three-states (M = 3).
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M = 2 M = 3
Bias Coverage Bias Coverage

N = 225 N = 1000 N = 225 N = 1000 N = 225 N = 1000 N = 225 N = 1000
sens1 0.003 0.004 0.91 0.91 -0.147 -0.155 0.73 0.25
sens2 0.017 0.005 0.92 0.91 0.038 0.031 0.90 0.86
sens3 0.018 0.004 0.90 0.90 -0.066 -0.084 0.85 0.49
sens4 0.003 0.003 0.93 0.91 -0.177 -0.182 0.46 0.03
spec1 -0.009 -0.002 0.93 0.92 0.018 0.025 0.72 0.04
spec2 -0.005 -0.001 0.90 0.90 0.030 0.036 0.63 0.07
spec3 -0.005 -0.001 0.90 0.90 0.012 0.014 0.85 0.53
spec4 -0.005 -0.001 0.89 0.89 0.017 0.022 0.85 0.50
π1 -0.005 -0.002 0.92 0.90 0.054 0.059 0.49 0.02

Table 3: The bias and coverage of sensitivity and specificity for each of the four tests across
the various simulation strategies. The value of M denotes the number of states in the
true model. The labels sensi and speci represent the sensitivity and specificity of test i,
respectively. The posterior median was used for estimation and the coverage is based off a
90% central credible interval.

M N Pr(PB < 0.05) Pr(P ∗
B < 0.05)

2 225 0.01 0.05
2 1000 0.00 0.05
3 225 0.01 0.06
3 1000 0.08 0.28

Table 4: The probability of rejecting the Bayesian p-value (PB) as well as the calibrated
Bayesian p-value (P ∗

B) in the simulation. The true model is indexed based on the number of
latent states (M) and the sample size is given by N .
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Figure 4: The difference between the true sensitivity/specificity and estimated sensitiv-
ity/specificity of the 1000 simulations when the true model has three-states (M = 3). We
assess the sensitivity of the test to diagnose any disease (either state 1 or state 3).
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Bias Coverage
N = 225 N = 1000 N = 225 N = 1000

sens1 0.195 0.187 0.58 0.11
sens2 0.014 0.007 0.93 0.90
sens3 0.114 0.096 0.71 0.39
sens4 0.183 0.178 0.51 0.07
spec1 -0.010 -0.003 0.89 0.90
spec2 -0.045 -0.040 0.26 0.01
spec3 -0.008 -0.005 0.88 0.85
spec4 -0.006 -0.002 0.90 0.88
π1 -0.066 -0.061 0.50 0.10

Table 5: The bias and coverage of sensitivity and specificity when assessing the sensitivity
of the test to diagnose any disease (either state 1 or state 3) when the three state model is
true. The labels sensi and speci represent the sensitivity and specificity of test i, respectively.
The posterior median was used for estimation and the coverage is based off a 90% central
credible interval.
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