Supplementary Information

Supplementary Tables

Supplementary Table S1. The relationship between ZNF711 and clinical pathological

	ZNF711 expression				
Parameters	Number of cases	Low (n=84)	High (n=66)	P values	
Age (years)					
< 62	80	44	36	0.960	
≥ 62	70	40	30	0.809	
Histological type					
Serous	119	69	50		
Endometrioid	17	8	9	0.105	
Mucinous	3	3	0	0.165	
Undifferentiated	11	4	7		
FIGO stage					
I or II	53	16	37	-0.001	
III or IV	97	68	29	<0.001	
Histologic grade					
1	17	16	1		
2	13	4	9	< 0.001	
3	120	64	56		
SLC31A1 expression					
Low	81	64	17	-0.001	
High	69	20	49	<0.001	
Chemo-response status					
Chemosensitivity	58	26	32	0.042	
Chemoresistance	92	58	34		
Survival status					
Dead	107	73	34	< 0.001	
Alive	43	11	32	< 0.001	

characteristics in 150 patients with EOC.

Characteristics	Univariate analysis		Multivariate	Multivariate analysis		
	HR (95% CI)	P values	HR (95% CI)	P values		
Age (years)	1.067	0.726				
	(0.730-1.560)	0.730				
Histological type	0.956	0.699				
	(0.768-1.190)	0.088				
FIGO stage	1.575					
	(1.036 -2.393)	0.033				
Histologic grade	0.840	0.252				
	(0.624-1.132)	0.233				
SLC31A1	0.639	0.024				
expression	(0.434-0.942)					
Chemo-response	2.742	< 0.001	2.428	< 0.001		
status	(1.814-4.145)	< 0.001	(1.598-3.688)	< 0.001		
ZNF711	0.422	< 0.001	0.489	0.001		
expression	(0.280-0.635)		(0.323-0.740)	0.001		

Supplementary Table S2. Univariate and multivariate analysis of factors associated with

over-all survival in 150 EOC patients.

HR, hazard ratio; CI, confidence interval.

Supplementary Table S3. Primers and Oligonucleotides

Used for sub-cloning and plasmid construction:				
Primer used for FLAG tagged ZNF711				
ZNF711 -up	GccAGATCTgccATGGATTCAGGCGGTGGAAGTCTTG			
ZNF711 -dn	gccGAATTCgccTTACATAAGAGCCTCTTTGTGGTGC			
Primer used for ZNF7	11 shRNA			
pSuper Retro	GATCCCCAUUUUCUUUGGGAAAACGCUC			
ZNF711-RNAi#1-up	TTCAAGAGAUAAAAGAAACCCUUUUGCGAGTTTTTA			
pSuper Retro	AGCTTAAAAACUCGCAAAAGGGUUUCUUUUA			
ZNF711-RNAi#1-dn	TCTCTTGAAGAGCGUUUUCCCAAAGAAAAUGGG			
pSuper Retro	GATCCCCUAAAAUCUGCAGCAAUUUCUU			
ZNF711-RNAi#2-up	TTCAAGAGAAUUUUAGACGUCGUUAAAGAATTTTTA			
pSuper Retro	AGCTTAAAAAUUCUUUAACGACGUCUAAAAU			
ZNF711-RNAi#2-dn	TCTCTTGAAAAGAAAUUGCUGCAGAUUUUAGGG			
Primer used for SLC31	A1 promoter reporter construction			
P1-luc-up	GCCATGGACTACAAGGACGACGATGACAAGCCTCAGTAT			
	GTCTTTTACCATCAAA			
P1-luc-dn	AGTGCTAGCAAGCTTCATATCCTCCAGTCCCGAGCTCTTT			
	CTCCT			
P2-luc-up	GCCATGGACTACAAGGACGACGATGACAAGCGGGGTAG			
	GAAGGGAACAGAGTGGT			
P2-luc-dn	AGTGCTAGCAAGCTTCATATCCTCCAGTCCCGAGCTCTTT			
P3-luc-up	GCCATGGACTACAAGGACGACGATGACAAGGAACACCAT			
1	AAGCAGTCCCTGTCCG			
P3-luc-dn	AGTGCTAGCAAGCTTCATATCCTCCAGTCCCGAGCTCTTT			
	СТССТ			
P4-luc-up	GCCATGGACTACAAGGACGACGATGACAAGGCACCGGA			
	ATGTGGCAAGGGTCTCC			
P4-luc-dn	AGTGCTAGCAAGCTTCATATCCTCCAGTCCCGAGCTCTTT			
	СТССТ			
P5-luc-up	GCCATGGACTACAAGGACGACGATGACAAGCCTCAGTAT			
	GTCTTTTACCATCAAA			
P5-luc-dn	AGTGCTAGCAAGCTTCATATGAGGAAGGGTTTTGTCTCTT			
	TTAGT			
P6-luc-up	GCCATGGACTACAAGGACGACGATGACAAGCAAGCTGTC			
	CACTGGCACAACACAA			

P6-luc-dn	AGTGCTAGCAAGCTTCATATTGGAGGGCGTGGCTGAGAG		
	ATACCG		
Primer used for qPCR			
ZNF711-up	ATGGCCCATACCATGATTATGC		
ZNF711-dn	TCAGCTTCAAGTACCGCTTCA		
SLC31A1-up	GGGGATGAGCTATATGGACTCC		
SLC31A1-dn	TCACCAAACCGGAAAACAGTAG		
JHDM2A-up	GTGCTCACGCTCGGAGAAA		
JHDM2A -dn	GTGGGAAACAGCTCGAATGGT		
siRNA	·		
SLC31A1 si #1	UUUUUUCCAGGAAAAGUUGAG		
SLC31A1 si #2	AUUCUUAAAGCCAAAGUAGAA		
JHDM2A si #1	UUCUUUUCCUCCAAGAUUCCC		
JHDM2A si #2	UGUUCUACUAAAAAUGCUCUC		
EHMT2 si #1	GGCAUCUCAGGAGGAUGCCAAUGAA		
EHMT2 si #2	AAGAUUCUCAGAUUCAUCCCC		
MSP primers for SLC31A1 promoter			
Set1/Methylated-up	TAAGAGAGATGTCGGGTTTCG		
Set1/Methylated-dn	AAACCCTTACCACATTCCGATA		
Set1/Unmethylated-up	TAAGAGAGATGTTGGGTTTTGAA		
Set1/Unmethylated-dn	AAAAACCCTTACCACATTCCAATA		
Set2/Methylated-up	TTCGTTAAGAGAGATGTCGGG		
Set2/Methylated-dn	AACCCTTACCACATTCCGATA		
Set2/Unmethylated-up	TTTGTTAAGAGAGATGTTGGG		
Set2/Unmethylated-dn	AAAACCCTTACCACATTCCAATA		
Set3/Methylated-up	TTCGTTAAGAGAGATGTCGGG		
Set3/Methylated-dn	AAACCCTTACCACATTCCGATA		
Set3/Unmethylated-up	TTTGTTAAGAGAGATGTTGGG		
Set3/Unmethylated-dn	AAAACCCTTACCACATTCCAATA		

Supplementary Table S4. Potential trans-regulatory factors were enriched on the SLC31A1 promoter in HEY/ZNF711 cells

Protein	Gene name	Log2(Fold	-10lg(P)	#Peptides	#Unique
		change)			
ZNF711_HUMAN	zinc finger protein 711	2.573	77.18	59	50
JHDM2A_HUMAN	JmjC-domain-containing histone demethylase 2A	1.789	53.68	40	32
CTNNB1_HUMAN	Catenin beta-1	1.427	42.81	32	28
POLR2A_HUMAN	RNA polymerase II subunit A	1.423	56.70	52	47
TBP_HUMAN	TATA-box binding protein	1.392	61.76	30	27
ANM1_HUMAN	Protein arginine N-methyltransferase 1	1.384	47.74	8	6
FLVCR1_HUMAN	FLVCR heme transporter 1	1.302	26.47	9	6
CHTOP_HUMAN	chromatin target of PRMT1	1.255	55.51	8	6
KMT2B_HUMAN	lysine methyltransferase 2B	1.149	14.46	5	3
CTNA1_HUMAN	catenin (cadherin-associated protein), alpha 1	1.134	32.01	5	2
SMAD5_HUMAN	SMAD family member 5	1.131	21.12	4	1
IFRD2_HUMAN	interferon related developmental regulator 2	1.130	23.89	4	1
TIF1B_HUMAN	tripartite motif containing 28	1.090	32.70	3	1
RPL36_HUMAN	60S ribosomal protein L36	1.077	19.69	3	1
KDM1A_HUMAN	lysine demethylase 1A	1.071	12.21	2	1

Supplemental Figures and Figure Legends

Supplemental Fig. 1. ZNF711 was significantly downregulated in EOC cells and tissues.

(a) According to the gene expression profiling interactive analysis (GEPIA) dataset, ZNF711 expression was significantly suppressed in ovarian cancer tissues compared with the GTEx data. *P < 0.05 (Unpaired t test). (b) Analysis of overall survival of ovarian cancer from GEPIA database. (c) Kaplan-Meier analysis of overall survival of ovarian cancer patients from the Cancer Genome Atlas (TCGA) dataset. (d) The gene set enrichment analysis (GSEA) revealed that ZNF711 was inversely correlated with CDDP resistance. (e) The relative cell survival of indicated cells following CDDP treatment (5µM). Each bar shown in the figure represents the mean ± SD of three independent experiments. *P < 0.05 (one-way ANOVA with Bonferroni's correction). The cut-off used to define low and high tumors in Supplemental Fig.1b and c was auto selection of best cut-off.

Supplemental Fig.2. ZNF711 overexpression confers CDDP sensitivity in EOC cells *in vitro*. (a) Immunoblotting (IB) assays were performed to verify ZNF711 expression in the indicated stable HEY and SKOV3 cell lines. (b) The apoptotic percentage in indicated cells with higher doses of CDDP (10 μ M and 50 μ M, respectively). (c)An MTT cell viability assay (left) and half-maximal inhibitory concentration (IC₅₀) value of CDDP (right) in HEY and SKOV3 cells stably expressing ZNF711 compared to the cells expressing vector control. (d)

FACS analysis of Annexin V staining (left) and quantification (right) of indicated HEY and SKOV3 stable cell lines treated with vehicle or CDDP (5 μ M, 24 hrs). (e) Representative images (left) and quantification (right) of colony number of the indicated cells treated with vehicle or CDDP (5 μ M). (f) Immunoblotting (IB) assays were performed to verify ZNF711 expression in the indicated stable primary OV-1 and OV-2 cells. (g) An MTT cell viability assay (left) and half-maximal inhibitory concentration (IC₅₀) value of CDDP (right) in indicated cells. (h) Content of intercellular CDDP in the indicated OV-1 and OV-2 cells. (i) The quantification of DNA-bound CDDP (Pt) in the indicated OV-1 and OV-2 cells. Each bar shown in the figure represents the mean ± SD of three independent experiments. **P* < 0.05 (unpaired t-test or one-way ANOVA with Bonferroni's correction). **Supplemental Figure 3**

Supplemental Fig.3. PBS-treated xenograft tumor with atopic expression level of ZNF711 showed similar tumor growth kinetic. (a) Representative images of tumor-bearing nude mice were presented at the initial time of PBS treatment (upper) and six weeks after PBS treatment (lower) (left panel, n = 6/group). Relative changes in the bioluminescence signal of intraperitoneal tumors in nude mice upon PBS chemotherapy at the indicated time points (right panel). (b) Representative images of tumor-bearing nude mice formed by indicated cells (left) and relative changes in the bioluminescence signal of intraperitoneal tumors in the figure represents the mean \pm SD of three independent experiments.

Supplemental Figure 4

Supplemental Fig. 4. ZNF711 modulates CDDP resistance via regulating SLC31A1 expression. (a) The protein expression of SLC31A1 in indicated cells (upper) and the correlation between the protein expression of ZNF711 and SLC31A1 in indicated cells (lower). (b) The correlation between ZNF711 and SLC31A1 in GSEA and TCGA database. (c-d) The mRNA (b) and protein (c) expression of SLC31A1 in OV-1 and OV-2 cells with different expression levels of ZNF711. (e) An MTT cell viability assay (left) and half-maximal inhibitory concentration (IC₅₀) value of CDDP (right) in indicated cells. (f) The intracellular concentration of CDDP in indicated cells. (g) GSEA analysis revealed that the expression of SLC31A1 in EOC tissues was negatively correlated with CDDP resistance (P < 0.05). (h-i) Kaplan-Meier analysis of the overall and relapse-free survival in ovarian cancer patients (h) and ovarian cancer patients treated with platinum (i). Each bar shown in the figure represents the mean ± SD of three independent experiments. *P < 0.05 (one-way ANOVA with Bonferroni's correction).

Supplemental Fig. 5. ZNF711 regulates SLC31A1 promoter activity in EOC cells. (a) The Schematic diagram of ZNF711 binding site and the promoter regions of SLC31A. (b) The luciferase signal of the SLC31A1 promoter luciferase reporter in indicated OV-1 and OV-2 cells. Each bar shown in the figure represents the mean \pm SD of three independent experiments. **P* < 0.05 (one-way ANOVA with Bonferroni's correction).

Supplemental Figure 6

Supplementary Fig. 6. JHDM2A and SLC31A1 expression in the indicated cells. (a) Relative expression of SLC31A1 in the indicated siRNA-transfected cells treated with CDDP. (b) JHDM2A mRNA expression was suppressed in the indicated EOC cells. (c) The level of SLC31A1 mRNA expression in the indicated cells. (e-f) The mRNA expression of JHDM2A and SLC31A1 in the indicated cells. (g) The protein expression JHDM2A and SLC31A1 in the indicated cells. (g) The protein expression JHDM2A and SLC31A1 in the indicated cells. (h) Enrichment of H3K9me2 in SLC31A1 promoter in indicated cells. (i) Electrophoresis of PCR products spanning the SLC31A1 promoter from bisulfite-treated DNA. Each lane contains products generated from separate PCR reactions using three sets of primers, each of which contains two paires of primers specific for

methylated (M) or unmethylated (U) DNA template, respectively. The genomic DNA of OV-1 cells treatment with SssI Methyltransferase was used as positive control and water (H2O) was used as a negative control for PCR. (j). Increasing fold of SLC31A1 expression in EOC cell lines and primary tumor cells compared with normal ovarian cells with the treatment of 5-AZA versus vehicle control. Each bar shown in the figure represents the mean \pm SD of three independent experiments. **P* < 0.05 (one-way ANOVA with Bonferroni's correction).

Supplemental Figure 7

Supplemental Fig. 7. ZNF711 suppression promotes EHMT2 enrichment in the

SLC31A1 promoter. (**a**) EHMT2 enrichment in the SLC31A1 promoter was examined in the indicated cells. (**b and c**) The expression level of EHMT2 and SLC31A1 in the indicated cells. (**d**) H3K9me2 and Pol II enrichment in the SLC31A1 promoter in cells transfected with EHMT2 siRNA or the scramble. (**e**) IC50 value of CDDP in the indicated cells. (**f**) The

concentration of intracellular CDDP in the indicated cells. (**g-h**) The mRNA (g) and protein (h) expression of SLC31A1 in ZNF711-silenced OV-1 and OV-2 cells treated with BIX-01294 (5 μ M) and CDDP (5 μ M). (i) IC50 value of CDDP in the indicated cells. (**j**) The concentration of intracellular CDDP in indicated OV-1 and OV-2 cells. (**k**) Relative expression of SLC31A1 mRNA expression in TOV-112D and A2780 cells treated with BIX-01294 (5 μ M) and CDDP (5 μ M). (**l**) The apoptotic index of TOV-112D and A2780 cells treated with vehicle, CDDP, BIX-01294 (5 μ M) and BIX-01294 + CDDP (5 μ M), respectively. Each bar shown in the figure represents the mean \pm SD of three independent experiments. **P* < 0.05 (unpaired t-test or one-way ANOVA with Bonferroni's correction).

Supplemental Fig.8

Supplemental Fig. 8. Uncut gel for Figures and Supplemental Figures