Data supplement

Evaluating agreement between bodies of evidence from randomized controlled trials and cohort studies in nutrition research: a meta-epidemiological study

Lukas Schwingshackl¹, Sara Balduzzi², Jessica Beyerbach¹, Nils Bröckelmann¹, Sarah S Werner¹, Jasmin Zähringer¹, Blin Nagavci¹, Joerg J Meerpohl^{1,3}

¹ Institute for Evidence in Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.

² Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany.

³ Cochrane Germany, Cochrane Germany Foundation, Freiburg, Germany.

Corresponding author:

Lukas Schwingshackl, PhD Breisacher Straße 86, 79110 Freiburg, Germany M: schwingshackl@ifem.uni-freiburg.de

T: +49 (0)761 203-96867

ID	Search	Hits
#1	MeSH descriptor: [Diet, Carbohydrate-Restricted] explode all trees	385
#2	MeSH descriptor: [Healthy Diet] explode all trees	336
#3	MeSH descriptor: [Diet, Mediterranean] this term only	434
#4	MeSH descriptor: [Dietary Approaches To Stop Hypertension] explode all trees	15
#5	MeSH descriptor: [Micronutrients] explode all trees	4,992
#6	MeSH descriptor: [Dietary Supplements] explode all trees	11,620
	(mediterranean or dash diet or low-carb* or low-fat* or grain* or vegetable* or	
	fruit* or milk or dairy or meat or processed meat* or fish or eggs or nuts or	
#7	chocolate or oil*):ti,ab,kw	40,401
	(carbohydrate* or fructose or glucose or starch or sucrose or fibre or psyllium or	
	inulin or cellulose or prebiotic* or probiotic* or synbiotic* or n-3 or omega 3 or	
	omega-3 or n3 or n6 or n-6 or omega 6 or omega-6 or unsaturated or	
	monounsaturated or polyunsaturated or EPA or DHA or linoleic acid or protein or	
#8	amino acid*):ti,ab,kw	167,040
	(vitamin* or beta-carot* or ascorbic acid or cholecalciferol* or ergocalciferol or	
	thiamine or riboflavin or niacin or pyridoxine or cobalamin or folic acid or	
	magnesium or calcium or selenium or sodium or potassium or iron or zinc or copper	
#9	or iodine):ti,ab,kw	118,402
#10	#1 or #2 or #3 or #4 or #5 or #6 or #7 or #8 or #9	283,530
#11	(diet* or nutrition or eat* or consum* or intake):ti,ab,kw	163,651
#12	#10 and #11	83,677
	(mortal* or cancer or diabetes or dementia or macular degeneration or body weight	,
#13	or blood pressure or glucose or cholester*):ti,ab,kw	448,002
#14	#12 and #13	48,529
#15	Limit to "Cochrane Reviews" published between "2010 - 2019"	333

Supplementary Appendix 1: Search strategy for systematic reviews of randomized controlled trials in the Cochrane Database of Systematic Reviews.

ID	Search	Hits
#1	(non-randomised or non-randomized or nrs or observational* or cohort or prospective or longitudinal* or follow* or case-cohort or nested case-control or epidemio*).ti,ab,kf.	4,466,200
#2	(meta-analys* or metaanalys* or "systematic review" or systematic-review).ti,ab.	238,477
#3	(Systematic Review or Meta-Analysis).pt.	177,170
#4	#1 and (#2 or #3)	104,427
#5	Diet, Mediterranean/ or Diet, Carbohydrate-Restricted/ or Healthy Diet/ or Dietary Abbroach to Stop Hypertension/ or Micronutrients/ or Dietary Supplements/	65,391
#6	(mediterranean or dash diet or low-carb* or low-fat* or grain* or vegetable* or fruit* or milk or dairy or meat or processed meat* or fish or eggs or nuts or chocolate or oil*).ti,ab.	733,079
#7	 (carbohydrate* or fructose or glucose or starch or sucrose or fibre or psyllium or inulin or cellulose or prebiotic* or probiotic* or synbiotic* or n-3 or omega 3 or omega-3 or n3 or n6 or n-6 or omega 6 or omega-6 or unsaturated or monounsaturated or polyunsaturated or EPA or DHA or linoleic acid or protein or amino acid*).ti,ab. 	3,445,283
#8	(vitamin* or beta-carot* or ascorbic acid or cholecalciferol* or ergocalciferol or thiamine or riboflavin or niacin or pyridoxine or cobalamin or folic acid or magnesium or calcium or selenium or sodium or potassium or iron or zinc or copper or iodine).ti,ab.	1,391,454
#9	(diet* or nutrition or eat* or consum* or intake).ti,ab.	1,173,600
#10	(#5 or #6 or #7 or #8) and #9	502,160
#11	#4 and #10	3,809
#12	limit #11 to yr="2010 - 2019"	3,118

Supplementary A	ppendix 2: Search	strategy for systematic	tic reviews of cohor	t studies in Ovid MEDLINE.

	Patients/population	Intervention/Exposure	Comparator	Outcome
	Both bodies of evidence include primary or secondary prevention.	Both bodies of evidence use intake, supplements or status.	Both bodies of evidence use (no) intake, supplements/placebo or status.	Same outcome.
1 = more or less identical	e.g. people with cardiovascular disease in BoE from RCTs and CSs. e.g. Folate supplements in BoE from RCTs and BoE from CSs.		e.g. see Intervention/Exposure.	e.g. Cardiovascular disease in BoE from RCTs and BoE from CSs.
	Both bodies of evidence include primary and secondary prevention or mixed population vs. primary or secondary prevention.	 Intake vs. supplements. Enriched / modified foods vs. intake. Intake vs. urinary excretion. Intake + supplements vs. intake. Intake vs. intake on similar but not identical intervention /exposure Supplements vs. supplements on similar but not identical intervention /exposure 	see Intervention/Exposure.	Same cluster of outcomes.
2 = similar but not identical	e.g. healthy people and people with cardiovascular disease in RCTs vs. general healthy population in CSs.	 e.g. Vitamin C supplements vs. Vitamin C intake. Margarine enriched with α-Linolenic acid vs. α-Linolenic acid intake. Substituted salt intake (with 65% sodium) vs. sodium intake. Sodium intake vs. sodium intake and urinary sodium. Fruit and vegetables intake vs. fruit or vegetables intake. Low-fat intake vs. High-carbohydrate intake. Increased fruit and vegetable intake + decreased fat intake vs. flavonoids intake. Multi-micronutrient supplements vs. Multivitamin 	e.g. see Intervention/Exposure.	e.g. - Cardiovascular disease vs. coronary heart disease. - Mortality vs. incidence.

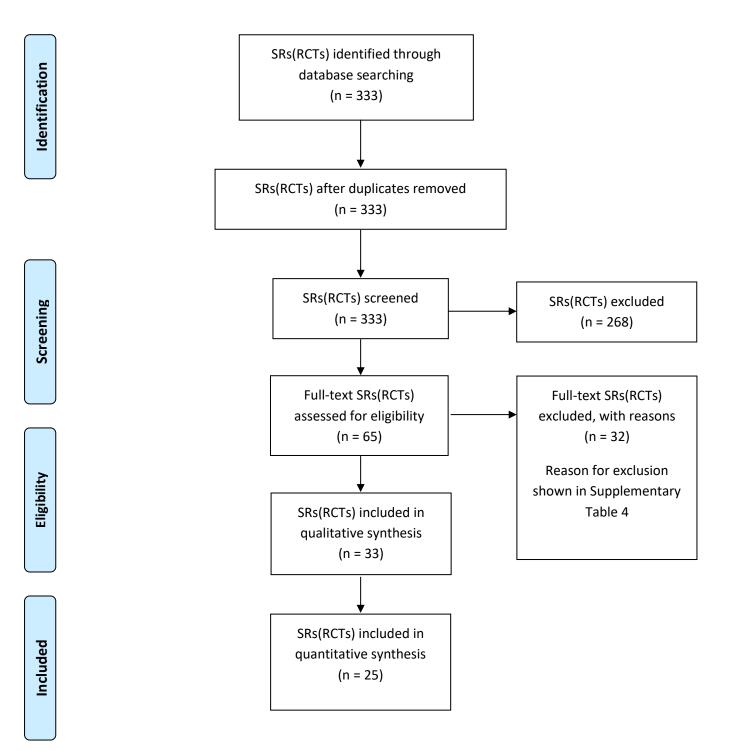
Supplementary Table 1: Explanation and definition for Population (P), Intervention/Exposure (I/E), Comparator (C), Outcome (O) similarities.

		supplements.		
3 = broadly similar	Secondary (BoE from RCTs) vs. primary prevention (BoE from CSs), which means no healthy population in the BoE from RCTs.	 Intake or supplements vs. status. Supplements vs. intake on broadly similar intervention/exposure. 	see Intervention/Exposure.	Broadly similar outcomes. Continuous vs. dichotomous outcome (see also supplementary table 4).
	e.g. people with cardiovascular disease in RCTs vs. general healthy population in CSs.	e.g. - Vitamin D supplements vs. Vitamin D status. - Vitamin A supplements vs. β-carotene intake	e.g. see Intervention/Exposure.	e.g. Colorectal adenoma vs. colorectal cancer.

BoE: bodies of evidence; CS: cohort study; RCT: randomized controlled trial.

Reference	Outcome	n (studies)	(Original	l	Wh	at we u	ised	Rationale
			HR	95%	o CI	RR	95%	6 CI	
Al-Khudairy et al. 2017 ¹	Major cardiovascular events	1	0.99	0.89	1.10	0.99	0.89	1.10	Number of randomised patients and patients with an
Al-Khudairy et al. 2017 ¹	Cardiovascular mortality	1	1.02	0.85	1.22	1.01	0.85	1.20	event, per arm, taken from p. 20, table 2, of Sesso et al. 2008^2 .
Al-Khudairy et al. 2017 ¹	All-cause mortality	1	1.07	0.97	1.18	1.06	0.97	1.16	ai. 2008 .
Rees et al. 2019 ³	Cardiovascular mortality	1	0.81	0.5	1.32	0.93	0.60	1.45	Number of randomised patients and patients with an
Rees et al. 2019 ³	Combined cardiovascular events	1	0.7	0.58	0.85	0.81	0.64	1.02	event, per arm, taken from p. $e34(8)$ table 3, of Estruch et al. 2018^4 .
Rees et al. 2019^3	All-cause mortality	1	1	0.81	1.24	1	0.81	1.25	Estruch et al. 2018.
			OR	95%	CI	RR	95% CI		
Hu et al. 2018 ⁵	Gestational diabetes	21	0.76	0.64	0.90	0.87	0.69	1.09	ACR = 0.130, median of the risks observed in the control groups of the RCTs included in Palacios et al. 2019 ⁶ (Gestational diabetes).
Tous et al. 2020 ⁷	Preterm birth	19	0.78	0.65	0.93	0.79	0.66	0.93	ACR = 0.058 , median of the risks observed in the control groups of the RCTs included in Palacios 2019^{6} (Preterm birth)
Yuan et al. 2019 ⁸	Pre-eclampsia	15	0.62	0.5	0.78	0.63	0.51	0.79	ACR = 0.044, median of the risks observed in the control groups of the RCTs included in Palacios et al. 2019 ⁶ (Pre-eclampsia).
Goodwill et al. 2017 ⁹	Dementia/MCI	14	0.88	0.81	0.95	0.88	0.81	0.95	ACR = 0.018, median of the risks observed in the control groups of the RCTs included in Rutjes et al. 2018^{10} (Dementia).
Chia et al. 2019 ¹¹	Preterm birth	5	0.81	0.69	0.94	0.81	0.69	0.94	ACR = 0.021, median of the risks observed in the control groups of the RCTs included in Tieu et al. 2017^{12} (Preterm birth).
Chia et al. 2019 ¹¹	Small gestational age	8	0.88	0.71	1.08	0.89	0.73	1.07	ACR = 0.077, median of the risks observed in the control groups of the RCTs included in Tieu et al. 2017^{12} (Small gestational age).
Mijatovic-Vukas et al. 2018 ¹³	Gestational diabetes	4	0.70	0.62	0.80	0.74	0.66	0.83	ACR = 0.164, median of the risks observed in the control groups of the RCTs included in Tieu et al. 2017^{12} (Gestational diabetes).
Vinceti et al. 2018 ¹⁴	Cancer	7	0.72	0.55	0.93	0.75	0.59	0.94	ACR = 0.151, median of the risks observed in the control groups of the RCTs included in Vinceti et al. 2018 (Any cancer).

Supplementary Table 2: Overview of transformations made to the original data extraction.


Vinceti et al. 2018 ¹⁴	Cancer mortality	1	0.93	0.83	1.04	0.93	0.84	1.04	ACR = 0.060, median of the risks observed in the control groups of the RCTs included in Vinceti et
									al. 2018 (Cancer mortality).
Vinceti et al. 2018 ¹⁴	Colorectal cancer	1	0.80	0.68	0.94	0.80	0.68	0.94	ACR = 0.008, median of the risks observed in the
									control groups of the RCTs included in Vinceti et
									al. 2018 (Colorectal cancer).
			MD	95%	CI	RR	95% CI		
Abdelhamid et al. 2018a ¹⁵	Body weight	12	-0.01	-0.84	0.82	1.03	0.83	1.29	The MD was standardised and the SMD re- expressed as an OR, by using the formula in paragraph 10.6 of the Cochrane Handbook. The OR was then transformed into a RR. ACR = 0.065, risk observed in the only one study considered in Schlesinger et al. 2019^{16} , Supplemental Table 13 (Schulz et al. 2002^{17}).

ACR: assumed control risk; HR: hazard ratio; RR: risk ratio; OR: odds ratio; MD: mean difference.

Reference pair	Intervention/Exposure	Outcome	Reason for exclusion
Abdelhamid et al. 2018a ¹⁵ +	Omega-3	Cardiovascular disease	Highly likely correlated with outcome
Chowdhury et al. 2014a ¹⁸			cardiovascular mortality
Abdelhamid et al. 2018a ¹⁵ +	α-Linolenic acid	Cardiovascular disease	Highly likely correlated with outcome
Pan et al. 2012 ¹⁹			cardiovascular mortality
Abdelhamid et al. 2018a ¹⁵ +	α-Linolenic acid	Coronary heart disease	Highly likely correlated with outcome
Wei et al. 2018 ²⁰			cardiovascular mortality
Abdelhamid et al. 2018b ²¹ +	Polyunsaturated fat	Major cardiovascular events	Highly likely correlated with outcome
Zhu et al. 2019 ²²			coronary heart disease
Adler et al. 2014 ²³ +	Low-sodium	Cardiovascular disease	Highly likely correlated with outcome
Aburto et al. 2013 ²⁴			cardiovascular mortality
Adler et al. 2014 ²³ +	Low-sodium	Diastolic blood pressure	Highly likely correlated with outcome
Leyvraz et al. 2018 ²⁵		L L	systolic blood pressure
Al-Khudairy et al. 2017 ¹ +	Vitamin C	Cardiovascular mortality	Highly likely correlated with outcome
Aune et al. 2018 ²⁶			major cardiovascular events
Avenell et al. 2014 ²⁷ +	Vitamin D	Any fracture	Highly likely correlated with outcome hip
Feng et al. 2017 ²⁸			fracture
Bjelakovic et al. 2014b ²⁹ +	Vitamin D3	Breast cancer	Highly likely correlated with outcome
Hossain et al. 2019 ³⁰			cancer
Bjelakovic et al. 2014b ²⁹ +	Vitamin D3	Lung cancer	Highly likely correlated with outcome
Zhang et al. 2015^{31}			cancer
Hofmeyr et al. 2018 ³² +	Calcium	High blood pressure	Highly likely correlated with outcome pre-
Newberry et al. 2014 ³³			eclampsia
Hooper et al. 2012 ³⁴ +	Low-fat/modified fat	Combined cardiovascular events	Highly likely correlated with outcome
Zhu et al. 2019 ²²			cardiovascular mortality
Hooper et al. 2015b ³⁵ +	Low saturated fat	Combined cardiovascular events	Highly likely correlated with outcome
de Souza et al. 2015 ³⁶			cardiovascular mortality
Hooper et al. 2018 ³⁷ +	Omega-6	Combined cardiovascular events	Highly likely correlated with outcome
Chowdhury et al. 2014a ¹⁸			cardiovascular mortality
Keats et al. 2019 ³⁸ +	Micronutrients	Low birth weight	Highly likely correlated with outcome
Wolf et al. 2017 ³⁹			preterm birth
Keats et al. 2019 ³⁸ +	Micronutrients	Small gestational age	Highly likely correlated with outcome
Wolf et al. 2017 ³⁹			preterm birth
Palacios et al. 2019 ⁶ +	Vitamin D	Birth weight	Highly likely correlated with outcome birth
Tous et al. 2020 ⁷		-	length
Palacios et al. 2019 ⁶ +	Vitamin D	Head circumference at birth	Highly likely correlated with outcome birth

Supplementary Table 3: Exclusion reasons of highly correlated outcome pairs from the meta-analysis.

Tous et al. 2020 ⁷			length
Rees et al. 2013a ⁴⁰ +	Healthy diet	Diastolic blood pressure	Highly likely correlated with outcome
Kastorini et al. 2011 ⁴¹			systolic blood pressure
Rees et al. $2013b^{42} +$	Selenium	Combined cardiovascular events	Highly likely correlated with outcome
Zhang et al. 2016a ⁴³			cardiovascular mortality
Rees et al. 2019 ³ +	Mediterranean diet	Triglycerides	Highly likely correlated with outcome high
Kastorini et al. 2011 ⁴¹			density lipoprotein
Rees et al. 2019 ³ +	Mediterranean diet	Systolic blood pressure	Highly likely correlated with outcome high
Kastorini et al. 2011 ⁴¹			density lipoprotein
Rees et al. 2019 ³ +	Mediterranean diet	Combined cardiovascular events	Highly likely correlated with outcome
Rosato et al. 2019 ⁴⁴			cardiovascular mortality
Tieu et al. 2017 ¹² +	Healthy diet	Preterm birth	Highly likely correlated with outcome
Chia et al. 2019 ¹¹			small gestational age
Vinceti et al. 2018 ¹⁴ +	Selenium	Cancer mortality	Highly likely correlated with outcome
Vinceti et al. 2018 ¹⁴ +			cancer
Vinceti et al. 2018 ¹⁴ +	Selenium	Colorectal cancer	Highly likely correlated with outcome
Vinceti et al. 2018 ¹⁴ +			cancer
Yao et al. 2017 ⁴⁵ +	Fibre	Colorectal adenoma	Highly likely correlated with outcome
Ben et al. 2014 ⁴⁶			colorectal cancer

Supplementary Figure 1: Flow diagram showing study selection process for eligible Cochrane Reviews. RCTs: randomized controlled trials; SR: systematic review.

Supplementary Figure 2: Flow diagram showing study selection process for systematic reviews (SRs) of cohort studies (CSs).

Supplementary Table 4: Reason for exclusion

Reference	Reason for exclusion								
Systematic re	Systematic reviews of randomized controlled trials								
47-60	Did not fulfil PICO inclusion criteria (see PICO criteria Table 1).								
61-78	No corresponding systematic review of cohort studies on dietary intake and or								
	biomarker of dietary intake was available.								
Systematic re	views of cohort studies								
79-82	Did not fulfil PECO inclusion criteria (see PECO criteria Table 1).								
83-89	More recent or appropriate systematic review of cohort studies available (e.g.								
	higher number of included studies, better matching PECO).								
90-114	No body of randomized controlled trials (Cochrane Reviews) available.								

PI/ECO: population, intervention/exposure, comparator, outcome.

Supplementary Table 5: Effect estimates of included bodies of evidence from randomized controlled trials and cohort studies.
--

Bodi	Bodies of evidence from randomized controlled trials (Cochrane Reviews)					Bodies of evidence from cohort studies						
Reference	Intervention and type of intake	Outcome (as defined by the authors)	Studies, n	Summary measure, and effect estimate (95% CI)	Reference	Exposure and type of intake/exposure	Comparison	Outcome (as defined by the authors)	Studies, n	Summary measure, and effect estimate (95% CI)	Overall PI/ECO similarity degree (1 = more or less identical) (2 = similar but not identical) (3 = broadly similar)	Included in the meta- analysis (Yes/ No)
Abdelhamid et al. 2018a ¹⁵	Omega-3 intake + supplements	Cardiovascular mortality	25	RR: 0.95 (0.87, 1.03)	Chowdhury et al. 2014a ¹⁸	Omega-3 intake	T3 vs. T1	Coronary heart disease mortality	NA	RR: 0.90 (0.70, 1.14)	3	Y
Abdelhamid et al. 2018a ¹⁵	Omega-3 intake + supplements	Cardiovascular disease	38	RR: 0.99 (0.94, 1.04)	Chowdhury et al. 2014a ¹⁸	Omega-3 intake	T3 vs. T1	Coronary heart disease	16	RR: 0.87 (0.78, 0.97)	2	Y
Abdelhamid et al. 2018a ¹⁵	α-Linolenic acid intake	Cardiovascular disease	5	RR: 0.95 (0.83, 1.07)	Pan et al. et al. 2012 ¹⁹	α-Linolenic acid intake	High vs. Low	Cardiovascular disease	11	RR: 0.93 (0.85, 1.03)	2	Y
Abdelhamid et al. 2018a ¹⁵	Omega-3 intake + supplements	Body weight (kg)	12	MD: -0.01 (-0.84, 0.82)	Schlesinger et al. 2019 ¹⁶	Fish intake	per 100 g/d increment	Weight gain	1	RR: 1.06 (0.83, 1.35)	3	Y
Abdelhamid et al. 2018a ¹⁵	Omega-3 intake + supplements	All-cause mortality	39	RR: 0.98 (0.93, 1.03)	Wan et al. 2017 ¹¹⁵	Omega-3 intake	High vs. Low	All-cause mortality	6	RR: 0.86 (0.80, 0.93)	2	Y
Abdelhamid et al. 2018a ¹⁵	α-Linolenic acid intake	Cardiovascular mortality	4	RR: 0.96 (0.74, 1.25)	Wei et al. 2018 ²⁰	α-Linolenic acid intake	High vs. Low	Coronary heart disease mortality	9	RR: 0.85 (0.75, 0.96)	2	Y
Abdelhamid et al. 2018a ¹⁵	α-Linolenic acid intake	Coronary heart disease	4	RR: 1.00 (0.82, 1.22)	Wei et al. 2018 ²⁰	α-Linolenic acid intake	High vs. Low	Coronary heart disease	13	RR: 0.91 (0.85, 0.97)	2	Y
Abdelhamid et al. 2018b ²¹	Polyunsaturated fat intake + supplements	All-cause mortality	24	RR: 0.98 (0.89, 1.07)	Li et al. 2020 ¹¹⁶	Linoleic acid intake	High vs. Low	All-cause mortality	11	RR: 0.87 (0.81, 0.94)	2	Y
Abdelhamid et al. 2018b ²¹	Polyunsaturated fat intake + supplements	Coronary heart disease	15	RR: 0.87 (0.72, 1.06)	Chowdhury et al. 2014a ¹⁸	Omega-6 intake	T3 vs. T1	Coronary heart disease	8	RR: 0.98 (0.90, 1.06)	2	Y
Abdelhamid et al. 2018b ²¹	Polyunsaturated fat intake	Major cardiovascular events	2	RR: 0.84 (0.59, 1.20)	Zhu et al. 2019 ²²	Polyunsaturated fat intake	High vs. Low	Cardiovascular disease	30	RR: 0.97 (0.93, 1.00)	2	Y
Adler et al. 2014 ²³	Low-sodium intake	All-cause mortality	7	RR: 0.96 (0.83, 1.10)	Aburto et al. 2013 ²⁴	Low-sodium intake	Low vs. High	All-cause mortality	2	RR: 0.95 (0.71, 1.27)	2	Y
Adler et al. 2014 ²³	Low-sodium intake	Cardiovascular mortality	3	RR: 0.67 (0.45, 1.01)	Aburto et al. 2013 ²⁴	Low-sodium intake	Low vs. High	Cardiovascular mortality	3	RR: 0.87 (0.64, 1.18)	2	Y
Adler et al. 2014 ²³	Low-sodium intake	Cardiovascular disease	4	RR: 0.76 (0.57, 1.01)	Aburto et al. 2013 ²⁴	Low-sodium intake	Low vs. High	Cardiovascular disease	3	RR: 0.87 (0.64, 1.18)	2	Y
Adler et al. 2014 ²³	Low-sodium intake	Systolic blood pressure (mmHg)	6	MD: -1.79 (-3.23, -0.36)	Leyvraz et al. 2018 ²⁵	Low-sodium intake + status	Low vs. High	Systolic blood pressure (mmHg)	1	MD: -1.20 (-1.50, -0.90)	3	Y
Adler et al. 2014 ²³	Low-sodium intake	Diastolic blood pressure (mmHg)	5	MD: -1.17 (-2.08, -0.26)	Leyvraz et al. 2018 ²⁵	Low-sodium intake + status	Low vs. High	Diastolic blood pressure (mmHg)	1	MD: 1.20 (1.00, 1.50)	3	Y

Al-Khudairy et al. 2017 ¹	Vitamin C supplements	Major cardiovascular events	1	HR: 0.99 (0.89, 1.10)	Aune et al. 2018 ²⁶	Vitamin C intake	High vs. Low	Cardiovascular disease	9	RR: 0.84 (0.77, 0.91)	2	Y
Al-Khudairy et al. 2017 ¹	Vitamin C supplements	Cardiovascular mortality	1	HR: 1.02 (0.85, 1.22)	Aune et al. 2018 ²⁶	Vitamin C intake	Per 100 mg/d increase	Cardiovascular mortality	9	RR: 0.88 (0.83, 0.94)	2	Y
Al-Khudairy et al. 2017 ¹	Vitamin C supplements	All-cause mortality	1	HR: 1.07 (0.97, 1.18)	Aune et al. 2018 ²⁶	Vitamin C intake	High vs. Low	All-cause mortality	16	RR: 0.86 (0.80, 0.92)	2	Y
Avenell et al. 2014 ²⁷	Vitamin D supplements	Hip fracture	10	RR: 1.12 (0.97, 1.30)	Feng et al. 2017 ²⁸	Vitamin D status	High vs. Low	Hip fracture	11	RR: 0.68 (0.60, 0.78)	3	Y
Avenell et al. 2014 ²⁷	Vitamin D supplements	Any fracture	14	RR: 1.04 (0.96, 1.12)	Feng et al. 2017 ²⁸	Vitamin D status	High vs. Low	Any fracture	11	RR: 0.80 (0.68, 0.94)	3	Y
Bjelakovic et al. 2012 ¹¹⁷	β-carotene supplements	All-cause mortality	31	RR: 1.02 (0.98, 1.07)	Aune et al. 2018 ²⁶	β-carotene intake	High vs. Low	All-cause mortality	8	RR: 0.82 (0.78, 0.87)	2	Y
Bjelakovic et al. 2012 ¹¹⁷	Vitamin E supplements	All-cause mortality	64	RR: 1.02 (0.99, 1.04)	Aune et al. 2018 ²⁶	Vitamin E intake	High vs. Low	All-cause mortality	9	RR: 0.98 (0.93, 1.04)	2	Y
Bjelakovic et al. 2012 ¹¹⁷	Vitamin C supplements	All-cause mortality	41	RR: 1.01 (0.97, 1.05)	Aune et al. 2018 ²⁶	Vitamin C intake	High vs . Low	All-cause mortality	16	RR: 0.86 (0.80, 0.92)	2	Y
Bjelakovic et al. 2012 ¹¹⁷	Vitamin A supplements	All-cause mortality	18	RR: 1.04 (0.96, 1.13)	Aune et al. 2018 ²⁶	β-carotene intake	High vs. Low	All-cause mortality	8	RR: 0.82 (0.78, 0.87)	3	Y
Bjelakovic et al. 2014a ¹¹⁸	Vitamin D supplements	All-cause mortality	56	RR: 0.97 (0.94, 0.99)	Chowdhury et al. 2014b ¹¹⁹	Vitamin D status	T3 vs. T1	All-cause mortality	68	RR: 0.69 (0.65, 0.75)	3	Y
Bjelakovic et al. 2014a ¹¹⁸	Vitamin D supplements	Cardiovascular mortality	10	RR: 0.98 (0.90, 1.07)	Chowdhury et al. 2014b ¹¹⁹	Vitamin D status	T3 vs. T1	Cardiovascular mortality	29	RR: 0.70 (0.61, 0.80)	3	Y
Bjelakovic et al. 2014a ¹¹⁸	Vitamin D supplements	Cancer mortality	4	RR: 0.88 (0.78, 0.98)	Han et al. 2019 ¹²⁰	Vitamin D status	High vs. Low	Cancer mortality	16	RR: 0.81 (0.71, 0.93)	3	Y
Bjelakovic et al. 2014b ²⁹	Vitamin D supplements	Cancer occurrence	18	RR: 1.00 (0.94, 1.06)	Han et al. 2019 ¹²⁰	Vitamin D status	High vs. Low	Cancer incidence	8	RR: 0.86 (0.73, 1.02)	3	Y
Bjelakovic et al. 2014b ²⁹	Vitamin D3 supplements	Breast cancer	7	RR: 0.97 (0.86, 1.09)	Hossain et al. 2019 ³⁰	Vitamin D supplements	Yes vs. No	Breast cancer	2	RR: 0.94 (0.87, 1.02)	2	Y
Bjelakovic et al. 2014b ²⁹	Vitamin D3 supplements	Lung cancer	5	RR: 0.86 (0.69, 1.07)	Zhang et al. 2015 ³¹	Vitamin D intake	High vs. Low	Lung cancer	3	RR: 0.89 (0.74, 1.06)	2	Y
Cormick et al. 2015 ¹²¹	Calcium supplements	Systolic blood pressure (mmHg)	16	MD: -1.43 (-2.15, -0.72)	Jayedi et al. 2019 ¹²²	Calcium intake + supplements	High vs. Low	Hypertension	8	RR: 0.89 (0.86, 0.93)	3	Ν
Cormick et al. 2015 ¹²¹	Calcium supplements	Diastolic blood pressure (mmHg)	15	MD: -0.98 (-1.46, -0.50)	Jayedi et al. 2019 ¹²²	Calcium intake + supplements	High vs. Low	Hypertension	8	RR: 0.89 (0.86, 0.93)	3	Ν
De-Regil et al. 2015 ¹²³	Folate supplements	Neural tube defect	5	RR: 0.31 (0.17, 0.58)	Blencowe et al. 2010 ¹²⁴	Folate supplements	Yes vs. No	Neural tube defect	3	RR: 0.37 (0.23, 0.58)	2	Y
De-Regil et al. 2015 ¹²³	Folate supplements	Congenital cardiovascular anomalies	3	RR: 0.57 (0.24, 1.33)	Feng et al. 2015 ¹²⁵	Folate supplements	Yes vs. No	Congenital heart defect	1	RR: 0.60 (0.38, 0.96)	2	Y
El Dib et al. 2015 ¹²⁶	Zinc supplements	HOMA-IR	1	MD: -0.10 (-1.28, 1.08)	Fernandez-Cao et al. 2019 ¹²⁷	Zinc supplements	Yes vs. No	Type 2 diabetes	2	RR: 0.94 (0.75, 1.19)	3	Ν
Hartley et al. 2013 ¹²⁸	Fruit & Vegetables intake	Systolic blood pressure (mmHg)	2	MD: -3.00 (-4.92, -1.09)	Schwingshackl et al. 2017 ¹²⁹	Fruit intake	High vs. Low	Hypertension	7	RR: 0.93 (0.87, 1.00)	3	Ν

Hartley et al. 2013 ¹²⁸	Fruit & Vegetables intake	Diastolic blood pressure (mmHg)	2	MD: -0.90 (-2.03, 0.24)	Schwingshackl et al. 2017 ¹²⁹	Vegetables intake	High vs. Low	Hypertension	8	RR: 0.96 (0.91, 1.01)	3	N
Hartley et al. 2016 ¹³⁰	Fibre intake + supplements	Systolic blood pressure (mmHg)	8	MD: -1.92 (-4.02, 0.19)	Schwingshackl et al. 2017 ¹²⁹	Whole grain intake	High vs. Low	Hypertension	4	RR: 0.86 (0.79, 0.93)	3	Ν
Hartley et al. 2016 ¹³⁰	Fibre intake +supplements	Diastolic blood pressure (mmHg)	8	MD: -1.77 (-2.61, -0.92)	Schwingshackl et al. 2017 ¹²⁹	Whole grain intake	High vs. Low	Hypertension	4	RR: 0.86 (0.79, 0.93)	3	Ν
Hemmingsen et al. 2017 ¹³¹	Healthy diet (intake)	Type 2 diabetes	1	RR: 0.65 (0.52, 0.81)	Schwingshackl et al. 2018 ¹³²	Diet quality (intake)	High vs. Low	Type 2 diabetes	10	RR: 0.82 (0.78, 0.85)	2	Y
Hemmingsen et al. 2017 ¹³¹	Healthy diet (intake)	All-cause mortality	1	RR: 1.02 (0.21, 4.98)	Schwingshackl et al. 2018 ¹³²	Diet quality (intake)	High vs. Low	All-cause mortality	13	RR: 0.78 (0.77, 0.80)	2	Y
Hofmeyr et al. 2018 ³²	Calcium supplements	Pre-eclampsia	13	RR: 0.45 (0.31, 0.65)	Newberry et al. 2014 ³³	Calcium intake	High vs. Low	Pre-eclampsia	2	RR: 0.97 (0.78, 1.21)	2	Y
Hofmeyr et al. 2018 ³²	Calcium supplements	High blood pressure	12	RR: 0.65 (0.53, 0.81)	Newberry et al. 2014 ³³	Calcium intake	High vs. Low	High blood pressure	2	RR: 1.12 (0.83, 1.50)	2	Y
Hooper et al. 2012 ³⁴	Low-fat / modified fat (intake + supplements)	Cardiovascular mortality	14	RR: 0.94 (0.85, 1.04)	Noto et al. 2013 ¹³³	High- carbohydrate intake	High vs. Low	Cardiovascular mortality	3	RR: 0.91 (0.81, 1.02)	2	Y
Hooper et al. 2012 ³⁴	Low-fat / modified fat (intake + supplements)	All-cause mortality	20	RR: 0.98 (0.93, 1.04)	Seidelmann et al. 2018 ¹³⁴	High- carbohydrate intake	High vs. Low	All-cause mortality	6	RR: 0.83 (0.76, 0.92)	2	Y
Hooper et al. 2012 ³⁴	Low-fat / modified fat (intake + supplements)	Combined cardiovascular events	18	RR: 0.86 (0.77, 0.96)	Zhu et al. 2019 ²²	Low-fat intake	Low vs. High	Cardiovascular disease	32	RR: 1.03 (0.99, 1.08)	2	Y
Hooper et al. 2012 ³⁴	Low-fat intake	Body weight (kg)	16	MD: -0.83 (-1.37, -0.30)	Sartorius et al. 2018 ¹³⁵	High- carbohydrate intake	High vs. Low	Obesity	2	RR: 1.06 (1.00, 1.12)	3	N
Hooper et al. 2015a ¹³⁶	Low-fat intake	Body weight (kg)	25	MD: -1.54 (-1.97, -1.12)	Sartorius et al. 2018 ¹³⁵	High- carbohydrate intake	High vs. Low	Obesity	2	RR: 1.06 (1.00, 1.12)	3	Ν
Hooper et al. 2015b ³⁵	Low saturated fat intake	All-cause mortality	11	RR: 0.97 (0.90, 1.05)	de Souza et al. 2015 ³⁶	Low saturated fat intake	Low vs. High	All-cause mortality	5	RR: 1.01 (0.92, 1.10)	2	Y
Hooper et al. 2015b ³⁵	Low saturated fat intake	Cardiovascular mortality	10	RR: 0.95 (0.80, 1.12)	de Souza et al. 2015 ³⁶	Low saturated fat intake	Low vs. High	Cardiovascular mortality	3	RR: 1.03 (0.89, 1.19)	2	Y
Hooper et al. 2015b ³⁵	Low saturated fat intake	Combined cardiovascular events	11	RR: 0.83 (0.72, 0.96)	de Souza et al. 2015 ³⁶	Low saturated fat intake	Low vs. High	Coronary heart disease	12	RR: 0.94 (0.85, 1.05)	2	Y
Hooper et al. 2018 ³⁷	Omega-6 intake + supplements	Combined cardiovascular events	7	RR: 0.97 (0.81, 1.15)	Chowdhury et al. 2014a ¹⁸	Omega-6 intake	High vs. Low	Coronary heart disease	8	RR: 0.98 (0.90, 1.06)	2	Y
Hooper et al. 2018 ³⁷	Omega-6 intake + supplements	All-cause mortality	10	RR: 1.00 (0.88, 1.12)	Li et al. 2020 ¹¹⁶	Linoleic acid intake	High vs. Low	All-cause mortality	11	RR: 0.87 (0.81, 0.94)	2	Y

Hooper et al. 2018 ³⁷	Omega-6 intake + supplements	Cardiovascular mortality	7	RR: 1.09 (0.76, 1.55)	Li et al. 2020 ¹¹⁶	Linoleic acid intake	High vs. Low	Cardiovascular mortality	14	RR: 0.87 (0.82, 0.92)	2	Y
Jin et al. 2012 ¹³⁷	Total flavonoids intake	Colorectal adenoma	1	RR: 1.09 (0.93, 1.28)	Jin et al. 2012 ¹³⁷	Total flavonoids intake	High vs. Low	Colorectal cancer	3	RR: 1.00 (0.80, 1.25)	3	Y
Jin et al. 2012 ¹³⁷	Isoflavonoes intake	Colorectal adenoma	1	RR: 0.98 (0.83, 1.16)	Jin et al. 2012 ¹³⁷	Isoflavonoes intake	High vs. Low	Colorectal cancer	1	RR: 1.16 (0.96, 1.41)	3	Y
Jin et al. 2012 ¹³⁷	Flavonols intake	Colorectal adenoma	1	RR: 0.94 (0.80, 1.10)	Jin et al. 2012 ¹³⁷	Flavonols intake	High vs. Low	Colorectal cancer	1	RR: 0.95 (0.83, 1.08)	3	Y
Keats et al. 2019 ³⁸	Micronutrients supplements	Preterm birth	18	RR: 0.95 (0.90, 1.01)	Wolf et al. 2017 ³⁹	Multivitamin supplements	Yes vs. No	Preterm birth	4	RR: 0.84 (0.69, 1.03)	2	Y
Keats et al. 2019 ³⁸	Micronutrients supplements	Low birth weight	18	RR: 0.88 (0.85, 0.91)	Wolf et al. 2017 ³⁹	Multivitamin supplements	Yes vs. No	Low birth weight	2	RR: 0.79 (0.45, 1.41)	2	Y
Keats et al. 2019 ³⁸	Micronutrients supplements	Small gestational age	17	RR: 0.92 (0.88, 0.97)	Wolf et al. 2017 ³⁹	Multivitamin supplements	Yes vs. No	Small gestational age	3	RR: 0.77 (0.63, 0.93)	2	Y
Kelly et al. 2017 ¹³⁸	Whole grain intake	Systolic blood pressure (mmHg)	8	MD: 0.04 (-1.67, 1.75)	Schwingshackl et al. 2017 ¹²⁹	Whole grain intake	High vs. Low	Hypertension	4	RR: 0.86 (0.79, 0.93)	3	N
Kelly et al. 2017 ¹³⁸	Whole grain intake	Diastolic blood pressure (mmHg)	8	MD: 0.16 (-0.89, 1.21)	Schwingshackl et al. 2017 ¹²⁹	Whole grain intake	High vs. Low	Hypertension	4	RR: 0.86 (0.79, 0.93)	3	N
Kelly et al. 2017 ¹³⁸	Whole grain intake	Body weight (kg)	5	MD: -0.41 (-1.04, 0.23)	Ye et al. 2012 ¹³⁹	Whole grain intake	High vs. Low	Body weight (kg)	3	MD: -0.30 (-0.37, -0.24)	2	Y
Mathew et al. 2012 ¹⁴⁰	β-carotene supplements	Cataract	2	RR: 0.99 (0.91, 1.08)	Jiang et al. 2019 ¹⁴¹	β-carotene intake	High vs. Low	Cataract	7	RR: 0.90 (0.83, 0.99)	2	Y
Mathew et al. 2012 ¹⁴⁰	Vitamin E supplements	Cataract	3	RR: 0.97 (0.91, 1.04)	Jiang et al. 2019 ¹⁴¹	Vitamin E intake	High vs. Low	Cataract	6	RR: 0.90 (0.80, 1.00)	2	Y
Mathew et al. 2012 ¹⁴⁰	Vitamin C supplements	Cataract	1	RR: 1.02 (0.91, 1.14)	Jiang et al. 2019 ¹⁴¹	Vitamin C intake	High vs. Low	Cataract	7	RR: 0.80 (0.72, 0.88)	2	Y
Palacios et al. 2019 ⁶	Vitamin D supplements	Gestational diabetes	5	RR: 0.54 (0.34, 0.86)	Hu et al. 2018 ⁵	Vitamin D status	High vs. Low	Gestational diabetes	21	OR: 0.76 (0.64, 0.90)	3	Y
Palacios et al. 2019 ⁶	Vitamin D supplements	Preterm birth	4	RR: 1.25 (0.92, 1.69)	Tous et al. 2020 ⁷	Vitamin D status	High vs. Low	Preterm birth	19	OR: 0.78 (0.65, 0.93)	3	Y
Palacios et al. 2019 ⁶	Vitamin D supplements	Birth length (cm)	11	MD: -0.04 (-0.26, 0.19)	Tous et al. 2020 ⁷	Vitamin D status	High vs. Low	Birth length (cm)	7	MD: -0.12 (-0.33, 0.09)	3	Y
Palacios et al. 2019 ⁶	Vitamin D supplements	Birth weight (g)	13	MD: 32.61 (-9.51, 74.72)	Tous et al. 2020 ⁷	Vitamin D status	High vs. Low	Birth weight (g)	14	MD: 84.20 (52.59, 115.81)	3	Y
Palacios et al. 2019 ⁶	Vitamin D supplements	Head circumference at birth (cm)	10	MD: 0.08 (-0.09, 0.25)	Tous et al. 2020^7	Vitamin D status	High vs. Low	Head circumference at birth (cm)	7	MD: 0.47 (-0.16, 1.11)	3	Y
Palacios et al. 2019 ⁶	Vitamin D supplements	Pre-eclampsia	5	RR: 0.96 (0.65, 1.42)	Yuan et al. 2019 ⁸	Vitamin D status	High vs. Low	Pre-eclampsia	15	OR: 0.62 (0.50, 0.78)	3	Y
Rees et al. 2013a ⁴⁰	Healthy diet (intake)	Systolic blood pressure (mmHg)	11	MD: -2.61 (-3.91, -1.31)	Kastorini et al. 2011 ⁴¹	Mediterranean diet (intake)	High vs. Low	Systolic blood pressure (mmHg)	1	MD: 0.80 (-0.84, 2.44)	2	Y

Rees et al. $2013a^{40}$	Healthy diet (intake)	Diastolic blood pressure (mmHg)	11	MD: -1.45 (-2.22, -0.68)	Kastorini et al. 2011 ⁴¹	Mediterranean diet (intake)	High vs. Low	Diastolic blood pressure (mmHg)	1	MD: 0.90 (-0.38, 2.18)	2	Y
Rees et al. 2013b ⁴²	Selenium supplements	All-cause mortality	2	RR: 0.97 (0.88, 1.08)	Jayedi et al. 2018 ¹⁴²	Selenium intake	High vs. Low	All-cause mortality	3	RR: 0.79 (0.73, 0.85)	2	Y
Rees et al. 2013b ⁴²	Selenium supplements	Cardiovascular mortality	2	RR: 0.97 (0.79, 1.20)	Xiang et al. 2019 ¹⁴³	Selenium status	High vs. Low	Cardiovascular mortality	3	RR: 0.77 (0.63, 0.94)	3	Y
Rees et al. 2013b ⁴²	Selenium supplements	Combined cardiovascular events	2	RR: 1.03 (0.95, 1.11)	Zhang et al. 2016a ⁴³	Selenium status	High vs. Low	Cardiovascular disease	14	RR: 0.87 (0.76, 0.99)	3	Y
Rees et al. 2019 ³	Mediterranean diet (intake)	High Density Lipoprotein (mmol/L)	6	MD: 0.02 (-0.01, 0.04)	Kastorini et al. 2011 ⁴¹	Mediterranean diet (intake)	High vs. Low	High Density Lipoprotein (mmol/L)	1	MD: 0.01 (-0.046, 0.061)	2	Y
Rees et al. 2019 ³	Mediterranean diet (intake)	Triglycerides (mmol/L)	7	MD: -0.09 (-0.16, -0.01)	Kastorini et al. 2011 ⁴¹	Mediterranean diet (intake)	High vs. Low	Triglycerides (mmol/L)	1	MD: -0.023 (-0.076, 0.031)	2	Y
Rees et al. 2019 ³	Mediterranean diet (intake)	Systolic blood pressure (mmHg)	4	MD: -1.50 (-3.92, 0.92)	Kastorini et al. 2011 ⁴¹	Mediterranean diet (intake)	High vs. Low	Systolic blood pressure (mmHg)	1	MD: 0.80 (-0.84, 2.44)	2	Y
Rees et al. 2019 ³	Mediterranean diet (intake)	Cardiovascular mortality	1	HR: 0.81 (0.50, 1.32)	Rosato et al. 2019 ⁴⁴	Mediterranean diet (intake)	High vs. Low	Cardiovascular mortality	7	RR: 0.73 (0.67, 0.81)	2	Y
Rees et al. 2019 ³	Mediterranean diet (intake)	Combined cardiovascular events	1	HR: 0.70 (0.58, 0.85)	Rosato et al. 2019 ⁴⁴	Mediterranean diet (intake)	High vs. Low	Cardiovascular disease	11	RR: 0.81 (0.74, 0.88)	2	Y
Rees et al. 2019 ³	Mediterranean diet (intake)	All-cause mortality	1	HR: 1.00 (0.81, 1.24)	Soltani et al. 2019 ¹⁴⁴	Mediterranean diet (intake)	per 2-point increment	All-cause mortality	26	RR: 0.90 (0.89, 0.91)	2	Y
Rutjes et al. 2018 ¹⁰	B-Vitamin supplements	Dementia / MCI	1	RR: 1.01 (0.69, 1.48)	Doets et al. 2013 ¹⁴⁵	Vitamin B12 intake	per 1 µg/d	Dementia	3	RR: 0.99 (0.99, 1.00)	3	Y
Rutjes et al. 2018 ¹⁰	Vitamin D3 supplements	Dementia	1	RR: 1.09 (0.70, 1.71)	Goodwill et al. 2017 ⁹	Vitamin D status	High vs. Low	Dementia / MCI	14	OR: 0.88 (0.81, 0.95)	3	Y
Sydenham et al. 2012 ¹⁴⁶	Omega-3 supplements	Mini-Mental State Examination	2	MD: -0.07 (-0.25, 0.10)	Zhang et al. 2016b ¹⁴⁷	Omega-3 intake	per 0.1-g/d increment	Dementia	2	RR: 0.99 (0.85, 1.12)	3	Ν
Tieu et al. 2017 ¹²	Healthy diet (intake)	Preterm birth	3	RR: 0.51 (0.21, 1.25)	Chia et al. 2019 ¹¹	Healthy diet (intake)	High vs. Low	Preterm birth	5	OR: 0.81 (0.69, 0.94)	2	Y
Tieu et al. 2017 ¹²	Healthy diet (intake)	Small gestational age	2	RR: 0.84 (0.49, 1.42)	Chia et al. 2019 ¹¹	Healthy diet (intake)	High vs. Low	Small gestational age	8	OR: 0.88 (0.71, 1.08)	2	Y
Tieu et al. 2017 ¹²	Healthy diet (intake)	Birth weight (g)	5	MD: 5.94 (-51.11, 62.99)	Chia et al. 2019 ¹¹	Healthy diet (intake)	High vs. Low	Birth weight (g)	12	MD: -9.61 (-53.12, 33.91)	2	Y
Tieu et al. 2017 ¹²	Healthy diet (intake)	Gestational diabetes	5	RR: 0.60 (0.35, 1.04)	Mijatovic- Vukas et al. 2018 ¹³	Mediterranean diet (intake)	High vs. Low	Gestational diabetes	4	OR: 0.70 (0.62, 0.80)	2	Y
Usinger et al. 2012 ¹⁴⁸	Fermented milk intake + supplements	Systolic blood pressure (mmHg)	15	MD: -2.45 (-4.30, -0.60)	Soedamah- Muthu et al. 2012 ¹⁴⁹	Fermented milk intake	per 150 g/d increment	Hypertension	4	RR: 0.99 (0.94, 1.04)	3	Ν
Usinger et al. 2012 ¹⁴⁸	Fermented milk intake + supplements	Diastolic blood pressure (mmHg)	15	MD: -0.67 (-1.48, 0.14)	Soedamah- Muthu et al. 2012 ¹⁴⁹	Fermented milk intake	per 150 g/d increment	Hypertension	4	RR: 0.99 (0.94, 1.04)	3	Ν

Vinceti et al. 2018 ¹⁴	Selenium supplements	Cancer	5	RR: 0.99 (0.86, 1.14)	Vinceti et al. 2018 ¹⁴	Selenium status	High vs. Low	Cancer	7	OR: 0.72 (0.55, 0.93)	3	Y
Vinceti et al. 2018 ¹⁴	Selenium supplements	Cancer mortality	2	RR: 0.81 (0.49, 1.32)	Vinceti et al. 2018 ¹⁴	Selenium intake	High vs. Low	Cancer mortality	1	OR: 0.93 (0.83, 1.04)	2	Y
Vinceti et al. 2018 ¹⁴	Selenium supplements	Colorectal cancer	3	RR: 0.74 (0.41, 1.33)	Vinceti et al. 2018 ¹⁴	Selenium supplements	High vs. Low	Colorectal cancer	1	OR: 0.80 (0.68, 0.94)	2	Y
Yao et al. 2017 ⁴⁵	Fibre intake	Colorectal cancer	2	RR: 2.70 (1.07, 6.85)	Aune et al. 2011 ¹⁵⁰	Fibre intake	High vs. Low	Colorectal cancer	19	RR: 0.88 (0.82, 0.94)	2	Y
Yao et al. 2017 ⁴⁵	Fibre intake	Colorectal adenoma	5	RR: 1.04 (0.95, 1.13)	Ben et al. 2014 ⁴⁶	Fibre intake	High vs. Low	Colorectal adenoma	4	RR: 0.92 (0.76, 1.10)	3	Y

d: day; g: gram; HOMA-IR: homeostasis model assessment-insulin resistance; HR: hazard ratio; MCI: mild cognitive impairment; MD: mean difference; N: no; NA: not available; OR: odds ratio; RR: risk ratio; T: tertile; µg: microgram; Y: yes; 95% CI: 95% confidence interval.

Supplementary Table 6: Reason for exclusion form the statistical analysis.

Bodies	of evidence from R(CTs	Bodies	of evidence from col	hort studies	Reason for exclusion
Reference	Intervention	Outcome	Reference	Exposure	Outcome	
Cormick et al. 2015 ¹²¹	Calcium supplements	SBP (MD)	Jayedi et al. 2019 ¹²²	Calcium intake + supplements	Hypertension (RR)	Impossibility to convert one outcome to the other one
Cormick et al. 2015 ¹²¹	Calcium supplements	DBP (MD)	Jayedi et al. 2019 ¹²²	Calcium intake + supplements	Hypertension (RR)	Impossibility to convert one outcome to the other one
El Dib et al. 2015 ¹²⁶	Zinc supplements	HOMA-IR (MD)	Fernandez-Cao et al. 2019 ¹²⁷	Zinc supplements	T2D (RR)	Impossibility to convert one outcome to the other one
Hartley et al. 2013 ¹²⁸	Fruit & Vegetables intake	SBP (MD)	Schwingshackl et al. 2017 ¹²⁹	Fruit & Vegetables intake	Hypertension (RR)	Impossibility to convert one outcome to the other one
Hartley et al. 2013 ¹²⁸	Fruit & Vegetables intake	DBP (MD)	Schwingshackl et al. 2017 ¹²⁹	Fruit & Vegetables intake	Hypertension (RR)	Impossibility to convert one outcome to the other one
Hartley et al. 2016^{130}	Fibre intake + supplements	SBP (MD)	Schwingshackl et al. 2017 ¹²⁹	Whole grain intake	Hypertension (RR)	Impossibility to convert one outcome to the other one
Hartley et al. 2016^{130}	Fibre intake + supplements	DBP (MD)	Schwingshackl et al. 2017 ¹²⁹	Whole grain intake	Hypertension (RR)	Impossibility to convert one outcome to the other one
Hooper et al. 2012 ³⁴	Low-fat intake	Body weight (MD) (the intervention is "dietary fat reduction")	Sartorius et al. 2018 ¹³⁵	High- carbohydrate intake	Obesity (RR) (the intervention is "high-carbohydrate intake")	Impossibility to convert one outcome to the other one (moreover intervention in the RCTs meta-analysis too different from the intervention in the CSs meta- analysis)
Hooper et al. 2015a ¹³⁶	Low-fat intake	Body weight (MD) (the intervention is "dietary fat reduction")	Sartorius et al. 2018 ¹³⁵	High- carbohydrate intake	Obesity (RR) (the intervention is "high-carbohydrate intake")	Impossibility to convert one outcome to the other one (moreover intervention in the RCTs meta-analysis too different from the intervention in the CSs meta- analysis)
Kelly et al. 2017 ¹³⁸	Whole grain intake	SBP (MD)	Schwingshackl et al. 2017 ¹²⁹	Whole grain intake	Hypertension (RR)	Impossibility to convert one outcome to the other one
Kelly et al. 2017 ¹³⁸	Whole grain intake	DBP (MD)	Schwingshackl et al. 2017 ¹²⁹	Whole grain intake	Hypertension (RR)	Impossibility to convert one outcome to the other one
Sydenham et al.	Omega-3	MMSE (MD)	Zhang et al.	Omega-3 intake	Dementia (RR)	Impossibility to convert one outcome to

2012^{146}	supplements		2016b ¹⁴⁷			the other one
Usinger et al. 2012 ¹⁴⁸	Fermented milk intake + supplements	SBP (MD)	Soedamah-Muthu et al. 2012 ¹⁴⁹	Fermented milk intake	Hypertension (RR)	Impossibility to convert one outcome to the other one
Usinger et al. 2012 ¹⁴⁸	Fermented milk intake + supplements	DBP (MD)	Soedamah-Muthu et al. 2012 ¹⁴⁹	Fermented milk intake	Hypertension	Impossibility to convert one outcome to the other one

DBP: diastolic blood pressure; HOMA-IR: homeostasis model assessment-insulin resistance; MD: mean difference; MMSE: Mini-Mental State Examination; RCTs: randomized controlled trials; RR: risk ratio; SBP: systolic blood pressure; T2D: type 2 diabetes.

Category	Included diseases
Cancer	Breast cancer, colorectal cancer, skin cancer, stomach cancer
Cardiovascular diseases / chronic heart diseases	Angina, atrial fibrillation, cardiomyopathy, chronic heart failure, congestive heart failure, coronary arthrosclerosis, coronary artery disease, coronary heart disease, hypertension, ischaemic heart disease, myocardial infarction, peripheral artery disease, sinoatrial node disease, stroke, ventricular arrhythmia, ventricular fibrillation, ventricular tachycardia, participants with bypass / implanted cardioverter defibrillators or pacemaker or had percutaneous transluminal coronary angioplasty
Cognitive symptoms	Cognitive impairment with or without dementia (e.g. Alzheimer's disease)
Diseases of the digestive system	Adenoma, atrophic gastritis, Barrett oesophagus, colorectal tumours (unclear if malignant or benign), Crohn's disease, oesophageal dysplasia, polyp
Diseases of the eye	Cataract, macular degeneration, retinitis pigmentosa
Diseases of the genitourinary system	Haemodialysis patients, oophorectomy
Diseases of the liver	Alcoholic hepatitis, alcoholic liver disease, biliary cirrhosis, Hepatitis C, liver cirrhosis, non-alcoholic steatohepatitis, non-alcoholic fatty liver disease
Diseases of the nervous system	Amyotrophic lateral sclerosis, Huntington's disease, multiple sclerosis, Parkinson disease
Endocrine / nutritional / metabolic diseases	Diabetes or Prediabetes, dyslipidaemia, hypercholesterolemia, hyperlipidaemia, hypolipoproteinaemia, metabolic syndrome, overweight / obese participants
Musculoskeletal diseases	Fractures (general, low-trauma, osteoporotic or compression), Osteoarthritis, rheumatoid arthritis, systemic lupus erythematosus
Institutionalised	People living in care homes, geriatric care / medical unit, mental health institutes, mental health institute, mental hospital, nursing homes, old age hostel, residential home, Veterans retirement home / Administration Centres

Supplementary Table 7: Categories of diseases for the description of population.

Supplementary Table 8: Characteristics of included bodies of evidence from randomized controlled trials.
--

Reference	Intervention (as defined by the authors)	Outcome (as defined by the authors)	Studies, n	Sample size, n	Cases, n	Description of population	Age, mean	Description of intervention	Description of comparator	Description of outcome	Study design	Study length/ follow-up (years)
Abdelhamid et al. 2018a ¹⁵	Omega-3 intake + supplements	Cardiovascular mortality	25	67,772	4,544	People with: history or risk of cardiovascular diseases / chronic heart diseases, cognitive symptoms, risk of diseases of the eye, endocrine / nutritional / metabolic diseases or musculoskeletal diseases	53-78	Dietary advice $(0.5g/d EPA)$ or supplements: EPA $(1.8g/d)$ or EPA + DHA $(0.25-1.02g/d$ EPA + 0.2-0.72g/d DHA or 0.5-3.5g/d EPA + DHA) or total LCn3 (6g/d); supplementary food $(1.1-1.5g/d EPA + 1.5-1.8g/d$ DHA); enriched food $(0.4-4.5g/d EPA + DHA)$	Nil; Placebo / Supplements: MUFA / Omega-6 / MUFA + Omega-6 / SFA + MUFA / CHO + SFA / low EPA + DHA	Cardiovascular mortality	Parallel and factorial	1-9
Abdelhamid et al. 2018a ¹⁵	Omega-3 intake + supplements	Cardiovascular disease	38	90,378	14,737	Healthy people; people with: history or risk of cardiovascular diseases / chronic heart diseases, cognitive symptoms, diseases of the digestive system, risk of diseases of the eye, endocrine / nutritional / metabolic diseases, musculoskeletal diseases, diseases of the nervous system, diseases of the liver or cancer risk (breast); postmenopausal women	38-78	Dietary advice $(0.5g/d \text{ EPA or} 1.5g/d \text{ EPA + DHA})$; supplements: EPA $(1.8-1.9g/d)$ or EPA + DHA $(0.225-2.2g/d \text{ EPA + } 0.2-1.72g/d \text{ DHA or} 0.5-3.5g/d \text{ EPA + DHA})$ or total LCn3 (6g/d); supplementary food $(1.1-3.2g/d \text{ EPA + } 1.5-2.3g/d \text{ DHA})$; enriched food $(0.4-4.5g/d \text{ EPA + } \text{ DHA})$	Nil; dietary advice; Placebo / Supplements: MUFA / Omega-6 / MUFA + Omega-6 / SFA / SFA + MUFA / CHO + SFA / low EPA + DHA / paraffin	Cardiovascular events	Parallel and factorial	1-9
Abdelhamid et al. 2018a ¹⁵	α-Linolenic acid intake	Cardiovascular disease	5	19,327	884	General population; healthy people; people with: endocrine / nutritional / metabolic diseases or risk or history of cardiovascular diseases / chronic heart diseases (peripheral artery disease, myocardial infarction, risk of CVD)	54-69	Enriched food (1.9-6.3g/d ALA) or supplementary food (5-6.8g/d ALA)	Nil or placebo: MUFA or Omega-6	Cardiovascular events	Parallel and factorial	1-3
Abdelhamid et al. 2018a ¹⁵	Omega-3 intake + supplements	Body weight	12	15,812	NA	People with: history or risk of cardiovascular diseases / chronic heart diseases, endocrine / nutritional / metabolic diseases, musculoskeletal diseases, diseases of the nervous system, diseases of the liver or people with spinal cord injury	40-64	Supplements: EPA + DHA (0.13-1.84g/d EPA + 0.375- 1.8g/d DHA or 0.45-3.36g/d EPA + DHA) or LCn3 (6g/d); dietary advice + supplement (0.42-1.98g/d EPA + 0.21- 1.32g/d DHA or 0.63-3.3g/d EPA + DHA); enriched food (4.5g/d EPA + DHA)	Placebo / Supplements: MUFA / Omega-6 / SFA + MUFA / CHO + SFA / low EPA + DHA; dietary advice + placebo	Measures of adiposity; weight	Parallel and factorial	1-6

Abdelhamid et al. 2018a ¹⁵	Omega-3 intake + supplements	All-cause mortality	39	92,653	8,189	Healthy people; people with: history or risk of cardiovascular diseases / chronic heart diseases, cognitive symptoms, diseases of the digestive system, history or risk of diseases of the eye, endocrine / nutritional / metabolic diseases, musculoskeletal diseases or diseases of the nervous system	34-78	Dietary advice $(0.5g/d EPA \text{ or} 1.4g/d EPA + DHA)$; supplements: EPA $(1.8g/d)$ or DHA $(1-2g/d)$ or EPA + DHA (0.2-2.2g/d EPA + 0.2-0.84g/d DHA or $0.5-3.5g/d EPA +$ DHA) or total LCn3 $(6g/d)$; dietary advice and supplements (0.096g/d EPA + 0.36g/d DHA + ALA or $1.71g/d EPA +$ 1.14g/d DHA; supplementary food $(1.1-1.5g/d EPA + 1.5-$ 1.8g/d DHA; enriched food (0.4-4.5g/d EPA + DHA)	Nil; dietary advice; Placebo / Supplements: MUFA / Omega-6 / MUFA + Omega-6 / SFA / SFA + MUFA / CHO + SFA / low EPA + DHA; dietary advice + placebo: MUFA	Mortality	Parallel and factorial	1-9
Abdelhamid et al. 2018a ¹⁵	α-Linolenic acid intake	Cardiovascular mortality	4	18,619	219	General population; people with: endocrine / nutritional / metabolic diseases or risk or history of cardiovascular diseases / chronic heart diseases (peripheral artery disease, myocardial infarction, risk of CVD)	54-69	Enriched food (1.9-6.3g/d ALA) or supplementary food (5.5-6.8g/d ALA)	Placebo: MUFA or Omega- 6	Cardiovascular mortality	Parallel and factorial	1-3
Abdelhamid et al. 2018a ¹⁵	α-Linolenic acid intake	Coronary heart disease	4	19,061	397	General population; healthy people; people with: endocrine / nutritional / metabolic diseases or cardiovascular diseases / chronic heart diseases (peripheral artery disease, myocardial infarction)	65-69	Enriched food (1.9g/d ALA) or supplementary food (5-6.8g/d ALA)	Nil or placebo: MUFA or Omega-6	Coronary heart disease events	Parallel	1-3
Abdelhamid et al. 2018b ²¹	Polyunsaturated fat intake + supplements	All-cause mortality	24	19,290	1,443	People with: cardiovascular diseases / chronic heart diseases, cancer, diseases of the nervous system, endocrine / nutritional / metabolic diseases, mental disorders or diseases of the digestive system; institutionalised people	32-78	Dietary advice: TF, PUFA, Omega-6 (-3.3-9.2%/E PUFA); supplements: Omega-6, Omega-3, GLA, EPA, EPA + DHA (0.6-10.4%/E PUFA); dietary advice + supplement: Omega-6, EPA + DHA (1.1- 21.9%/E PUFA); provided diet: Omega-6 (7.5-17.7%/E PUFA); enriched food: ALA (1.02-1.3%/E PUFA); supplementary food: EPA + DHA (1.9-2%/E PUFA)	Nil: SFA, SFA + MUFA; dietary advice: SFA; placebo / supplements: MUFA, MCT	Death / all-cause mortality	Parallel and factorial	1-8

Abdelhamid et al. 2018b ²¹	Polyunsaturated fat intake + supplements	Coronary heart disease	15	10,076	1,351	Healthy people; people with: endocrine / nutritional / metabolic diseases, cardiovascular diseases / chronic heart diseases (MI, ischaemic heart disease, had PTCA, had PCI, CHD, cardioverter defibrillator, ventricular tachycardia, ventricular fibrillation) or musculoskeletal diseases; institutionalised people	49-71	Dietary advice: Omega-6 (2.8- 6.6%/E PUFA); supplements: EPA, EPA + DHA or Omega-3 (0.6-2.2%/E PUFA); dietary advice + supplement: Omega-6 (20.6-21.9%/E PUFA); provided diet: Omega-6 (12%/E PUFA); enriched food: ALA (1.02-1.3%/E PUFA); supplementary food: EPA + DHA (1.9-2.3%/E PUFA)	Nil: SFA, SFA + MUFA; placebo / supplements: MUFA; dietary advice + supplement: MUFA; provided usual diet	Coronary heart disease events: myocardial infarction or angina	Parallel and factorial	1-8
Abdelhamid et al. 2018b ²¹	Polyunsaturated fat intake	Major cardiovascular events	2	2,879	817	Institutionalised men (Veterans); men with previous MI	56-66	Dietary advice: Omega-6 (2.8%/E PUFA); provided diet: Omega-6 (12%/E PUFA)	Nil (normal diet): SFA, provided usual diet	Cardiovascular events, coronary heart disease events	Parallel and factorial	2-8
Adler et al. 2014 ²³	Low-sodium intake	All-cause mortality	7	6,603	625	General population; overweight people; people with: hypertension, diabetes or risk of vascular diseases; institutionalised people (Veterans, old age hostel)	39-83	Regularly dietary advice (sodium reduction to 49-50% or 70-100mmol/d), provided diet (containing 49% sodium), substitution (salt with 65% sodium)	Nil (normal diet: salt with 100% sodium), dietary advice once, provided diet with regular salt (99.6% sodium)	Deaths, all-cause mortality, mortality	Individual and cluster	1-3
Adler et al. 2014 ²³	Low-sodium intake	Cardiovascular mortality	3	2,656	106	People with: hypertension, diabetes or risk of vascular disease; institutionalised people (Veterans)	57-76	Regularly dietary advice (sodium reduction to 70- 100mmol/d), provided diet (containing 49% sodium), substitution (salt with 65% sodium)	Nil (normal diet: salt with 100% sodium), provided diet with regular salt (99.6% sodium)	Cardiovascular disease deaths, cardiovascular mortality	Individual and cluster	1-3
Adler et al. 2014 ²³	Low-sodium intake	Cardiovascular events	4	3,397	194	People with: hypertension, diabetes or risk of vascular disease; institutionalised people (Veterans)	57-76	Regularly dietary advice (sodium reduction to 70- 100mmol/d), provided diet (containing 49% sodium), substitution (salt with 65% sodium)	Nil (normal diet: salt with 100% sodium), provided diet with regular salt (99.6% sodium), dietary advice without disease context	Fatal and non-fatal myocardial infarction, stroke, angina, heart failure, peripheral vascular events, sudden death, revascularisation (coronary artery bypass surgery or angioplasty with or without stenting) and cardiovascular- related hospital admissions	Individual, factorial and cluster	1-3
Adler et al. 2014^{23}	Low-sodium intake	Systolic blood pressure	6	3,362	NA	General population; overweight people; people with: hypertension, diabetes or risk of vascular diseases	39-66	Regularly dietary advice (sodium reduction to 50% or 70-100mmol/d), substitution (salt with 65% sodium)	Nil (normal diet: salt with 100% sodium), dietary advice without disease context	Blood pressure	Individual and factorial	1-3

Adler et al. 2014 ²³	Low-sodium intake	Diastolic blood pressure	5	2,754	NA	General population; overweight people; people with hypertension	39-66	Regularly dietary advice (sodium reduction to 50% or 70-100mmol/d)	Nil (normal diet), dietary advice without disease context	Blood pressure	Individual and factorial	2-3
Al-Khudairy et al. 2017 ¹	Vitamin C supplements	Major cardiovascular events	1	14,641	NA	Men aged 50+	50+	Supplements: Vitamin C (500mg)	Placebo	Major cardiovascular event	Parallel / factorial	8
Al-Khudairy et al. 2017 ¹	Vitamin C supplements	Cardiovascular mortality	1	14,641	NA	Men aged 50+	50+	Supplements: Vitamin C (500mg)	Placebo	Cardiovascular death	Parallel / factorial	8
Al-Khudairy et al. 2017 ¹	Vitamin C supplements	All-cause mortality	1	14,641	NA	Men aged 50+	50+	Supplements: Vitamin C (500mg)	Placebo	All-cause mortality	Parallel / factorial	8
Avenell et al. 2014 ²⁷	Vitamin D supplements	Hip fracture	10	26,549	670	Mostly general population; mostly postmenopausal women, older men; people with: history of hip fracture or osteoporotic fracture; institutionalised people (nursing homes)	76-85	Supplements orally: Cholecalciferol, Vitamin D3 (146,000-500,000IU/year) or Ergocalciferol, Vitamin D2 (300,000-401,500IU/year) or i.m. injection Vitamin D2 (300,000IU/year)	Placebo (orally and i.m. injection), nil	Hip fractures	Mostly NA, 1 cluster	1-5
Avenell et al. 2014 ²⁷	Vitamin D supplements	Any fracture	14	27,127	2,326	Mostly general population; mostly postmenopausal women, older men; people with: history of hip fracture or osteoporotic fracture, endocrine / nutritional / metabolic diseases or cardiovascular diseases / chronic heart diseases; institutionalised people (nursing homes)	57-85	Supplements orally: Cholecalciferol, Vitamin D3 (146,000-730,000IU/year), Ergocalciferol, Vitamin D2 (300,000-480,000IU/year) or Calcifediol (21,900IU/year) or i.m. injection Vitamin D2 (300,000IU/year)	Placebo (orally and i.m. injection), nil	Any fractures, non-vertebral fractures, hip fractures, vertebral fractures	Mostly NA, 1 factorial, 1 cluster	0.3-5
Bjelakovic et al. 2012 ¹¹⁷	β-carotene supplements	All-cause mortality	31	195,503	23,182	Healthy people; people with: risk or history of cancer, diseases of the eye, risk or history of cardiovascular diseases / chronic heart diseases, endocrine / nutritional / metabolic diseases, diseases of the liver or diseases of the liver or diseases of the digestive system; smokers; institutionalised people; elderly people / people with age-related diseases; general population	42-85	Supplements: β-carotene (2.4- 50mg or 15,000IU β-carotene) individually or combined with other antioxidants, multivitamins, multi-minerals, trace elements, medications	Placebo, placebo + calcium and magnesium, placebo + low Vitamin C (20-50mg)	All-cause mortality, overall mortality, total mortality	Parallel, factorial and cross- over	0.4-13

Bjelakovic et al. 2012 ¹¹⁷	Vitamin E supplements	All-cause mortality	64	211,957	22,058	Healthy people; people with: cognitive symptoms, risk of cancer, diseases of the eye, risk or history of cardiovascular diseases / chronic heart diseases, endocrine / nutritional / metabolic diseases, diseases of the liver, diseases of the digestive system, musculoskeletal diseases, diseases of the nervous system or diseases of the genitourinary system; smokers; institutionalised people; elderly people / people with age-related diseases; general population; postmenopausal women	37-85	Supplements: Vitamin E, (dl/d-)α-tocopherol, RRR-α- tocopheryl acetate, (dl/d-)-α- tocopheryl acetate, all-rac-(α-) tocopheryl acetate, d-α- tocopheryl succinate (0.01-5g or 10-2,000IU, natural or synthetic) individually or combined with other antioxidants, multivitamins, multi-minerals, trace elements, micronutrient, medications	Nil, placebo, placebo + calcium and magnesium, placebo + medicament, low Vitamin E (3mg)	All-cause mortality, overall mortality, total mortality	Parallel, factorial and cross- over	0.1-13
Bjelakovic et al. 2012 ¹¹⁷	Vitamin C supplements	All-cause mortality	41	90,191	8,020	Healthy people; people with: cognitive symptoms, risk of cancer, diseases of the eye, risk or history of cardiovascular diseases / chronic heart diseases, endocrine / nutritional / metabolic diseases, diseases of the liver, diseases of the digestive system, musculoskeletal diseases, diseases of the genitourinary system or pressure ulcers; smokers; institutionalised people; medical in-patients; elderly people / people with age-related diseases; general population; postmenopausal women	37-85	Supplements: Vitamin C, ascorbic acid, calcium ascorbate-Ester C R, active / synthetic Vitamin C, active / synthetic ascorbic acid, slow- release Vitamin C (60- 3,000mg/d) individually or combined with other antioxidants, multivitamins, multi-minerals, trace elements, micronutrient, medications	Placebo, placebo + calcium and magnesium, placebo + Vitamin C	All-cause mortality, overall mortality, total mortality	Parallel, factorial and cross- over	0.1-9

Bjelakovic et al. 2012 ¹¹⁷	Vitamin A supplements	All-cause mortality	18	61,190	7,215	Healthy people; people with: risk or history of cancer, diseases of the eye, cardiovascular diseases / chronic heart diseases, endocrine / nutritional / metabolic diseases or diseases of the digestive system; institutionalised people; medical in-patients; elderly people / people with age-related diseases; general population	54-85	Supplements: Vitamin A, retinol, retinol equivalent, Vitamin A acetate (0.4- 800mg/d or 1,333-200,000IU or 800 retinol equivalents), individually or combined with other antioxidants, multivitamins, multi-minerals, trace elements, micronutrient, medications	Placebo, placebo + calcium and magnesium	All-cause mortality, overall mortality	Parallel and factorial	0.1-10
Bjelakovic et al. 2014a ¹¹⁸	Vitamin D supplements	All-cause mortality	56	95,286	11,998	Mostly women; healthy people; people with: risk or history of musculoskeletal diseases, diseases of the eye, diseases of the nervous system, cardiovascular diseases / chronic heart diseases or low serum Vitamin D levels or Vitamin D insufficiency; elderly people / people with age- related diseases; postmenopausal women; general population; institutionalised people; medical in-patients; bedridden people; people with history of falling	51-89 (range 18-107)	Supplements orally: Vitamin D3 (100-100,000IU/d), Vitamin D2 (143-9,000IU/d), α-calcidol (1µg), calcitriol (0.25-2µg), cholecalciferol (150,000IU/3m) or i.m. injection D2 (300.000IU/y) or enriched food D3 (800IU/d), individually or combined with calcium, Vitamin K1, multivitamins, medications, exercise, home safety assessment	Placebo, placebo + calcium, calcium, nil, information material	All-cause mortality	Parallel and factorial	0.1-7
Bjelakovic et al. 2014a ¹¹⁸	Vitamin D supplements	Cardiovascular mortality	10	47,267	1,957	Mostly women; healthy people; people with: risk or history of musculoskeletal diseases (mostly fractures) or Vitamin D insufficiency; elderly people / people with age-related diseases; postmenopausal women	52-80	Supplements orally: Vitamin D3 (300-100,000IU/d), individually or combined with calcium, Vitamin K1	Placebo, nil	Cardiovascular mortality	Parallel and factorial	0.3-7
Bjelakovic et al. 2014a ¹¹⁸	Vitamin D supplements	Cancer mortality	4	44,492	1,192	Mostly women; healthy people; people with musculoskeletal diseases (osteoporotic fracture); elderly people / people with age-related diseases; postmenopausal women	53-77	Supplements orally: Vitamin D3 (100-833IU/d), individually or combined with calcium, medications	Placebo	Cancer mortality	Parallel and factorial	5-7

Bjelakovic et al. 2014b ²⁹	Vitamin D supplements	Cancer occurrence	18	50,623	3,870	Mostly women; healthy people; people with: risk or history of musculoskeletal diseases (fractures) or cardiovascular diseases / chronic heart diseases (hypertension); elderly people / people with age- related diseases; postmenopausal women; general population; people with history of falling	47-79 (range 50-97)	Supplements: Vitamin D3 (100-6,666IU/d), Vitamin D2 (1,000IU/d), calcitriol (0.25- 2µg), cholecalciferol (3,000IU/d or 150,000IU/3m) or enriched food D3 (800IU/d), individually or combined with calcium, Vitamin K1, medications	Placebo, placebo + calcium, nil	Cancer occurrence	Parallel and factorial	0.4-7
Bjelakovic et al. 2014b ²⁹	Vitamin D3 supplements	Breast cancer	7	43,669	1,135	Mostly women; healthy people; people with musculoskeletal diseases (fractures) or cardiovascular diseases / chronic heart diseases (hypertension); elderly people / people with age-related diseases; postmenopausal women	47-77	Supplements: Vitamin D3 (400-6,666IU/d), cholecalciferol (3,000IU/d), individually or combined with calcium	Placebo	Breast cancer occurrence	Parallel and factorial	0.4-7
Bjelakovic et al. 2014b ²⁹	Vitamin D3 supplements	Lung cancer	5	45,509	329	Mobile before developing a low-trauma fracture, geriatric women, healthy postmenopausal women	55-77	Supplements: Vitamin D3	Placebo	Lung cancer	Parallel and factorial	0.5-7
Cormick et al. 2015 ¹²¹	Calcium supplements	Systolic blood pressure	16	3,048	NA	Healthy people; general population; postmenopausal women; people with: endocrine / nutritional / metabolic diseases (overweight) or cardiovascular diseases / chronic heart diseases (hypertension)	24-74 (range 14-74)	Supplements: Calcium (as calcium carbonate, calcium lactate gluconate, calcium citrate) (0.5-2g/d) or calcium powder in juice (0.6-1.5g/d) or high-calcium powder milk	Placebo	Systolic blood pressure	Parallel and cross- over (NA in 12 studies!)	0.1-4
Cormick et al. 2015 ¹²¹	Calcium supplements	Diastolic blood pressure	15	2,947	NA	Healthy people; general population; postmenopausal women; people with: endocrine / nutritional / metabolic diseases (overweight) or cardiovascular diseases / chronic heart diseases (hypertension)	24-74 (range 14-74)	Supplements: Calcium (as calcium carbonate, calcium lactate gluconate, calcium citrate) (0.5-2g/d) or calcium powder in juice (1.5g/d) or high-calcium powder milk	Placebo	Diastolic blood pressure	Parallel and cross- over (NA in 11 studies!)	0.1-4
De-Regil et al. 2015 ¹²³	Folate supplements	Neural tube defect	5	6,708	54	Pregnant women, previously pregnant but plan to have another pregnancy, history of giving birth child with neural tube defects	<35	Supplements: folic acid (6,000IU/d, 360-4,000ug/d)	Multivitamin supplement, control, placebo	Neural tube defect	Parallel and factorial	NA

De-Regil et al. 2015 ¹²³	Folate supplements	Congenital cardiovascular anomalies	3	5,612	22	Pregnant women, previously pregnant but plan to have another pregnancy	<35	Supplements: folic acid (6,000IU/d, 360-4,000ug/d)	Multivitamin supplement, control	Congenital cardiovascular anomalies	Parallel and factorial	NA
El Dib et al. 2015 ¹²⁶	Zinc supplements	HOMA-IR	1	56	NA	People with obesity	25-45	Supplements: Zinc	Placebo	HOMA-IR	Parallel	0.1
Hartley et al. 2013 ¹²⁸	Fruit & Vegetables intake	Systolic blood pressure	2	891	NA	Healthy people, people with colorectal adenomas	46-59	Increase fruit and vegetable consumption	Usual diet	Systolic blood pressure	Parallel	0.5-1
Hartley et al. 2013 ¹²⁸	Fruit & Vegetables intake	Diastolic blood pressure	2	891	NA	Healthy people, people with colorectal adenomas	46-59	Increase fruit and vegetable consumption	Usual diet	Diastolic blood pressure	Parallel	0.5-1
Hartley et al. 2016 ¹³⁰	Fibre intake + supplements	Systolic blood pressure	8	661	NA	Healthy people; postmenopausal women; people with: endocrine / nutritional / metabolic diseases or cardiovascular diseases / chronic heart diseases (hypertension)	34-58 (range 19-65)	Supplements: soluble fibre (7- 27.5g/d), individually or with dietary advice; or provided supplementary foods high in fibre	Placebo, nil, dietary advice	Systolic blood pressure	Parallel	0.2-0.5
Hartley et al. 2016 ¹³⁰	Fibre intake + supplements	Diastolic blood pressure	8	661	NA	Healthy people; postmenopausal women; people with: endocrine / nutritional / metabolic diseases or cardiovascular diseases / chronic heart diseases (hypertension)	34-58 (range 19-65)	Supplements: soluble fibre (7- 27.5g/d), individually or with dietary advice; or provided supplementary foods high in fibre	Placebo, nil, dietary advice	Diastolic blood pressure	Parallel	0.2-0.5
Hemmingsen et al. 2017 ¹³¹	Healthy diet (intake)	Type 2 diabetes	1	NA	NA	People with impaired glucose tolerance	NA	Healthy diet	Usual diet	Type 2 diabetes	Cluster	17
Hemmingsen et al. 2017 ¹³¹	Healthy diet (intake)	All-cause mortality	1	NA	NA	People with impaired glucose tolerance	NA	Healthy diet	Usual diet	All-cause- mortality	Cluster	17
Hofmeyr et al. 2018 ³²	Calcium supplements	Pre-eclampsia	13	15,730	889	Pregnant women (nulliparous and primiparous); healthy; risk of gestational hypertension or pre-eclampsia (2x)	mostly NA; <17-30 (3studie s)	Supplements: Calcium (elemental; calcium carbonate; calcium gluconate) (1.5-2g/d)	Placebo, placebo + prenatal vitamins	Pre-eclampsia	NA	NA (during pregnancy, from 34 weeks of pregnancy at the latest)
Hofmeyr et al. 2018 ³²	Calcium supplements	High blood pressure	12	15,470	2,732	Pregnant women (nulliparous and primiparous); healthy; risk of gestational hypertension or pre-eclampsia (2x)	mostly NA; <17-30 (3studie s)	Supplements: Calcium (elemental; calcium carbonate; calcium gluconate) (1.5-2g/d)	Placebo, placebo + prenatal vitamins	High blood pressure in pregnancy with or without proteinuria	NA	NA (during pregnancy, from 34 weeks of pregnancy at the latest)

Hooper et al. 2012 ³⁴	Low-fat / modified fat (intake + supplements)	Cardiovascular mortality	14	65,978	1,407	People with: history or risk of cardiovascular diseases / chronic heart diseases, cancer or endocrine / nutritional / metabolic diseases; institutionalised people; postmenopausal women	49-70 (range 30-70)	Modified fat (provided food: 40-45%/E total fat, 18-20%/E PUFA; dietary advice + supplementary food: 35g total fat); reduced fat (dietary advice: 15-20%/E or 40g total fat or dietary advice + supplements: 30%/E total fat); reduced and modified fat (dietary advice: 27-30%/E total fat, 8-10%/E SFA, 8%/E PUFA)	Nil, provided usual diet, dietary advice, information material, usual diet + supplements	Cardiovascular mortality	NA, factorial (1x)	1-11 (mean years in trial)
Hooper et al. 2012 ³⁴	Low-fat / modified fat (intake + supplements)	All-cause mortality	20	71,790	4,292	People with: history or risk of cardiovascular diseases / chronic heart diseases, cancer, diseases of the digestive system or endocrine / nutritional / metabolic diseases; institutionalised people; postmenopausal women	45-70 (range 20-73)	Modified fat (provided food: 30-45%/E total fat, 15-20%/E PUFA, <9%/E SFA; dietary advice: 10%/E SFA, 15%/E PUFA; dietary advice + supplementary food: 35g total fat); reduced fat (dietary advice: 15-25%/E or 40g total fat or dietary advice +supplements: 30%/E total fat); reduced and modified fat (dietary advice: 27-30%/E total fat, 8-10%/E SFA, 8%/E PUFA)	Nil, provided usual diet, dietary advice, information material, usual diet + supplements	All-cause mortality	NA, factorial (1x)	1-11 (mean years in trial)
Hooper et al. 2012 ³⁴	Low-fat / modified fat (intake + supplements)	Combined cardiovascular events	18	65,508	4,887	Healthy people; general population; people with: history or risk of cardiovascular diseases / chronic heart diseases, cancer or endocrine / nutritional / metabolic diseases; institutionalised people; postmenopausal women	46-70 (range 30-70)	Modified fat (dietary advice: 40%/E total fat; provided food: 40-45%/E total fat; 18-20%/E PUFA; dietary advice + supplementary food: 35g total fat); reduced fat (dietary advice: 20-25%/E or 40g total fat or dietary advice + supplements: 30%/E total fat); reduced and modified fat (dietary advice: 27-30%/E total fat, 8-10%/E SFA, 8%/E PUFA; dietary advice + supplementary food: 30%/E total fat)	Nil, provided usual diet, dietary advice, information material, usual diet + supplements, dietary advice + supplementary food	Combined cardiovascular events (=cardiovascular deaths, cardiovascular morbidity (non- fatal myocardial infarction, angina, stroke, heart failure, peripheral vascular events, atrial fibrillation) and unplanned cardiovascular interventions (coronary artery bypass surgery or angioplasty))	NA, factorial (1x)	1-8 (mean years in trial)

Hooper et al. 2012 ³⁴	Low-fat intake	Body weight	16	11,058	NA	Healthy people; people with: cardiovascular diseases / chronic heart diseases, risk or history of cancer, diseases of the digestive system or endocrine / nutritional / metabolic diseases; postmenopausal women	27-62 (range 20-73)	Reduced fat (dietary advice: 15-25%/E total fat or provided food: 20-30%/E total fat	Nil, usual provided diet (trial shop), dietary advice, information material	Weight	NA	0.4-11 (mean years in trial)
Hooper et al. 2015a ¹³⁶	Low-fat intake	Body weight	25	53,647	NA	Healthy people; general population; people with: cardiovascular diseases / chronic heart diseases, risk or history of cancer, diseases of the digestive system or endocrine / nutritional / metabolic diseases; postmenopausal women	33-62 (range 20-79)	Reduced fat (dietary advice: 15-30%/E total fat, 7-10%/E SFA, 15-20%/E MUFA; provided food); reduced and modified fat (dietary advice: 30%/E total fat, 16-18%/E SFA)	Nil, usual provided diet (study shop), dietary advice, modified fat, information material	Weight	NA, factorial (1x)	0.4-11 (mean years in trial)
Hooper et al. 2015b ³⁵	Low saturated fat intake	All-cause mortality	11	55,858	3,276	People with: cardiovascular diseases / chronic heart diseases, cancer or endocrine / nutritional / metabolic diseases; institutionalised people; postmenopausal women	49-66	Reduced a/o modified fat: 6.4- 11%/E SFA; replaced by PUFA a/o CHO a/o protein	Nil, dietary advice, usual provided diet, information material	All-cause mortality, death from any cause	NA, factorial (1x)	2-8 (mean years in trial)
Hooper et al. 2015b ³⁵	Low saturated fat intake	Cardiovascular mortality	10	53,421	1,096	People with: cardiovascular diseases / chronic heart diseases, cancer or endocrine / nutritional / metabolic diseases; institutionalised people; postmenopausal women	49-66	Reduced a/o modified fat: 6.6- 11%/E SFA; replaced by PUFA a/o CHO a/o protein	Nil, dietary advice, usual provided diet, information material	Cardiovascular (cardiovascular disease) mortality (deaths from myocardial infarction, stroke or sudden death)	NA, factorial (1x)	2-8 (mean years in trial)

Hooper et al. 2015b ³⁵	Low saturated fat intake	Combined cardiovascular events	11	53,300	4,377	People with: risk or history of cardiovascular diseases / chronic heart diseases, cancer or endocrine / nutritional / metabolic diseases; institutionalised people; postmenopausal women	46-66	Reduced a/o modified fat: 6.6- 11.5%/E SFA; replaced by PUFA a/o CHO a/o protein	Nil, dietary advice, usual provided diet, information material	Combined cardiovascular disease events (cardiovascular deaths, cardiovascular morbidity (non- fatal myocardial infarction, angina, stroke, heart failure, peripheral vascular events, atrial fibrillation) and unplanned cardiovascular interventions (coronary artery bypass surgery or angioplasty))	NA, factorial (1x)	2-8 (mean years in trial)
Hooper et al. 2018 ³⁷	Omega-6 intake + supplements	Combined cardiovascular events	7	4,962	1,404	People with: cardiovascular diseases / chronic heart diseases or endocrine / nutritional / metabolic diseases (diabetes); institutionalised people; general population	45-66	Supplements (0.48g GLA, 4%/E n-6), provided diet (40%/E total fat, 12-15%/E PUFA, 8.2-12.2%/E n-6), dietary advice (30%/E total fat, 15%/E PUFA), dietary advice + supplement (35g total fat, 18.9%/E LA), dietary advice + supplementary food (28.8%/E LA)	Nil, provided usual diet, placebo, supplementary food (MUFA)	Cardiovascular disease events (fatal and non- fatal myocardial infarction, angina, stroke)	Parallel	1-8 (mean years in trial)
Hooper et al. 2018 ³⁷	Omega-6 intake + supplements	All-cause mortality	10	4,506	979	People with: cancer, cardiovascular diseases / chronic heart diseases or diseases of the nervous system; institutionalised people	32-66	Supplements (GLA or GLA +LA: 0.5-2.92g GLA, 0.34g LA), provided diet (30-40%/E total fat, 12-15%/E PUFA), dietary advice (20-30%/E total fat, 15%/E PUFA), enriched food (10.4%/E n-6 or 23g LA), supplementary food (15%/E n- 6), dietary advice + supplement (35g total fat, 18.9%/E LA), dietary advice + supplementary food (28.8%/E LA)	Nil, provided usual diet, placebo, supplementary food (MUFA, SFA, oleic acid)	All-cause mortality	Parallel	1-8 (mean years in trial)

Hooper et al. 2018 ³⁷	Omega-6 intake + supplements	Cardiovascular mortality	7	4,019	472	People with: cancer, cardiovascular diseases / chronic heart diseases or endocrine / nutritional / metabolic diseases (diabetes); institutionalised people	49-66	Provided diet (40%/E total fat, 12%/E PUFA), dietary advice (20-40%/E total fat, 15%/E PUFA, 13%/E LA), dietary advice + supplement (35g total fat, 18.9%/E LA), dietary advice + supplementary food (28.8%/E LA)	Nil, provided usual diet, supplementary food (MUFA)	Cardiovascular disease mortality	Parallel	2-8 (mean years in trial)
Jin et al. 2012 ¹³⁷	Total flavonoids intake	Colorectal adenoma	1	929	358	People >35 years within 150% of recommended weight, with colorectal adenoma identified in six months before study entry	61	Intake: decrease fat by 30%, increase fibre intake by 75%, and increase 0.12servings/MJ of fruit and vegetable intake	Diet as usual	Adenoma recurrence	Parallel	4
Jin et al. 2012 ¹³⁷	Isoflavonoes intake	Colorectal adenoma	1	929	353	People >35 years within 150% of recommended weight, with colorectal adenoma identified in six months before study entry	61	Intake: decrease fat by 30%, increase fibre intake by 75%, and increase 0.12servings/MJ of fruit and vegetable intake	Diet as usual	Adenoma recurrence	Parallel	4
Jin et al. 2012 ¹³⁷	Flavonols intake	Colorectal adenoma	1	929	363	People >35 years within 150% of recommended weight, with colorectal adenoma identified in six months before study entry	61	Intake: decrease fat by 30%, increase fibre intake by 75%, and increase 0.12servings/MJ of fruit and vegetable intake	Diet as usual	Adenoma recurrence	Parallel	4
Keats et al. 2019 ³⁸	Micronutrients supplements	Preterm birth	18	91,425	NA	Pregnant women, women with amenorrhoea	12-45 (NA in most studies!)	Supplements: Multiple- micronutrient with iron and folic acid	Placebo, iron with or without folic acid	Preterm birth (births before 37 weeks of gestation)	Cluster and factorial (NA in 10 studies)	1-5
Keats et al. 2019 ³⁸	Micronutrients supplements	Low birth weight	18	68,801	NA	Pregnant women, women with amenorrhoea	12-45 (NA in most studies!)	Supplements: Multiple- micronutrient with iron and folic acid	Placebo, iron with or without folic acid	Low birthweight (birthweight less than 2,500g)	Cluster and factorial (NA in 10 studies)	1-5
Keats et al. 2019 ³⁸	Micronutrients supplements	Small gestational age	17	57,348	NA	Pregnant women, women with amenorrhoea	12-45 (NA in most studies!)	Supplements: Multiple- micronutrient with iron and folic acid	Placebo, iron with or without folic acid	Small-for- gestational age	Cluster and factorial (NA in 10 studies)	1-5
Kelly et al. 2017 ¹³⁸	Whole grain intake	Systolic blood pressure	8	768	NA	Healthy people; people endocrine / nutritional / metabolic diseases	40-70	Whole grain intake	Refined grains	Systolic blood pressure	Parallel	0.2-0.3
Kelly et al. 2017 ¹³⁸	Whole grain intake	Diastolic blood pressure	8	768	NA	Healthy people; people endocrine / nutritional / metabolic diseases	40-70	Whole grain intake	Refined grains	Diastolic blood pressure	Parallel	0.2-0.3
Kelly et al. 2017 ¹³⁸	Whole grain intake	Body weight	5	439	NA	Healthy people; people endocrine / nutritional / metabolic diseases	40-70	Whole grain intake	Refined grains	Body weight	Parallel	0.2

Mathew et al. 2012^{140}	β-carotene supplements	Cataract	2	61,947	NA	General healthy men and women	53	Supplements: β-carotene (50mg on alternate days)	Placebo	Cataract	Factorial	2.7-12
Mathew et al. 2012 ¹⁴⁰	Vitamin E supplements	Cataract	3	55,721	NA	General healthy men and women, prior cataract surgery	53-66	Supplements: Vitamin E (400IU on alternate days; 500IU/d in soybean oil	Placebo	Cataract	Parallel and factorial	4-8
Mathew et al. 2012^{140}	Vitamin C supplements	Cataract	1	14,641	NA	General healthy men	62	Supplements: Vitamin C (500mg/d)	Placebo	Cataract	Factorial	8
Palacios et al. 2019 ⁶	Vitamin D supplements	Gestational diabetes	5	1,846	77	Pregnant women	18-40 range	Supplements: Vitamin D (4,200-50,000IU oral D3/week; 2,000IU/d)	Placebo, Vitamin D, multivitamin	Gestational diabetes	Parallel	0.2-0.5
Palacios et al. 2019 ⁶	Vitamin D supplements	Preterm birth	4	2,294	189	Pregnant women	18-40 range	Supplements: Vitamin D (50,000IU every two weeks, 28,000IU/w, 5,000IU/d)	Placebo, Vitamin D	Preterm birth	Parallel	0.2-0.5
Palacios et al. 2019 ⁶	Vitamin D supplements	Birth length	11	3,058	NA	Pregnant women, women with risk of pre-eclampsia, mother or father with history of asthma	16-40 range	Supplements: Vitamin D (4,200-28,000IU/w or 4,000- 4,400IU/d or 50,000U/w) or cholecalciferol (60,000U/4 or 8w) or Vitamin D3 (3,600IU/d or 52,800IU/w or 300,000 twice during pregnancy) or Vitamin D + Vitamin D3 (3,800 IU/d)	Placebo, Vitamin D / D3 low or once, Vitamin D3 + placebo	Birth length	Parallel (NA in 10 studies)	0.3-7
Palacios et al. 2019 ⁶	Vitamin D supplements	Birth weight	13	3,240	NA	Pregnant women, women with risk of pre-eclampsia, mother or father with history of asthma	16-42 range	Supplements: Vitamin D (4,200-28,000IU/w or 4,000- 4,400IU/d or 50,000U/w) or cholecalciferol (60,000U/4 or 8w) or Vitamin D3 (2,000IU/d or 52,800IU/w or 300,000IU twice during pregnancy) or Vitamin D + Vitamin D3 (3,800IU/d)	Placebo, Vitamin D / D3 low or once, Vitamin D3 + placebo	Birth weight	Parallel (NA in 12 studies)	0.3-7
Palacios et al. 2019 ⁶	Vitamin D supplements	Head circumference at birth	10	2,998	NA	Pregnant women, women with risk of pre-eclampsia, mother or father with history of asthma	16-40 range	Supplements: Vitamin D (4,200-28,000IU/w or 4,000- 4,400IU/d or 50,000 U/w) or Vitamin D3 (3,600IU/d or 52,800IU/w or 300,000IU twice during pregnancy) or Vitamin D + Vitamin D3 (3,800IU/d)	Placebo, Vitamin D / D3 low or once, Vitamin D3 + placebo	Head circumference at birth	NA	0.3-7
Palacios et al. 2019 ⁶	Vitamin D supplements	Pre-eclampsia	5	1,553	96	Pregnant women	18-40	Supplements: Vitamin D (50,000IU every two weeks, 2,000-4,000 IU/d	Placebo, Vitamin D	Pre-eclampsia	Parallel	0.2-0.5

Rees et al. 2013a ⁴⁰	Healthy diet (intake)	Systolic blood pressure	11	6,406	NA	General population; healthy people; people with: risk or history of cardiovascular diseases / chronic heart diseases or endocrine / nutritional / metabolic diseases	44-56 (range 18-69)	Dietary advice (increase fruits & vegetables, reduce salt [with or without general health education], healthy lifestyle prompts, DASH diet)	Nil, dietary advice (not personalized, less frequently, general information)	Systolic blood pressure	Parallel, factorial, cross-over, multi- centre	0.2-3
Rees et al. 2013a ⁴⁰	Healthy diet (intake)	Diastolic blood pressure	11	6,406	NA	General population; healthy people; people with: risk or history of cardiovascular diseases / chronic heart diseases or endocrine / nutritional / metabolic diseases	44-56 (range 18-69)	Dietary advice (increase fruits & vegetables, reduce salt [with or without general health education], healthy lifestyle prompts, DASH diet)	Nil, dietary advice (not personalized, less frequently, general information)	Diastolic blood pressure	Parallel, factorial, cross-over, multi- centre	0.2-3
Rees et al. 2013b ⁴²	Selenium supplements	All-cause mortality	2	18,452	1,336	People with history of non- melanoma skin cancer, generally healthy	>50	Supplements: Selenium supplied as selenium yeast or selenomethionine (200µg/d)	Placebo	All-cause mortality	Parallel	7.6-12
Rees et al. 2013b ⁴²	Selenium supplements	Cardiovascular mortality	2	18,452	342	People with history of non- melanoma skin cancer, generally healthy	>50	Supplements: Selenium supplied as selenium yeast or selenomethionine (200µg/d)	Placebo	Cardiovascular mortality	Parallel	7.6-12
Rees et al. 2013b ⁴²	Selenium supplements	Combined cardiovascular events	2	18,452	2,329	People with history of non- melanoma skin cancer, generally healthy	>50	Supplements: Selenium supplied as selenium yeast or selenomethionine (200µg/d)	Placebo	Combined cardiovascular events	Parallel	7.6-12
Rees et al. 2019 ³	Mediterranean diet (intake)	High Density Lipoprotein	6	891	NA	Healthy; people with: cancer (breast), endocrine / nutritional / metabolic diseases or moderate or high risk for cardiovascular diseases / chronic heart diseases; postmenopausal women	50-67	Mediterranean diet: dietary advice (mostly menu plans), twice supplemented with olive oil (or nuts)	Hypolipidaemic diet, Central European diet, low- fat diet, American Cancer Society Guidelines on Nutrition and Physical Activity for Cancer Prevention diet, lacto-ovo- vegetarian diet, American Heart Association-type diet	High Density Lipoprotein- Cholesterol	Parallel and cross- over	0.2-5
Rees et al. 2019 ³	Mediterranean diet (intake)	Triglycerides	7	939	NA	Healthy people; people with: cancer (breast), endocrine / nutritional / metabolic diseases, moderate or high risk for cardiovascular diseases / chronic heart diseases or HIV; postmenopausal women	50-67	Mediterranean diet: dietary advice (mostly menu plans), twice supplemented with olive oil (or nuts)	Hypolipidaemic diet, Central European diet, low- fat diet, American Cancer Society Guidelines on Nutrition and Physical Activity for Cancer Prevention diet, lacto-ovo- vegetarian diet, American Heart Association-type diet, low-cholesterol diet	Triglycerides	Parallel and cross- over (1 parallel = pilot study)	0.2-5
Rees et al. 2019^3	Mediterranean diet (intake)	Systolic blood pressure	4	448	NA	People with endocrine / nutritional / metabolic diseases or HIV	55-61	Mediterranean dietary pattern	Usual diet, low-fat diet	Systolic blood pressure	Parallel	0.3-1

Rees et al. 2019 ³	Mediterranean diet (intake)	Cardiovascular mortality	1	7,447	NA	People with high risk of CVD	55-80	Mediterranean diet supplemented with extra virgin olive oil (11/w, or supplemented with nuts 30g/d)	Low-fat diet	Cardiovascular mortality	Parallel	4.8
Rees et al. 2019 ³	Mediterranean diet (intake)	Combined cardiovascular events	1	7,447	NA	People with high risk of CVD	55-80	Mediterranean diet supplemented with extra virgin olive oil (11/w, or supplemented with nuts 30g/d)	Low-fat diet	Combined cardiovascular events	Parallel	4.8
Rees et al. 2019^3	Mediterranean diet (intake)	All-cause mortality	1	7,447	NA	People with high risk of CVD	55-80	Mediterranean diet supplemented with extra virgin olive oil (11/w, or supplemented with nuts 30g/d)	Low-fat diet	All-cause mortality	Parallel	4.8
Rutjes et al. 2018 ¹⁰	B-Vitamin supplements	Dementia / MCI	1	1,803	99	People with recent stroke or TIA	64	Supplements (folic acid 2mg/d, B6 25mg, B12 500ug)	Placebo	Dementia / MCI	Parallel	2-5
Rutjes et al. 2018 ¹⁰	Vitamin D3 supplements	Dementia	1	4,143	76	People >65 without probable dementia or cognitive impairment	71	Supplements: Vitamin D3 (400IU/d and 1,000mg/d calcium)	Placebo	Dementia	Parallel	7.8
Sydenham et al. 2012 ¹⁴⁶	Omega-3 supplements	Mini-Mental State Examination	2	3,321	NA	Cognitively healthy people	60-80	Supplements: (400mg/d DHA + EPA; 500mg/d DHA + 200mg/d EPA)	Olive oil Placebo, placebo	Mini-Mental State Examination	Parallel and factorial	2-3.5
Tieu et al. 2017 ¹²	Healthy diet (intake)	Preterm birth	3	1,149	21	Women <17 weeks, 12-18 weeks gestation, obese, secunda gravidad if first infant weighted >4,000g	>18	Dietary counselling	Usual care	Preterm birth	Parallel	<1
Tieu et al. 2017 ¹²	Healthy diet (intake)	Small gestational age	2	715	51	Women 12-20 weeks gestation and at high risk of gestational diabetes mellitus	>18	Low glycaemic index diet	Moderate glycaemic index diet	Small gestational age	Parallel	<1
Tieu et al. 2017 ¹²	Healthy diet (intake)	Birth weight	5	1,324	NA	Women <17 weeks, 12-18 weeks gestation, overweight or obese, secunda gravidad if first infant weighted >4,000g	>18	Dietary counselling	Usual care	Birth weight	Parallel	<1
Tieu et al. 2017 ¹²	Healthy diet (intake)	Gestational diabetes	5	1,279	135	Women <17 weeks, 12-18 weeks gestation, overweight or obese, secunda gravidad if first infant weighted >4,000g	>18	Dietary counselling	Usual care	Gestational diabetes	Parallel	<1
Usinger et al. 2012 ¹⁴⁸	Fermented milk intake + supplements	Systolic blood pressure	15	1,232	NA	Healthy people; people with and without hypertension	20-81 range	Fermented milk, enriched food (juice or yogurt enriched with LTP or VPP + IPP), supplements: Casein hydrolysis of A. Oryzae protease (1.8-3.6mg/d), fermented milk with added LTP	placebo, normal food (not enriched), fermented milk without added LTP	Systolic blood pressure	Cross-over (NA in 11 studies)	0.1-0.4

Usinger et al. 2012 ¹⁴⁸	Fermented milk intake + supplements	Diastolic blood pressure	15	1,232	NA	Healthy people; people with and without hypertension	20-81 range	Fermented milk, enriched food (juice or yogurt enriched with LTP or VPP + IPP), supplements: Casein hydrolysis of A. Oryzae protease (1.8-3.6mg/d), fermented milk with added LTP	placebo, normal food (not enriched), fermented milk without added LTP	Diastolic blood pressure	Cross-over (NA in 11 studies)	0.1-0.4
Vinceti et al. 2018 ¹⁴	Selenium supplements	Cancer	5	21,860	2,332	Healthy people; people with: high risk for prostate cancer, completely resected stage I non-small-cell lung cancer, BRCA1+ mutation or history of skin cancer	62-66	Supplements: Selenium supplied as selenium yeast or sodium selenite or selenomethionine (200 - 400µg/d)	Placebo	Any cancer, lung cancer, prostate cancer	Parallel	3-13
Vinceti et al. 2018 ¹⁴	Selenium supplements	Cancer mortality	2	18,698	359	Healthy people; people with history of skin cancer	62-63	Supplements: Selenium supplied as selenium yeast or selenomethionine (200µg/d)	Placebo	Any cancer mortality	Parallel	8-13
Vinceti et al. 2018 ¹⁴	Selenium supplements	Colorectal cancer	3	20,259	159	Healthy people; people with: history of skin cancer or completely resected stage I non-small-cell lung cancer	62-66	Supplements: Selenium supplied as selenium yeast or selenomethionine (200µg/d)	Placebo	Colorectal cancer	Parallel	8-13
Yao et al. 2017 ⁴⁵	Fibre intake	Colorectal cancer	2	2,794	23	People with >1 colonic adenomas removed	61-66	High-fibre, low-fat diet	Low-fibre, usual diet	Colorectal cancer	Parallel	2.8-4
Yao et al. 2017 ⁴⁵	Fibre intake	Colorectal adenoma	5	3,641	1,297	People with >1 colonic adenomas removed, 1->2 adenoma	53-68	High-fibre, low-fat diet	Low-fibre, usual diet, placebo	Colorectal adenoma	Parallel and factorial	2.8-4

a/o: and / or; ALA: α -Linolenic acid; A. Oryzae: Aspergillus oryzae; BRCA1+: breast cancer type 1 susceptibility protein; CHD: coronary heart disease; CHO: carbohydrate; CVD: cardiovascular disease; d: day; DASH: Dietary Approaches to Stop Hypertension; DHA: docosahexaenoic acid; E: energy; EPA: eicosapentaenoic acid; HIV: human immunodeficiency virus; HOMA-IR: homeostasis model assessment-insulin resistance; IPP: Isoleucine-Proline-Proline; g: gram; GLA: γ -linolenic acid; i.m.: intramuscular; IU: international unit; l: litre; LA: linoleic acid; LCn3: long-chain omega-3; LTP: lactotripeptides; m: month; MCI: mild cognitive impairment; MCT: medium-chain triglycerides; mg: milligram; MI: myocardial infarction; MJ: megajoule; mmol: millimole; MUFA: monounsaturated fatty acid; NA: not applicable/assessed; n-6: omega-6; PCI: percutaneous coronary intervention; PTCA: percutaneous transluminal coronary angioplasty; PUFA: polyunsaturated fatty acid; RCT: randomized controlled trial; SFA: saturated fatty acid; TIA: Transient ischemic attack; TF: total fat; VPP: Valine-Proline-Proline; w: week; y: year, µg: microgram.

Reference	Intervention (as defined by the authors)	Outcome (as defined by the authors)	Studies, n	Sample size, n	Cases, n	Certainty of evidence
Abdelhamid et al. 2018a ¹⁵	Omega-3 intake + supplements	Cardiovascular mortality	25	67,772	4,544	Moderate
Abdelhamid et al. 2018a ¹⁵	Omega-3 intake + supplements	Cardiovascular disease	38	90,378	14,737	High
Abdelhamid et al. 2018a ¹⁵	α-Linolenic acid intake	Cardiovascular disease	5	19,327	884	Low
Abdelhamid et al. 2018a ¹⁵	Omega-3 intake + supplements	Body weight	12	15,812	NA	High
Abdelhamid et al. 2018a ¹⁵	Omega-3 intake + supplements	All-cause mortality	39	92,653	8,189	High
Abdelhamid et al. 2018a ¹⁵	α-Linolenic acid intake	Cardiovascular mortality	4	18,619	219	Moderate
Abdelhamid et al. 2018a ¹⁵	α-Linolenic acid intake	Coronary heart disease	4	19,061	397	Low
Abdelhamid et al. 2018b ²¹	Polyunsaturated fat intake + supplements	All-cause mortality	24	19,290	1,443	Moderate
Abdelhamid et al. 2018b ²¹	Polyunsaturated fat intake + supplements	Coronary heart disease	15	10,076	1,351	Moderate
Abdelhamid et al. 2018b ²¹	Polyunsaturated fat intake	Major cardiovascular events	2	2,879	817	Very low
Adler et al. 2014 ²³	Low-sodium intake	All-cause mortality	7	6,603	625	NA
Adler et al. 2014 ²³	Low-sodium intake	Cardiovascular mortality	3	2,656	106	NA
Adler et al. 2014 ²³	Low-sodium intake	Cardiovascular events	4	3,397	194	NA
Adler et al. 2014 ²³	Low-sodium intake	Systolic blood pressure	6	3,362	NA	NA
Adler et al. 2014 ²³	Low-sodium intake	Diastolic blood pressure	5	2,754	NA	NA
Al-Khudairy et al. 2017 ¹	Vitamin C supplements	Major cardiovascular events	1	14,641	NA	Low
Al-Khudairy et al. 2017 ¹	Vitamin C supplements	Cardiovascular mortality	1	14,641	NA	Very low
Al-Khudairy et al. 2017 ¹	Vitamin C supplements	All-cause mortality	1	14,641	NA	Very low
Avenell et al. 2014 ²⁷	Vitamin D supplements	Hip fracture	10	26,549	670	NA
Avenell et al. 2014 ²⁷	Vitamin D supplements	Any fracture	14	27,127	2,326	NA
Bjelakovic et al. 2012 ¹¹⁷	β-carotene supplements	All-cause mortality	31	195,503	23,182	NA
Bjelakovic et al. 2012 ¹¹⁷	Vitamin E supplements	All-cause mortality	64	211,957	22,058	NA
Bjelakovic et al. 2012 ¹¹⁷	Vitamin C supplements	All-cause mortality	41	90,191	8,020	NA
Bjelakovic et al. 2012 ¹¹⁷	Vitamin A supplements	All-cause mortality	18	61,190	7,215	NA
Bjelakovic et al. 2014a ¹¹⁸	Vitamin D supplements	All-cause mortality	56	95,286	11,998	NA

Supplementary Table 9: Certainty of evidence of the included bodies of evidence from randomized controlled trials.

Bjelakovic et al. 2014a ¹¹⁸	Vitamin D supplements	Cardiovascular mortality	10	47,267	1,957	Low
Bjelakovic et al. 2014a ¹¹⁸	Vitamin D supplements	Cancer mortality	4	44,492	1,192	Moderate
Bjelakovic et al. 2014b ²⁹	Vitamin D supplements	Cancer occurrence	18	50,623	3,870	Moderate
Bjelakovic et al. 2014b ²⁹	Vitamin D3 supplements	Breast cancer	7	43,669	1,135	NA
Bjelakovic et al. 2014b ²⁹	Vitamin D3 supplements	Lung cancer	5	45,509	329	NA
Cormick et al. 2015 ¹²¹	Calcium supplements	Systolic blood pressure	16	3,048	NA	High
Cormick et al. 2015 ¹²¹	Calcium supplements	Diastolic blood pressure	15	2,947	NA	High
De-Regil et al. 2015 ¹²³	Folate supplements	Neural tube defect	5	6,708	54	High
De-Regil et al. 2015 ¹²³	Folate supplements	Congenital cardiovascular anomalies	3	5,612	22	Low
El Dib et al. 2015 ¹²⁶	Zinc supplements	HOMA-IR	1	56	NA	NA
Hartley et al. 2013 ¹²⁸	Fruit & Vegetables intake	Systolic blood pressure	2	891	NA	NA
Hartley et al. 2013 ¹²⁸	Fruit & Vegetables intake	Diastolic blood pressure	2	891	NA	NA
Hartley et al. 2016 ¹³⁰	Fibre intake + supplements	Systolic blood pressure	8	661	NA	NA
Hartley et al. 2016 ¹³⁰	Fibre intake + supplements	Diastolic blood pressure	8	661	NA	NA
Hemmingsen et al. 2017 ¹³¹	Healthy diet (intake)	Type 2 diabetes	1	NA	NA	NA
Hemmingsen et al. 2017 ¹³¹	Healthy diet (intake)	All-cause mortality	1	NA	NA	NA
Hofmeyr et al. 2018 ³²	Calcium supplements	Pre-eclampsia	13	15,730	889	Low
Hofmeyr et al. 2018 ³²	Calcium supplements	High blood pressure	12	15,470	2,732	NA
Hooper et al. 2012 ³⁴	Low-fat / modified fat (intake + supplements)	Cardiovascular mortality	14	65,978	1,407	High
Hooper et al. 2012 ³⁴	Low-fat / modified fat (intake + supplements)	All-cause mortality	20	71,790	4,292	High
Hooper et al. 2012 ³⁴	Low-fat / modified fat (intake + supplements)	Combined cardiovascular events	18	65,508	4,887	Moderate
Hooper et al. 2012 ³⁴	Low-fat intake	Body weight	16	11,058	NA	NA
Hooper et al. 2015a ¹³⁶	Low-fat intake	Body weight	25	53,647	NA	High
Hooper et al. 2015b ³⁵	Low saturated fat intake	All-cause mortality	11	55,858	3,276	Moderate
Hooper et al. 2015b ³⁵	Low saturated fat intake	Cardiovascular mortality	10	53,421	1,096	Moderate
Hooper et al. 2015b ³⁵	Low saturated fat intake	Combined cardiovascular events	11	53,300	4,377	Moderate
Hooper et al. 2018 ³⁷	Omega-6 intake + supplements	Combined cardiovascular events	7	4,962	1,404	Low

Hooper et al. 2018 ³⁷	Omega-6 intake + supplements	All-cause mortality	10	4,506	979	Low
Hooper et al. 2018 ³⁷	Omega-6 intake + supplements	Cardiovascular mortality	7	4,019	472	Very low
Jin et al. 2012 ¹³⁷	Total flavonoids intake	Colorectal adenoma	1	929	358	NA
Jin et al. 2012 ¹³⁷	Isoflavonoes intake	Colorectal adenoma	1	929	353	NA
Jin et al. 2012 ¹³⁷	Flavonols intake	Colorectal adenoma	1	929	363	NA
Keats et al. 2019 ³⁸	Micronutrients supplements	Preterm birth	18	91,425	NA	Moderate
Keats et al. 2019 ³⁸	Micronutrients supplements	Low birth weight	18	68,801	NA	High
Keats et al. 2019 ³⁸	Micronutrients supplements	Small gestational age	17	57,348	NA	Moderate
Kelly et al. 2017 ¹³⁸	Whole grain intake	Systolic blood pressure	8	768	NA	NA
Kelly et al. 2017 ¹³⁸	Whole grain intake	Diastolic blood pressure	8	768	NA	NA
Kelly et al. 2017 ¹³⁸	Whole grain intake	Body weight	5	439	NA	NA
Mathew et al. 2012 ¹⁴⁰	β-carotene supplements	Cataract	2	61,947	NA	NA
Mathew et al. 2012 ¹⁴⁰	Vitamin E supplements	Cataract	3	55,721	NA	NA
Mathew et al. 2012 ¹⁴⁰	Vitamin C supplements	Cataract	1	14,641	NA	NA
Palacios et al. 2019 ⁶	Vitamin D supplements	Gestational diabetes	5	1,846	77	Moderate
Palacios et al. 2019 ⁶	Vitamin D supplements	Preterm birth	4	2,294	189	Low
Palacios et al. 2019 ⁶	Vitamin D supplements	Birth length	11	3,058	NA	NA
Palacios et al. 2019 ⁶	Vitamin D supplements	Birth weight	13	3,240	NA	NA
Palacios et al. 2019 ⁶	Vitamin D supplements	Head circumference at birth	10	2,998	NA	NA
Palacios et al. 2019 ⁶	Vitamin D supplements	Pre-eclampsia	5	1,553	96	Low
Rees et al. 2013a ⁴⁰	Healthy diet (intake)	Systolic blood pressure	11	6,406	NA	NA
Rees et al. 2013a ⁴⁰	Healthy diet (intake)	Diastolic blood pressure	11	6,406	NA	NA
Rees et al. 2013b ⁴²	Selenium supplements	All-cause mortality	2	18,452	1,336	NA
Rees et al. 2013b ⁴²	Selenium supplements	Cardiovascular mortality	2	18,452	342	NA
Rees et al. 2013b ⁴²	Selenium supplements	Combined cardiovascular events	2	18,452	2,329	NA
Rees et al. 2019 ³	Mediterranean diet (intake)	High Density Lipoprotein	6	891	NA	NA
Rees et al. 2019 ³	Mediterranean diet (intake)	Triglycerides	7	939	NA	NA

Rees et al. 2019 ³	Mediterranean diet (intake)	Systolic blood pressure	4	448	NA	Low
Rees et al. 2019 ³	Mediterranean diet (intake)	Cardiovascular mortality	1	7,447	NA	Low
Rees et al. 2019 ³	Mediterranean diet (intake)	Combined cardiovascular events	1	7,447	NA	NA
Rees et al. 2019 ³	Mediterranean diet (intake)	All-cause mortality	1	7,447	NA	Low
Rutjes et al. 2018 ¹⁰	B-Vitamin supplements	Dementia / MCI	1	1,803	99	Moderate
Rutjes et al. 2018 ¹⁰	Vitamin D3 supplements	Dementia	1	4,143	76	Low
Sydenham et al. 2012 ¹⁴⁶	Omega-3 supplements	Mini-Mental State Examination	2	3,321	NA	NA
Tieu et al. 2017 ¹²	Healthy diet (intake)	Preterm birth	3	1,149	21	NA
Tieu et al. 2017 ¹²	Healthy diet (intake)	Small gestational age	2	715	51	NA
Tieu et al. 2017 ¹²	Healthy diet (intake)	Birth weight	5	1,324	NA	NA
Tieu et al. 2017 ¹²	Healthy diet (intake)	Gestational diabetes	5	1,279	135	Very low
Usinger et al. 2012 ¹⁴⁸	Fermented milk intake + supplements	Systolic blood pressure	15	1,232	NA	NA
Usinger et al. 2012 ¹⁴⁸	Fermented milk intake + supplements	Diastolic blood pressure	15	1,232	NA	NA
Vinceti et al. 2018 ¹⁴	Selenium supplements	Cancer	5	21,860	2,332	High (only for low RoB=3/5)
Vinceti et al. 2018 ¹⁴	Selenium supplements	Cancer mortality	2	18,698	359	High (only for low RoB=1/2)
Vinceti et al. 2018 ¹⁴	Selenium supplements	Colorectal cancer	3	20,259	159	High (only for low RoB=2/3)
Yao et al. 2017 ⁴⁵	Fibre intake	Colorectal cancer	2	2,794	23	Low
Yao et al. 201745	Fibre intake	Colorectal adenoma	5	3,641	1,297	Low

HOMA-IR: homeostasis model assessment-insulin resistance; MCI: mild cognitive impairment; NA: not assessed; RoB: risk of bias.

Supplementary Table 10: Risk of bias of included bodies of evidence from randomized	d controlled trials: Reported as number of low risk of	f bias studies per domain.
---	--	----------------------------

									1		
Reference	Intervention (as defined by the authors)	Outcome (as defined by the authors)	Total Studies, n	Random sequence generation, n	Allocation concealment, n	Blinding of participants and personnel, n	Blinding of outcome assessment, n	Incomplete outcome data, n	Selective reporting, n	Other bias, n	Additional quality assessment, n
Abdelhamid et al. 2018a ¹⁵	Omega-3 intake + supplements	Cardiovascular mortality	25	22	16	11	23	18	7	24	Attention: 21 Compliance: 12
Abdelhamid et al. 2018a ¹⁵	Omega-3 intake + supplements	Cardiovascular disease	38	33	24	18	30	26	10	37	Attention: 34 Compliance: 16
Abdelhamid et al. 2018a ¹⁵	α-Linolenic acid intake	Cardiovascular disease	5	4	4	4	4	5	0	5	Attention: 3 Compliance: 3
Abdelhamid et al. 2018a ¹⁵	Omega-3 intake + supplements	Body weight	12	11	9	8	9	8	4	12	Attention: 11 Compliance: 7
Abdelhamid et al. 2018a ¹⁵	Omega-3 intake + supplements	All-cause mortality	39	34	27	19	32	27	11	36	Attention: 35 Compliance: 18
Abdelhamid et al. 2018a ¹⁵	α-Linolenic acid intake	Cardiovascular mortality	4	3	3	4	4	4	0	4	Attention: 3 Compliance: 2
Abdelhamid et al. 2018a ¹⁵	α-Linolenic acid intake	Coronary heart disease	4	4	4	3	3	4	0	4	Attention: 2 Compliance: 3
Abdelhamid et al. 2018b ²¹	Polyunsaturated fat intake + supplements	All-cause mortality	24	20	11	7	16	17	3	21	Attention: 17 Compliance 11
Abdelhamid et al. 2018b ²¹	Polyunsaturated fat intake + supplements	Coronary heart disease	15	12	5	6	12	9	0	14	Attention: 11 Compliance: 7
Abdelhamid et al. 2018b ²¹	Polyunsaturated fat intake	Major cardiovascular events	2	2	0	1	2	2	0	2	Attention: 1 Compliance: 2
Adler et al. 2014 ²³	Low-sodium intake	All-cause mortality	7	3	4	5	6	3	6	NA	Compliance: 6 Groups balanced at baseline: 6 intention-to-treat analysis: 6 free from follow-up bias: 3
Adler et al. 2014 ²³	Low-sodium intake	Cardiovascular mortality	3	2	1	2	3	1	3	NA	Compliance: 3 Groups balanced at baseline: 3 intention-to-treat analysis: 2 free from follow-up bias: 1
Adler et al. 2014 ²³	Low-sodium intake	Cardiovascular disease	4	3	2	2	4	1	3	NA	Compliance: 4 Groups balanced at baseline: 4 intention-to-treat analysis: 3 free from follow-up bias: 1
Adler et al. 2014 ²³	Low-sodium intake	Systolic blood pressure	6	3	5	4	5	3	5	NA	Compliance: 6 Groups balanced at baseline: 6 intention-to-treat analysis: 5 free from follow-up bias: 1
Adler et al. 2014 ²³	Low-sodium intake	Diastolic blood pressure	5	2	4	3	4	3	4	NA	Compliance: 5 Groups balanced at baseline: 5 intention-to-treat analysis: 5 free from follow-up bias: 1
Al-Khudairy et al. 2017 ¹	Vitamin C supplements	Major cardiovascular events	1	1	0	1	1	1	1	0	NA
Al-Khudairy et al. 2017 ¹	Vitamin C supplements	Cardiovascular mortality	1	1	0	1	1	1	1	0	NA

Al-Khudairy et al. 2017 ¹	Vitamin C supplements	All-cause mortality	1	1	0	1	1	1	1	0	NA
Avenell et al. 2014 ²⁷	Vitamin D supplements	Hip fracture	10	8	9	NA	NA	NA	NA	NA	NA
Avenell et al. 2014 ²⁷	Vitamin D supplements	Any fracture	14	11	11	NA	NA	NA	NA	NA	NA
Bjelakovic et al. 2012 ¹¹⁷	β-carotene supplements	All-cause mortality	31	27	29	2	9	28	30	28	NA
Bjelakovic et al. 2012 ¹¹⁷	Vitamin E supplements	All-cause mortality	64	49	50	5	9	60	63	53	NA
Bjelakovic et al. 2012 ¹¹⁷	Vitamin C supplements	All-cause mortality	41	32	32	3	7	37	40	35	NA
Bjelakovic et al. 2012 ¹¹⁷	Vitamin A supplements	All-cause mortality	18	14	13	1	6	16	18	14	NA
Bjelakovic et al. 2014a ¹¹⁸	Vitamin D supplements	All-cause mortality	56	43	37	3	4	54	51	54	Industry bias: 7
Bjelakovic et al. 2014a ¹¹⁸	Vitamin D supplements	Cardiovascular mortality	10	9	7	,	7	10	9	10	Industry bias: 1
Bjelakovic et al. 2014a ¹¹⁸	Vitamin D supplements	Cancer mortality	4	4	4		4	4	4	4	Industry bias: 1
Bjelakovic et al. 2014b ²⁹	Vitamin D supplements	Cancer occurrence	18	16	15	14	14	17	17	18	For-profit bias: 2
Bjelakovic et al. 2014b ²⁹	Vitamin D3 supplements	Breast cancer	7	7	7	6	6	6	6	7	For-profit bias: 1
Bjelakovic et al. 2014b ²⁹	Vitamin D3 supplements	Lung cancer	5	5	5	4	4	4	4	5	For-profit bias: 1
Cormick et al. 2015 ¹²¹	Calcium supplements	Systolic blood pressure	16	10	7	11	11	10	16	12	NA
Cormick et al. 2015 ¹²¹	Calcium supplements	Diastolic blood pressure	15	9	6	10	10	9	15	11	NA
De-Regil et al. 2015 ¹²³	Folate supplements	Neural tube defect	5	3	2	5	0	0	0	0	NA
De-Regil et al. 2015 ¹²³	Folate supplements	Congenital cardiovascular anomalies	3	2	1	3	0	0	0	0	NA
El Dib et al. 2015 ¹²⁶	Zinc supplements	HOMA-IR	1	0	0	1	0	1	1	1	NA
Hartley et al. 2013 ¹²⁸	Fruit & Vegetables intake	Systolic blood pressure	2	1	0	0	1	2	0	0	NA
Hartley et al. 2013 ¹²⁸	Fruit & Vegetables intake	Diastolic blood pressure	2	1	0	0	1	2	0	0	NA
Hartley et al. 2016^{130}	Fibre intake + supplements	Systolic blood pressure	8	3	3	4	2	1	0	0	NA
Hartley et al. 2016^{130}	Fibre intake + supplements	Diastolic blood pressure	8	3	3	4	2	1	0	0	NA
Hemmingsen et al. 2017 ¹³¹	Healthy diet (intake)	Type 2 diabetes	1	0	0	1	0	0	0	0	NA

Hemmingsen et al. 2017 ¹³¹	Healthy diet (intake)	All-cause mortality	1	0	0	1	0	0	0	0	NA
Hofmeyr et al. 2018 ³²	Calcium supplements	Pre-eclampsia	13	8	11	11	11	10	9	4	NA
Hofmeyr et al. 2018 ³²	Calcium supplements	High blood pressure	12	7	10	10	10	10	9	4	NA
Hooper et al. 2012^{34}	Low-fat / modified fat (intake + supplements)	Cardiovascular mortality	14	12	5		2	6	14	14	Free of systematic difference in care: 3 Free of dietary differences other than fat: 8
Hooper et al. 2012 ³⁴	Low-fat / modified fat (intake + supplements)	All-cause mortality	20	18	10		3	10	20	20	Free of systematic difference in care: 5 Free of dietary differences other than fat: 11
Hooper et al. 2012 ³⁴	Low-fat / modified fat (intake + supplements)	Combined cardiovascular events	18	16	6		3	6	18	18	Free of systematic difference in care: 5 Free of dietary differences other than fat: 10
Hooper et al. 2012 ³⁴	Low-fat intake	Body weight	16	16	11		1	4	16	16	Free of systematic difference in care: 7 Free of dietary differences other than fat: 9
Hooper et al. 2015a ¹³⁶	Low-fat intake	Body weight	25	18	10		1	7	3	25	Free of systematic difference in care: 6 Free of dietary differences other than fat: 17
Hooper et al. 2015b ³⁵	Low saturated fat intake	All-cause mortality	11	11	5		1	7	11	11	Free of systematic difference in care: 2 Stated aim to reduce SFA: 8 Achieved SFA reduction: 8 Achieved TC reduction: 6
Hooper et al. 2015b ³⁵	Low saturated fat intake	Cardiovascular mortality	10	10	4		1	6	10	10	Free of systematic difference in care: 2 Stated aim to reduce SFA: 8 Achieved SFA reduction: 7 Achieved TC reduction: 6
Hooper et al. 2015b ³⁵	Low saturated fat intake	Combined cardiovascular events	11	11	4		1	5	11	11	Free of systematic difference in care: 2 Stated aim to reduce SFA: 9 Achieved SFA reduction: 7 Achieved TC reduction: 7
Hooper et al. 2018 ³⁷	Omega-6 intake + supplements	Combined cardiovascular events	7	6	2	4	6	5	0	7	Attention: 4 Compliance: 3
Hooper et al. 2018 ³⁷	Omega-6 intake + supplements	All-cause mortality	10	8	2	4	7	8	0	9	Attention: 5 Compliance: 5
Hooper et al. 2018 ³⁷	Omega-6 intake + supplements	Cardiovascular mortality	7	6	1	2	6	5	0	6	Attention: 2 Compliance: 4
Jin et al. 2012 ¹³⁷	Total flavonoids intake	Colorectal adenoma	1	0	0	0	0	0	0	1	NA
Jin et al. 2012 ¹³⁷	Isoflavonoes intake	Colorectal adenoma	1	0	0	0	0	0	0	1	NA
Jin et al. 2012 ¹³⁷	Flavonols intake	Colorectal adenoma	1	0	0	0	0	0	0	1	NA
Keats et al. 2019 ³⁸	Micronutrients supplements	Preterm birth	18	15	13	16	17	11	18	18	NA

Keats et al. 2019 ³⁸	Micronutrients supplements	Low birth weight	18	15	13	16	17	11	18	18	NA
Keats et al. 2019 ³⁸	Micronutrients supplements	Small gestational age	17	14	12	15	16	10	17	17	NA
Kelly et al. 2017 ¹³⁸	Whole grain intake	Systolic blood pressure	8	4	3	NA	4	3	0	3	Intention to treat analysis: 1 Groups comparable at baseline: 4
Kelly et al. 2017 ¹³⁸	Whole grain intake	Diastolic blood pressure	8	4	3	NA	4	3	0	3	Intention to treat analysis: 1 Groups comparable at baseline: 4
Kelly et al. 2017 ¹³⁸	Whole grain intake	Body weight	5	4	1	NA	1	1	0	1	Intention to treat analysis: 0 Groups comparable at baseline: 3
Mathew et al. 2012 ¹⁴⁰	β-carotene supplements	Cataract	2	2	2		2	2	2	2	NA
Mathew et al. 2012 ¹⁴⁰	Vitamin E supplements	Cataract	3	3	3		3	2	3	2	NA
Mathew et al. 2012 ¹⁴⁰	Vitamin C supplements	Cataract	1	1	1		1	1	1	1	NA
Palacios et al. 2019 ⁶	Vitamin D supplements	Gestational diabetes	5	5	2	4	4	4	4	3	NA
Palacios et al. 2019 ⁶	Vitamin D supplements	Preterm birth	4	4	3	3	3	3	3	3	NA
Palacios et al. 2019 ⁶	Vitamin D supplements	Birth length	11	11	8	8	9	8	8	7	NA
Palacios et al. 2019 ⁶	Vitamin D supplements	Birth weight	13	12	8	9	10	10	10	8	NA
Palacios et al. 2019 ⁶	Vitamin D supplements	Head circumference at birth	10	10	7	7	8	8	8	6	NA
Palacios et al. 2019 ⁶	Vitamin D supplements	Pre-eclampsia	5	5	2	4	4	4	4	3	NA
Rees et al. $2013a^{40}$	Healthy diet (intake)	Systolic blood pressure	11	1	1	0	1	2	1	0	NA
Rees et al. $2013a^{40}$	Healthy diet (intake)	Diastolic blood pressure	11	1	1	0	1	2	1	0	NA
Rees et al. 2013b ⁴²	Selenium supplements	All-cause mortality	2	1	1	1	1	2	0	0	NA
Rees et al. 2013b ⁴²	Selenium supplements	Cardiovascular mortality	2	1	1	1	1	2	0	0	NA
Rees et al. 2013b ⁴²	Selenium supplements	Combined cardiovascular events	2	1	1	1	1	2	0	0	NA
Rees et al. 2019 ³	Mediterranean diet (intake)	High Density Lipoprotein	6	3	1	0	2	4	6	0	NA
Rees et al. 2019 ³	Mediterranean diet (intake)	Triglycerides	7	4	1	0	2	4	7	0	NA
Rees et al. 2019 ³	Mediterranean diet (intake)	Systolic blood pressure	4	2	1	0	1	2	3	0	NA
Rees et al. 2019 ³	Mediterranean diet (intake)	Cardiovascular mortality	1	1	0	0	0	1	1	0	NA

Rees et al. 2019 ³	Mediterranean diet (intake)	Combined cardiovascular events	1	1	0	0	0	1	1	0	NA
Rees et al. 2019 ³	Mediterranean diet (intake)	All-cause mortality	1	1	0	0	0	1	1	0	NA
Rutjes et al. 2018 ¹⁰	B-Vitamin supplements	Dementia / MCI	1	1	1	1	1	1	1	1	NA
Rutjes et al. 2018 ¹⁰	Vitamin D3 supplements	Dementia	1	1	0	1	1	1	1	1	NA
Sydenham et al. 2012^{146}	Omega-3 supplements	Mini-Mental State Examination	2	2	2	2	2	2	2	2	NA
Tieu et al. 2017 ¹²	Healthy diet (intake)	Preterm birth	3	3	3	0	0	2	1	2	NA
Tieu et al. 2017 ¹²	Healthy diet (intake)	Small gestational age	2	2	0	0	1	1	1	1	NA
Tieu et al. 2017 ¹²	Healthy diet (intake)	Birth weight	5	5	4	0	1	3	1	5	NA
Tieu et al. 2017 ¹²	Healthy diet (intake)	Gestational diabetes	5	5	4	0	1	3	1	5	NA
Usinger et al. 2012 ¹⁴⁸	Fermented milk intake + supplements	Systolic blood pressure	15	4	4	11 (Blinding of participants)	8 (Blinding of investigators)	13	14	9	NA
Usinger et al. 2012 ¹⁴⁸	Fermented milk intake + supplements	Diastolic blood pressure	15	4	4	11 (Blinding of participants)	8 (Blinding of investigators)	13	14	9	NA
Vinceti et al. 2018 ¹⁴	Selenium supplements	Cancer	5	4	4		3	NA	5	NA	NA
Vinceti et al. 2018 ¹⁴	Selenium supplements	Cancer mortality	2	2	2		1	NA	2	NA	NA
Vinceti et al. 2018 ¹⁴	Selenium supplements	Colorectal cancer	3	3	3		2	NA	3	NA	NA
Yao et al. 2017 ⁴⁵	Fibre intake	Colorectal cancer	2	1	1	0	0	0	2	0	NA
Yao et al. 2017 ⁴⁵	Fibre intake	Colorectal adenoma	5	4	2	1	1	0	5	0	NA

HOMA-IR: homeostasis model assessment-insulin resistance; MCI: mild cognitive impairment; NA: not assessed; RCT: randomized controlled trial; SFA: saturated fatty acid; TC: total cholesterol.

Reference	Exposure (as defined by the authors)	Outcome (as defined by the authors)	Studies, n	Sample size, n	Cases, n	Description of population	Age, mean	Description of exposure	Description of comparator	Description of outcome	Study design	Study length / follow-up (years)
Aburto et al. 2013 ²⁴	Low-sodium intake	All-cause mortality	2	22,550	NA	General population	25-74	Sodium intake	Sodium intake	All-cause mortality	Cohort studies	9-22
Aburto et al. 2013^{24}	Low-sodium intake	Cardiovascular mortality	3	81,280	NA	General population	25-79	Sodium intake	Sodium intake	Cardiovascular disease mortality	Cohort studies	9-22
Aburto et al. 2013 ²⁴	Low-sodium intake	Cardiovascular disease	3	81,280	NA	General population	25-79	Sodium intake	Sodium intake	Cardiovascular disease	Cohort studies	9-22
Aune et al. 2018 ²⁶	Vitamin C intake	Cardiovascular diseases	9	246,711	7,986	General population	30-93	Dietary Vitamin C (ascorbic acid)	Dietary Vitamin C (ascorbic acid)	Cardiovascular disease	Prospective cohort studies, nested case- control	4-17
Aune et al. 2018 ²⁶	Vitamin C intake	Cardiovascular mortality	9	NA	NA	NA, but we expect it to be similar to the population of the outcome cardiovascular disease	NA	Dietary Vitamin C (ascorbic acid)	Dietary Vitamin C (ascorbic acid)	Mortality from coronary heart disease, stroke and cardiovascular disease	NA	NA
Aune et al. 2018 ²⁶	Vitamin C intake	All-cause mortality	16	315,214	38,079	General population	16-101	Dietary Vitamin C (ascorbic acid)	Dietary Vitamin C (ascorbic acid)	All-cause mortality	Prospective cohort studies, nested case- control	4-32
Aune et al. 2018 ²⁶	β-carotene intake	All-cause mortality	8	142,798	11,729	General population	30-93	Dietary β-carotene	Dietary β-carotene	All-cause mortality	Prospective cohort studies, nested case- control	4-21
Aune et al. 2018 ²⁶	Vitamin E intake	All-cause mortality	9	229,830	15,321	General population	30-101	Dietary Vitamin E (tocopherol)	Dietary Vitamin E (tocopherol)	All-cause mortality	Prospective cohort studies, nested case- control	4-14
Aune et al. 2018 ²⁶	Vitamin C intake	All-cause mortality	16	315,214	38,079	General population	16-101	Dietary Vitamin C (ascorbic acid)	Dietary Vitamin C (ascorbic acid)	All-cause mortality	Prospective cohort studies, nested case- control	4-32
Aune et al. 2011 ¹⁵⁰	Fibre intake	Colorectal cancer	19	1,797,670	14,794	General population, smokers	16-89	Dietary fibre intake	Dietary fibre intake	Colorectal cancer	Prospective cohort studies, case-cohort and nested case- control included. No separate statement for this outcome possible.	4-17
Ben et al. 2014 ⁴⁶	Fibre intake	Colorectal adenoma	4	78,348	2,402	General population having a colonoscopy and / or sigmoidoscopy	30+	Dietary fibre, crude fibre, fruit fibre, vegetable fibre, grains fibre	Dietary fibre, crude fibre, fruit fibre, vegetable fibre, grains fibre	Colorectal adenoma	Cohort studies	2-26
Blencowe et al. 2010 ¹²⁴	Folate supplements	Neural tube defect	3	NA	NA	Pregnant women	NA	Folic acid supplementation	Folic acid supplementation	Neural tube disorders mortality and morbidity	Cohort studies	NA

Supplementary Table 11: Characteristics of included bodies of evidence from cohort studies.

Chia et al. 2019 ¹¹	Healthy diet (intake)	Preterm birth	5	113,703	NA	Pregnant women, generally healthy	mean 21- 30	Healthy dietary patterns by the 2015 United States Dietary Guideline (high intake of 3 or more key components: vegetables, fruits, wholegrains, low- fat dairy, lean protein food)	Healthy dietary patterns by the 2015 United States Dietary Guideline (high intake of 3 or more key components: vegetables, fruits, wholegrains, low-fat dairy, lean protein food)	Preterm birth (<37 weeks of gestation)	Prospective cohort studies	NA
Chia et al. 2019 ¹¹	Healthy diet (intake)	Small gestational age	8	75,446	NA	Pregnant women, generally healthy	mean 21- 32	Healthy dietary patterns by the 2015 United States Dietary Guideline (high intake of 3 or more key components: vegetables, fruits, wholegrains, low- fat dairy, lean protein food)	Healthy dietary patterns by the 2015 United States Dietary Guideline (high intake of 3 or more key components: vegetables, fruits, wholegrains, low-fat dairy, lean protein food)	Small-for-gestational- age (<10th percentile)	Prospective cohort studies	NA
Chia et al. 2019 ¹¹	Healthy diet (intake)	Birth weight	12	24,950	NA	Pregnant women, generally healthy	mean 23- 33	Healthy dietary patterns by the 2015 United States Dietary Guideline (high intake of 3 or more key components: vegetables, fruits, wholegrains, low- fat dairy, lean protein food)	Healthy dietary patterns by the 2015 United States Dietary Guideline (high intake of 3 or more key components: vegetables, fruits, wholegrains, low-fat dairy, lean protein food)	Birth weight	Prospective cohort studies	NA
Chowdhury et al. 2014a ¹⁸	Omega-3 intake	Coronary heart disease mortality	NA	104,681	1,483	NA, but we expect it to be similar to the population of the outcome coronary heart disease	NA	Dietary long-chain Omega-3 intake	Dietary long-chain Omega-3 intake	Fatal coronary outcome	Prospective cohort studies	NA
Chowdhury et al. 2014a ¹⁸	Omega-3 intake	Coronary heart disease	16	422,786	9,089	General healthy population; people with history of CHD (1x)	18-84	Dietary long-chain Omega-3 intake	Dietary long-chain Omega-3 intake	Coronary diseases (myocardial infarction, coronary heart disease, sudden cardiac death, angina pectoris)	Prospective cohort studies	5-23
Chowdhury et al. 2014a ¹⁸	Omega-6 intake	Coronary heart disease	8	206,376	8,155	General healthy population; people with risk of CHD (1x)	20-75	Dietary Omega-6 intake	Dietary Omega-6 intake	Coronary diseases (myocardial infarction, coronary heart disease, sudden cardiac death)	Prospective cohort studies	5-20

Chowdhury et al. 2014b ¹¹⁹	Vitamin D status	All-cause mortality	68	840,908	64,636	Mostly general population; healthy people; postmenopausal women; people with chronic kidney disease, heart failure, diabetes, acute coronary syndrome, CHD, COPD, cancer (colorectal, breast, lung, skin, non- Hodgkin, leukaemia, head & neck); elderly people; medical-in patients	29-84	Circulating 25- hydroxyvitamin D (Serum and Plasma)	Circulating 25- hydroxyvitamin D (Serum and Plasma)	All-cause mortality	Cohort studies	0.3-29
Chowdhury et al. 2014b ¹¹⁹	Vitamin D status	Cardiovascular mortality	29	101,649	10,203	Mostly general population; healthy people; postmenopausal women; people with chronic kidney disease, diabetes, acute coronary syndrome, CHD; elderly people	40-79	Circulating 25- hydroxyvitamin D (Serum and Plasma)	Circulating 25- hydroxyvitamin D (Serum and Plasma)	Death from cardiovascular disease	Cohort studies	0.3-29
de Souza et al. 2015 ³⁶	Low saturated fat intake	All-cause mortality	5	99,906	14,090	Apparently healthy adults	16-89 (mean 56-60)	Saturated fat intake (self- reported or plasma)	Saturated fat intake (self-reported or plasma)	All-cause mortality	Prospective cohort studies	7-19
de Souza et al. 2015 ³⁶	Low saturated fat intake	Cardiovascular mortality	3	90,501	3,792	Apparently healthy adults	35-89 (mean 56-59)	Saturated fat intake (self- reported)	Saturated fat intake (self-reported)	Cardiovascular disease mortality	Prospective cohort studies	7-19
de Souza et al. 2015 ³⁶	Low saturated fat intake	Coronary heart disease	12	267,416	6,383	Apparently healthy adults	30-85	Saturated fat intake (self- reported or biomarker)	Saturated fat intake (self-reported or biomarker)	Coronary heart disease	Prospective cohort studies	1-20
Doets et al. 2013 ¹⁴⁵	Vitamin B12 intake	Dementia	3	5,254	431	Elderly general population	mean 70- 75	Vitamin B12 intake	Vitamin B12 intake	Alzheimer disease	Prospective cohort studies	4-9
Feng et al. 2017 ²⁸	Vitamin D status	Hip fracture	11	34,557	2,996	General population	65-96 (mean 57-75)	Serum 25(OH) vitamin D level	Serum 25(OH) vitamin D level	Fractures (medical / radiological records or self-reported)	Prospective cohort studies, nested case- control	4-17
Feng et al. 2017 ²⁸	Vitamin D status	Any fracture	11	30,489	4,279	General population	50-79 (mean 57-76)	Serum 25(OH) vitamin D level	Serum 25(OH) vitamin D level	Fractures (medical / radiological records or self-reported)	Prospective cohort studies, nested case- control	4-17
Feng et al. 2015 ¹²⁵	Folate supplements	Congenital heart defect	1	6,112	NA	Pregnant women	NA	Maternal folic acid supplementation	No maternal folic acid supplementation	Congenital heart defect	Cohort study	3
Fernandez-Cao et al. 2019 ¹²⁷	Zinc supplements	Type 2 diabetes	2	258,139	17,806	General population	50-71 (mean 58)	Supplementary zinc intake	Supplementary zinc intake	Type 2 diabetes mellitus	Prospective cohort studies	10-19

Goodwill et al. 2017 ⁹	Vitamin D status	Dementia / MCI	14	30,452	NA	General population, general older population, nurses	mean 45- 80	Vitamin D status (serum / plasma)	Vitamin D status (serum / plasma)	Cognition (via valid neuropsychological test)	Longitudinal cohort studies	2-13
Han et al. 2019 ¹²⁰	Vitamin D status	Cancer mortality	16	10,794	8,729	General population; patients with coronary angiography	44-75	Circulating 25- hydroxyvitamin D (Serum and Plasma)	Circulating 25- hydroxyvitamin D (Serum and Plasma)	Cancer mortality	Prospective cohort studies	4-28
Han et al. 2019 ¹²⁰	Vitamin D status	Cancer incidence	8	70,018	7,511	General population	54-74	Circulating 25- hydroxyvitamin D (Serum and Plasma)	Circulating 25- hydroxyvitamin D (Serum and Plasma)	Cancer incidence	Prospective cohort studies	5-28
Hossain et al. 2019 ³⁰	Vitamin D supplements	Breast cancer	2	37,707	1,611 (1 study unclear)	General population	35-74 (56-62)	Vitamin D supplement use	No Supplement use	Breast cancer (self - reported)	Prospective cohort studies, nested case- control	18
Hu et al. 2018 ⁵	Vitamin D status	Gestational diabetes	13	12,958	1,358	Pregnant women	NA	Vitamin D sufficiency	Vitamin D insufficiency	Gestational diabetes	Cohort studies	NA
Jayedi et al. 2018 ¹⁴²	Selenium intake	All-cause mortality	3	141,404	10,285	General population	40-80 (mean 53-67)	Dietary Selenium	Dietary Selenium	All-cause mortality	Cohort studies	4-14
Jayedi et al. 2019 ¹²²	Calcium intake + supplements	Hypertension	8	248,398	30,838	General population	20-75	Dietary and supplementary calcium intake	Dietary and supplementary calcium intake	Hypertension	Prospective cohort studies	2-10
Jiang et al. 2019 ¹⁴¹	β-carotene intake	Cataract	7	154,449	NA	Men and women 40+, cases at baseline included	43-84	Dietary β -carotene intake	Dietary β-carotene intake	Age-related cataract	Prospective and non- longitudinal cohort	5-15
Jiang et al. 2019 ¹⁴¹	Vitamin E intake	Cataract	6	42,147	NA	Men and women 40+, cases at baseline included	43-84	Dietary Vitamin E intake	Dietary Vitamin E intake	Age-related cataract	Prospective and non- longitudinal cohort	5-15
Jiang et al. 2019 ¹⁴¹	Vitamin C intake	Cataract	7	77,333	NA	Men and women 40+, cases at baseline included	43-84	Dietary Vitamin C intake	Dietary Vitamin C intake	Age-related cataract	Prospective and non- longitudinal cohort	5-15
Jin et al. 2012 ¹³⁷	Total flavonoids intake	Colorectal cancer	3	72,320	1,022	General population	45+ (NA in 2/3 studies)	Total flavonoids and 3-7 flavonoid subclasses, flavonoids intake	Total flavonoids and 3-7 flavonoid subclasses, flavonoids intake	Colorectal cancer, colorectal cancer risk	Cohort studies	10-18
Jin et al. 2012 ¹³⁷	Isoflavonoes intake	Colorectal cancer	1	310,291	431	General population	45-74	Dietary soy and isoflavonols intake	Dietary soy and isoflavonols intake	Colorectal cancer risk	Prospective cohort studies	8
Jin et al. 2012 ¹³⁷	Flavonols intake	Colorectal cancer	1	18,696	869	General population	55-69	Dietary flavonol, flavone and catechin intake	Dietary flavonol, flavone and catechin intake	Colorectal cancer risk	Case-cohort	13
Kastorini et al. 2011 ⁴¹	Mediterranean diet (intake)	Systolic blood pressure	1	2,563	NA	People without CVD risk factors	20-90	Mediterranean food pattern score	Mediterranean food pattern score	Systolic blood pressure	Prospective cohort studies	6
Kastorini et al. 2011 ⁴¹	Mediterranean diet (intake)	Diastolic blood pressure	1	2,563	NA	People without CVD risk factors	20-90	Mediterranean food pattern score	Mediterranean food pattern score	Diastolic blood pressure	Prospective cohort studies	6
Kastorini et al. 2011 ⁴¹	Mediterranean diet (intake)	High Density Lipoprotein	1	2,563	NA	People without CVD risk factors	20-90	Mediterranean food pattern score	Mediterranean food pattern score	High Density Lipoprotein- Cholesterol	Prospective cohort studies	6
Kastorini et al. 2011 ⁴¹	Mediterranean diet (intake)	Triglycerides	1	2,563	NA	People without CVD risk factors	20-90	Mediterranean food pattern score	Mediterranean food pattern score	Triglycerides	Prospective cohort studies	6

Leyvraz et al. 2018 ²⁵	Low-sodium intake + status	Systolic blood pressure	1	435	NA	Boys and girls	4-18	Sodium intake, urinary sodium	Sodium intake, urinary sodium	Systolic blood pressure	Prospective cohort studies	NA
Leyvraz et al. 2018 ²⁵	Low-sodium intake + status	Diastolic blood pressure	1	435	NA	Boys and girls	4-18	Sodium intake, urinary sodium	Sodium intake, urinary sodium	Diastolic blood pressure	Prospective cohort studies	NA
Li et al. 2020 ¹¹⁶	Linoleic acid intake	All-cause mortality	11	708,379	170,076	Mostly general population; people with breast cancer or high CVD risk	20-98 (mean 41-80)	Dietary linoleic acid intake	Dietary linoleic acid intake	All-cause mortality	Prospective cohort studies	5-30
Li et al. 2020 ¹¹⁶	Linoleic acid intake	Cardiovascular mortality	14	793,131	50,786	Mostly general population; people with high CVD risk or smokers	mean 46- 75	Dietary linoleic acid intake	Dietary linoleic acid intake	CVD mortality (fatal CAD, myocardial infarction, ischemic heart disease, or stroke; death from CAD, stroke, or other CVD causes; and CVD mortality)	Prospective cohort studies	6-30
Mijatovic-Vukas et al. 2018 ¹³	Mediterranean diet (intake)	Gestational diabetes	4	23,488	NA	Pregnant women, women not pregnant at baseline but birth during follow-up, women with and without history of (gestational) diabetes	24-44 (mean 28)	Mediterranean diet	Mediterranean diet	Gestational Diabetes	Cohort studies, prospective multicentre study	9 (3x NA)
Newberry et al. 2014 ³³	Calcium intake	Pre-eclampsia	2	5,913	385	Healthy pregnant women	30-40	Calcium intake	Calcium intake	Preeclampsia	Cohort studies	NA
Newberry et al. 2014 ³³	Calcium intake	High blood pressure	2	5,973	866	Healthy pregnant women	30-40	Calcium intake	Calcium intake	High blood pressure with or without proteinuria	Cohort studies	NA
Noto et al. 2013 ¹³³	High- carbohydrate intake	Cardiovascular mortality	3	249,272	5,960	People from Western countries, healthcare professionals. May not represent general population	30-75	Carbohydrate-score	Carbohydrate-score	CVD mortality	Cohort studies	10-26
Pan et al. 2012 ¹⁹	α-Linolenic acid intake	Cardiovascular disease	11	328,888	9,161	General population	20-84 (mean 41-71)	Dietary ALA intake	Dietary ALA intake	CVD (CHD, MI, IHD, CAD, stroke, CVD)	Prospective cohort studies	6-23
Rosato et al. 2019 ⁴⁴	Mediterranean diet (intake)	Cardiovascular mortality	4	NA	NA	Free of previous cardiovascular events	NA	Mediterranean diet score	Mediterranean diet score	Cardiovascular mortality	Cohort studies	NA
Rosato et al. 2019 ⁴⁴	Mediterranean diet (intake)	Cardiovascular disease	9	NA	NA	Free of previous cardiovascular events	20-90	Mediterranean diet score	Mediterranean diet score	CVD	Cohort studies	5-20
Sartorius et al. 2018 ¹³⁵	High- carbohydrate intake	Obesity	2	102,340	NA	Healthy and overweight / obese adults	NA	Carbohydrate intake	Carbohydrate intake	Obesity	NA	NA
Schlesinger et al. 2019 ¹⁶	Fish intake	Weight gain	1	17,369	1,128	General population	24-69	Fish intake	Fish intake	Weight gain per 100g/d, risk of /adiposity	Prospective cohort studies	2

Schwingshackl et al. 2017 ¹²⁹	Fruit intake	Hypertension	7	240,666	94,507	Mostly general population	20-95	Fruit intake	Fruit intake	Hypertension	Cohort, case-cohort, nested case-control	4-13
Schwingshackl et al. 2017 ¹²⁹	Vegetables intake	Hypertension	8	242,210	94,772	Mostly general population	20-95	Vegetable intake	Vegetable intake	Hypertension	Cohort, case-cohort, nested case-control	3-13
Schwingshackl et al. 2017 ¹²⁹	Whole grain intake	Hypertension	4	109,615	28,069	Mostly general population	40-86	Whole grain intake (self-reported)	Whole grain intake (self-reported)	Hypertension (systolic blood pressure ≥140mmHg or diastolic blood pressure ≥90 mmHg)	Prospective cohort studies	9-18
Schwingshackl et al. 2018 ¹³²	Diet quality (intake)	Type 2 diabetes	10	605,939	NA	General population	24-84	Diets of highest quality (assessed by HEI, AHEI, DASH)	Diets of lowest quality (assessed by HEI, AHEI, DASH)	Type 2 diabetes mellitus	Prospective cohort studies	8-24
Schwingshackl et al. 2018 ¹³²	Diet quality (intake)	All-cause mortality	13	1,568,643	NA	General population	18-90	Diets of highest quality (assessed by HEI, AHEI, DASH)	Diets of lowest quality (assessed by HEI, AHEI, DASH)	All-cause mortality	Prospective cohort studies	6-22
Seidelmann et al. 2018 ¹³⁴	High carb intake	All-cause mortality	6	287,644	30,942	General population; people with diabetes; people with cardiovascular disease	20-86	Carbohydrate consumption (>70%)	Carbohydrate consumption (<40%)	All-cause mortality, all-cause death	Cohort studies	5-26
Soedamah- Muthu et al. 2012 ¹⁴⁹	Fermented milk intake	Hypertension	4	7,641	2,475	General population; excluding children, adolescents and pregnant women, patients, and hypertensive populations	NA (mean 54)	Mean total fermented dairy intake (buttermilk, yogurt, cheese, curds, sour cream) of 84-201g/d	Mean total fermented dairy intake (buttermilk, yogurt, cheese, curds, sour cream) of 84-201g/d	Hypertension (defined as SBP ≥140 mmHg, or DBP ≥90 mmHg, or use of antihypertensive medication)	Prospective cohort studies	5-10 (Mean: 7)
Soltani et al. 2019 ¹⁴⁴	Mediterranean diet (intake)	All-cause mortality	26	1,624,280	218,928	Healthy population	16-88	Mediterranean diet score	Mediterranean diet score	All-cause mortality	Prospective cohort studies	4-32
Tous et al. 2020 ⁷	Vitamin D status	Preterm birth	19	24,498	3,130	Adult healthy pregnant women	NA	25(OH) in maternal or cord blood	25(OH) in maternal or cord blood	Preterm birth	Cohort studies	NA
Tous et al. 2020 ⁷	Vitamin D status	Birth length	7	6,929	NA	Adult healthy pregnant women	NA	25(OH) in maternal or cord blood	25(OH) in maternal or cord blood	Birth length	Cohort studies	NA
Tous et al. 2020 ⁷	Vitamin D status	Birth weight	14	15,972	NA	Adult healthy pregnant women	NA	25(OH) in maternal or cord blood	25(OH) in maternal or cord blood	Birth weight	Cohort studies	NA
Tous et al. 2020 ⁷	Vitamin D status	Head circumference at birth	7	5,979	NA	Adult healthy pregnant women	NA	25(OH) in maternal or cord blood	25(OH) in maternal or cord blood	Birth head circumference	Cohort studies	NA
Vinceti et al. 2018 ¹⁴	Selenium status	Cancer	7	76,239	1,940	General population; no history of cancer (2x); not institutionalised and bed-fast (1x)	15-74	Serum and plasma selenium	Serum and plasma selenium	Any cancer, stomach / rectal / lung / colon and bladder cancer	Cohort / subcohort controlled cohort study, Nested case- control	5-20
Vinceti et al. 2018 ¹⁴	Selenium intake	Cancer mortality	1	133,957	2,603	Men and women without history of cancer	40-74	Selenium intake	Selenium intake, serum and plasma selenium	Cancer mortality	Cohort studies	8-14

Vinceti et al. 2018 ¹⁴	Selenium supplements	Colorectal cancer	1	54,208	990	Men and women without history of cancer	50-64	Selenium supplements	Selenium supplements	Colorectal cancer,	Cohort studies	13
Wan et al. 2017 ¹¹⁵	Omega-3 intake	All-cause mortality	6	430,579	26,093	General population	35-79	Fish, dietary long-chain Omega-3 PUFA / EPA + DHA	Fish, dietary long-chain Omega-3 PUFA / EPA + DHA	All-cause mortality, total death	Prospective cohort studies	6-15
Wei et al. 2018 ²⁰	α-Linolenic acid intake	Coronary heart disease mortality	9	279,108	NA	General population without history of CHD	35-75 (mean 56-71)	Dietary ALA intake	Dietary ALA intake	Fatal CHD (CHD death, CHD mortality)	Prospective cohort studies	5-12
Wei et al. 2018 ²⁰	α-Linolenic acid intake	Coronary heart disease	13	421,485	NA	General population without history of CHD	35-75 (mean 42-71)	Dietary ALA intake	Dietary ALA intake	Composite CHD (total CHD, fatal or non-fatal)	Prospective cohort studies	5-23
Wolf et al. 2017 ³⁹	Multivitamin supplements	Preterm birth	4	42,592	2,280	Pregnant women	NA	Multivitamin supplement (3 or more vitamins or minerals in tablets or capsules)	No vitamin use / less than 3 vitamins	Preterm birth (<37 weeks of gestational age)	Prospective cohort studies, Cohort studies (2 matched cohorts)	3-10
Wolf et al. 2017 ³⁹	Multivitamin supplements	Low birth weight	2	7,498	452	Pregnant women	NA	Multivitamin supplement (3 or more vitamins or minerals in tablets or capsules)	No vitamin use / less than 3 vitamins	Low birth weight (<2500 g)	Prospective cohort studies, Cohort studies (2 matched cohorts)	3-10
Wolf et al. 2017 ³⁹	Multivitamin supplements	Small gestational age	3	36,965	1,413	Pregnant women	NA	Multivitamin supplement (3 or more vitamins or minerals in tablets or capsules)	No vitamin use / less than 3 vitamins	Small gestational weight (birthweight <10th centile)	Prospective cohort studies	6-10
Xiang et al. 2019 ¹⁴³	Selenium status	Cardiovascular mortality	3	16,928	4,431	General population	20+ (mean 67-78)	Circulating Selenium (serum / plasma)	Circulating Selenium (serum / plasma)	Cardiovascular mortality	Prospective cohort studies, nested case- control	7-14
Ye et al. 2012 ¹³⁹	Whole grain intake	Body weight	3	119,054	NA	Mostly general population (male and female health professionals)	38-84	Whole grain intake (self- reported)	Whole grain intake (self-reported)	Weight gain	Prospective cohort studies	8-13
Yuan et al. 2019 ⁸	Vitamin D status	Pre-eclampsia	15	29,101	1,909	Pregnant women	NA	Maternal serum 25- hydroxyvitamin D concentration	Maternal serum 25- hydroxyvitamin D concentration	Pre-eclampsia	Cohort studies, nested case-control	NA
Zhang et al. 2015^{31}	Vitamin D intake	Lung cancer	3	135,244	3,004	General population; smokers; postmenopausal women	NA	Vitamin D intake	Vitamin D intake	Lung cancer incidence or mortality	Prospective cohort studies, nested case- control	NA
Zhang et al. 2016a ⁴³	Selenium status	Cardiovascular disease	14	34,109	3,749	Population-based, Physicians	20-90	Circulating Selenium (serum / plasma / erythrocyte)	Circulating Selenium (serum / plasma / erythrocyte)	Cardiovascular disease	Cohort studies, nested case-control	3-15
Zhang et al. 2016b ¹⁴⁷	Omega-3 intake	Dementia	2	6,237	286	Elderly general population	65-94 (1x), mean 55 (1x)	Dietary Omega-3 PUFA intake	Dietary Omega-3 PUFA intake	Alzheimer disease	Prospective cohort studies	4-6
Zhu et al. 2019 ²²	Polyunsaturated fat intake	Cardiovascular disease	30	982,336	NA	General population	30-89	Dietary PUFA intake; weighted food record (2x)	Dietary PUFA intake; weighted food record (2x)	CVD events, CVD mortality	Prospective cohort studies	5-30

Zhu et al. 2019 ²²	Low-fat intake	Cardiovascular disease	32	1,009,839	NA	Mostly general population	30-75 (mean 53-75)	Dietary total fat	Dietary total fat	Cardiovascular disease	Prospective cohort studies	4-32	
-------------------------------	----------------	---------------------------	----	-----------	----	---------------------------	--------------------------	-------------------	-------------------	---------------------------	-------------------------------	------	--

AHEI: Alternate Healthy Eating Index; ALA: α-Linolenic acid; CAD: coronary artery disease; CHD: coronary heart disease; COPD: chronic obstructive pulmonary disease; CVD: cardiovascular disease; d: day; DASH: Dietary Approaches to Stop Hypertension; DBP: diastolic blood pressure; DHA: docosahexaenoic acid; EPA: eicosapentaenoic acid; g: gram; HEI: Healthy Eating Index; IHD: ischemic heart disease; MCI: mild cognitive impairment; MI: myocardial infarction; mmHg: millimetre of mercury; NA: not applicable/assessed; PUFA: polyunsaturated fatty acid; SBP: systolic blood pressure.

Reference	Exposure (as defined by the authors)	Outcome (as defined by the authors)	Studies, n	Sample size, n	Cases, n	Certainty of evidence	Study quality/ risk of bias
Aburto et al. 2013 ²⁴	Low-sodium intake	All-cause mortality	2	22,550	NA	NA	Selection of participants (0/2), Blinding of participants and personnel (0/2), Blinding of outcome assessment (1/2), Incomplete outcome date (1/2), Selective reporting (2/2), Defining exposure (0/2), Other confounding (2/2)
Aburto et al. 2013 ²⁴	Low-sodium intake	Cardiovascular mortality	3	81,280	NA	NA	Selection of participants (1/3), Blinding of participants and personnel (0/3), Blinding of outcome assessment (2/3), Incomplete outcome date (2/3), Selective reporting (3/3), Defining exposure (0/3), Other confounding (3/3)
Aburto et al. 2013 ²⁴	Low-sodium intake	Cardiovascular disease	3	81,280	NA	NA	Selection of participants (1/3), Blinding of participants and personnel (0/3), Blinding of outcome assessment (2/3), Incomplete outcome date (2/3), Selective reporting (3/3), Defining exposure (0/3), Other confounding (3/3)
Aune et al. 2018 ²⁶	Vitamin C intake	Cardiovascular diseases	9	246,711	7,986	NA	NOS: majority of the included studies were in the subgroup with 7-9 points
Aune et al. 2018 ²⁶	Vitamin C intake	Cardiovascular mortality	9	NA	NA	NA	NOS: majority of the included studies were in the subgroup with 7-9 points
Aune et al. 2018 ²⁶	Vitamin C intake	All-cause mortality	16	315,214	38,079	NA	NOS: majority of the included studies were in the subgroup with 7-9 points
Aune et al. 2018 ²⁶	β-carotene intake	All-cause mortality	8	142,798	11,729	NA	NOS: majority of the included studies were in the subgroup with 7-9 points
Aune et al. 2018 ²⁶	Vitamin E intake	All-cause mortality	9	229,830	15,321	NA	NOS: majority of the included studies were in the subgroup with 7-9 points
Aune et al. 2018 ²⁶	Vitamin C intake	All-cause mortality	16	315,214	38,079	NA	NOS: majority of the included studies were in the subgroup with 7-9 points
Aune et al. 2011 ¹⁵⁰	Fibre intake	Colorectal cancer	19	1,797,670	14,794	NA	NA
Ben et al. 2014 ⁴⁶	Fibre intake	Colorectal adenoma	4	78,348	2,402	NA	NOS: 7.5
Blencowe et al. 2010 ¹²⁴	Folate supplements	Neural tube defect	3	NA	NA	NA	"Consistent, all studies showing benefit. Very different study sites."
Chia et al. 2019 ¹¹	Healthy diet (intake)	Preterm birth	5	113,703	NA	NA	NOS: 8
Chia et al. 2019 ¹¹	Healthy diet (intake)	Small gestational age	8	75,446	NA	NA	NOS: 8.3

Supplementary Table 12: Study quality (risk of bias) and certainty of evidence of the included bodies of evidence from cohort studies.

				1	1		
Chia et al. 2019 ¹¹	Healthy diet (intake)	Birth weight	12	24,950	NA	NA	NOS: 7.6
Chowdhury et al. 2014a ¹⁸	Omega-3 intake	Coronary heart disease mortality	NA	104,681	1,483	NA	NA
Chowdhury et al. 2014a ¹⁸	Omega-3 intake	Coronary heart disease	16	422,786	9,089	NA	NOS: 8.2
Chowdhury et al. 2014a ¹⁸	Omega-6 intake	Coronary heart disease	8	206,376	8,155	NA	NOS: 7.9
Chowdhury et al. 2014b ¹¹⁹	Vitamin D status	All-cause mortality	68	840,908	64,636	NA	NOS: 7.3
Chowdhury et al. 2014b ¹¹⁹	Vitamin D status	Cardiovascular mortality	29	101,649	10,203	NA	NOS: 7.6
de Souza et al. 2015 ³⁶	Low saturated fat intake	All-cause mortality	5	99,906	14,090	Very low	NOS: 7.2
de Souza et al. 2015 ³⁶	Low saturated fat intake	Cardiovascular mortality	3	90,501	3,792	Very low	NOS: 6.7
de Souza et al. 2015 ³⁶	Low saturated fat intake	Coronary heart disease	12	267,416	6,383	Very low	NOS: 7.7
Doets et al. 2013 ¹⁴⁵	Vitamin B12 intake	Dementia	3	5,254	431	NA	low (1x), moderate or high (2x) (tool / scale NA)
Feng et al. 2017 ²⁸	Vitamin D status	Hip fracture	11	34,557	2,996	NA	NOS. 7.3
Feng et al. 2017 ²⁸	Vitamin D status	Any fracture	11	30,489	4,279	NA	NOS: 7.3
Feng et al. 2015 ¹²⁵	Folate supplements	Congenital heart defect	1	6,112	NA	NA	NA
Fernandez-Cao et al. 2019 ¹²⁷	Zinc supplements	Type 2 diabetes	2	258,139	17,806	NA	STROBE: 94% (max. 100%)
Goodwill et al. 2017 ⁹	Vitamin D status	Dementia / MCI	14	30,452	NA	NA	modified NOS: Participants (3/14), Sample size / power calculation (0/14), Confounders (13/14), Statistical analyses (11/14), Missing data (1/14), Appropriate outcome measurement (14/14), Objective measure of outcome (14/14)
Han et al. 2019 ¹²⁰	Vitamin D status	Cancer mortality	16	10,794	8,729	NA	NOS: 7
Han et al. 2019 ¹²⁰	Vitamin D status	Cancer incidence	8	70,018	7,511	NA	NOS: 6.8
Hossain et al. 2019 ³⁰	Vitamin D supplements	Breast cancer	2	37,707	1,611 (1 study unclear)	NA	modified quality score: 6.5 (max. 8)
Hu et al. 2018 ⁵	Vitamin D status	Gestational diabetes	13	12,958	1,358	NA	NA
Jayedi et al. 2018 ¹⁴²	Selenium intake	All-cause mortality	3	141,404	10,285	NA	NOS: 7.7
Jayedi et al. 2019 ¹²²	Calcium intake + supplements	Hypertension	8	248,398	30,838	Moderate (NutriGrade)	NOS: 7.8

β-carotene intake	Cataract	7	154,449	NA	NA	NOS: 6
Vitamin E intake	Cataract	6	42,147	NA	NA	NOS: 6.2
Vitamin C intake	Cataract	7	77,333	NA	NA	NOS: 6.1
Total flavonoids intake	Colorectal cancer	3	72,320	1,022	NA	NOS: 13/16
Isoflavonoes intake	Colorectal cancer	1	310,291	431	NA	NOS: 13/16
Flavonols intake	Colorectal cancer	1	18,696	869	NA	NOS: 12/16
Mediterranean diet (intake)	Systolic blood pressure	1	2,563	NA	NA	NA
Mediterranean diet (intake)	Diastolic blood pressure	1	2,563	NA	NA	NA
Mediterranean diet (intake)	High Density Lipoprotein	1	2,563	NA	NA	NA
Mediterranean diet (intake)	Triglycerides	1	2,563	NA	NA	NA
Low-sodium intake + status	Systolic blood pressure	1	435	NA	NA	Quality of sodium intake measurement (high), Quality of blood pressure measurement (high), External validity (high), Quality of reporting (high)
Low-sodium intake + status	Diastolic blood pressure	1	435	NA	NA	Quality of sodium intake measurement (high), Quality of blood pressure measurement (high), External validity (high), Quality of reporting (high)
Linoleic acid intake	All-cause mortality	11	708,379	170,076	NA	NOS: 7.2
Linoleic acid intake	Cardiovascular mortality	14	793,131	50,786	NA	NOS: 8
Mediterranean diet (intake)	Gestational diabetes	4	23,488	NA	NA	Modified quality assessment & risk of bias form obtained from the Evidence Analysis Manual (American Dietetic Association): positive quality ranking
Calcium intake	Pre-eclampsia	2	5,913	385	NA	Study quality: B
Calcium intake	High blood pressure	2	5,973	866	NA	Study quality: B
High-carbohydrate intake	Cardiovascular mortality	3	249,272	5,960	NA	NOS: 8.3
α-Linolenic acid intake	Cardiovascular disease	11	328,888	9,161	NA	NA
Mediterranean diet (intake)	Cardiovascular mortality	4	NA	NA	NA	NA
Mediterranean diet (intake)	Cardiovascular disease	9	NA	NA	NA	NA
	Vitamin E intake Vitamin C intake Vitamin C intake Total flavonoids intake Isoflavonoes intake Flavonols intake Flavonols intake Mediterranean diet (intake) Mediterranean diet (intake) Low-sodium intake + status Low-sodium intake + status Linoleic acid intake Linoleic acid intake Mediterranean diet (intake) Calcium intake High-carbohydrate intake Mediterranean diet (intake)	Vitamin E intake Cataract Vitamin C intake Cataract Total flavonoids intake Colorectal cancer Isoflavonoes intake Colorectal cancer Flavonols intake Colorectal cancer Mediterranean diet (intake) Systolic blood pressure Mediterranean diet (intake) Diastolic blood pressure Mediterranean diet (intake) Triglycerides Mediterranean diet (intake) Triglycerides Low-sodium intake + status Systolic blood pressure Low-sodium intake + status Diastolic blood pressure Low-sodium intake + status Diastolic blood pressure Linoleic acid intake All-cause mortality Linoleic acid intake Gestational diabetes Calcium intake Pre-eclampsia Calcium intake High blood pressure High-carbohydrate intake Cardiovascular mortality Mediterranean diet (intake) Cardiovascular mortality Mediterranean diet (intake) Cardiovascular mortality	Vitamin E intakeCataract6Vitamin C intakeCataract7Total flavonoids intakeColorectal cancer3Isoflavonoes intakeColorectal cancer1Flavonols intakeColorectal cancer1Mediterranean diet (intake)Systolic blood pressure1Mediterranean diet (intake)Diastolic blood pressure1Mediterranean diet (intake)Diastolic blood pressure1Mediterranean diet (intake)Triglycerides1Low-sodium intake + statusSystolic blood pressure1Low-sodium intake + statusDiastolic blood pressure1Linoleic acid intakeAll-cause mortality11Linoleic acid intakeCardiovascular mortality14Mediterranean diet (intake)Cardiovascular mortality2Low-sodium intake + statusAll-cause mortality11Linoleic acid intakeCardiovascular mortality2Linoleic acid intakeCardiovascular mortality3AlitakeHigh blood pressure2High-carbohydrate intakeCardiovascular disease11Mediterranean diet (intake)Cardiovascular disease11Mediterranean diet (intake)Cardiovascular disease11	Vitamin E intakeCataract642,147Vitamin C intakeCataract777,333Total flavonoids intakeColorectal cancer372,320Isoflavonoes intakeColorectal cancer1310,291Flavonols intakeColorectal cancer118,696Mediterranean diet (intake)Systolic blood pressure12,563Mediterranean diet (intake)Diastolic blood pressure12,563Mediterranean diet (intake)Triglycerides12,563Low-sodium intake + statusSystolic blood pressure12,563Low-sodium intake + statusDiastolic blood pressure1435Linoleic acid intakeAll-cause mortality11708,379Linoleic acid intakeCardiovascular mortality14793,131Mediterranean diet (intake)Pre-eclampsia25,913Linoleic acid intakePre-eclampsia25,973Calcium intake (intake)High blood pressure1328,888Mediterranean diet (intake)Cardiovascular mortality3249,272Aligh-carbohydrate intakeCardiovascular disease11328,888Mediterranean diet (intake)Cardiovascular disease11328,888	Vitamin E intakeCataract642,147NAVitamin C intakeCataract777,333NATotal flavonoids intakeColorectal cancer372,3201,022Isoflavonoes intakeColorectal cancer1310,291431Flavonols intakeColorectal cancer118,696869Mediterranean diet (intake)Systolic blood pressure12,563NAMediterranean diet (intake)Diastolic blood pressure12,563NAMediterranean diet (intake)Triglycerides12,563NAMediterranean diet (intake)Triglycerides12,563NALow-sodium intake + statusSystolic blood pressure1435NALow-sodium intake + statusDiastolic blood pressure1435NALinoleic acid intakeAll-cause mortality11708,379170,076Linoleic acid (intake)Cardiovascular 	Vitamin E intakeCataract642,147NANAVitamin C intakeCataract777,333NANATotal flavonoids intakeColorectal cancer372,3201,022NAIsoflavonoes intakeColorectal cancer1310,291431NAIsoflavonoidsColorectal cancer118,696869NAFlavonols intakeColorectal cancer118,696869NAMediterranean diet (intake)Diastolic blood pressure12,563NANAMediterranean diet (intake)Diastolic blood pressure12,563NANAMediterranean diet (intake)Triglycerides12,563NANAMediterranean diet (intake)Triglycerides12,563NANALow-sodium intake + statusSystolic blood pressure12,563NANALow-sodium intake + statusDiastolic blood pressure1435NANALinoleic acid intakeAll-cause mortality11708,379170,076NALinoleic acid intakeCardiovascular mortality14793,13150,786NAMediterranean diet (intake)Pe-eclampsia25,913385NACalcium intake (intake)High blood pressure25,973866NACalcium intake (intake)Gastational diabetes423,8889,161NACalcium intakeHigh bl

Sartorius et al. 2018^{135}	High-carbohydrate intake	Obesity	2	102,340	NA	NA	Risk of Bias Tool for Prevalence Studies: 7.5
Schlesinger et al. 2019 ¹⁶	Fish intake	Weight gain	1	17,369	1,128	Very low (NutriGrade)	NA
Schwingshackl et al. 2017 ¹²⁹	Fruit intake	Hypertension	7	240,666	94,507	NA	NA
Schwingshackl et al. 2017 ¹²⁹	Vegetables intake	Hypertension	8	242,210	94,772	NA	NA
Schwingshackl et al. 2017 ¹²⁹	Whole grain intake	Hypertension	4	109,615	28,069	NA	NA
Schwingshackl et al. 2018 ¹³²	Diet quality (intake)	Type 2 diabetes	10	605,939	NA	NA	NOS: 7.5
Schwingshackl et al. 2018 ¹³²	Diet quality (intake)	All-cause mortality	13	1,568,643	NA	NA	NOS: 7.2
Seidelmann et al. 2018 ¹³⁴	High-carbohydrate intake	All-cause mortality	6	287,644	30,942	NA	NA
Soedamah-Muthu et al. 2012 ¹⁴⁹	Fermented milk intake	Hypertension	4	7,641	2,475	NA	NA
Soltani et al. 2019 ¹⁴⁴	Mediterranean diet (intake)	All-cause mortality	26	1,624,280	218,928	Low	ROBINS-I tool: Bias due to confounding (13/26), Bias in selection of participants (17/23), Classification of intervention (0/23), Deviations from intended interventions (26/26), Missing data (13/26), Bias in measurement of outcomes (26/26), Selection of reported result (26/26), Overall bias (1/26)
Tous et al. 2020 ⁷	Vitamin D status	Preterm birth	19	24,498	3,130	NA	STROBE: 16.6 (max. 22, high = 17+)
Tous et al. 2020 ⁷	Vitamin D status	Birth length	7	6,929	NA	NA	STROBE: 17 (max. 22, high = 17+)
Tous et al. 2020 ⁷	Vitamin D status	Birth weight	14	15,972	NA	NA	STROBE: 16.9 (max. 22, high = 17+)
Tous et al. 2020 ⁷	Vitamin D status	Head circumference at birth	7	5,979	NA	NA	STROBE: 17 (max. 22, high = 17+)
Vinceti et al. 2018 ¹⁴	Selenium status	Cancer	7	76,239	1,940	Very low	NOS: 8
Vinceti et al. 2018 ¹⁴	Selenium intake	Cancer mortality	1	133,957	2,603	NA	NA
Vinceti et al. 2018 ¹⁴	Selenium supplements	Colorectal cancer	1	54,208	990	NA	NA
Wan et al. 2017 ¹¹⁵	Omega-3 intake	All-cause mortality	6	430,579	26,093	NA	NOS: 8
Wei et al. 2018 ²⁰	α-Linolenic acid intake	Coronary heart disease mortality	9	279,108	NA	NA	NOS: 7.1
Wei et al. 2018 ²⁰	α-Linolenic acid intake	Coronary heart disease	13	421,485	NA	NA	NOS: 7.2
Wolf et al. 2017 ³⁹	Multivitamin supplements	Preterm birth	4	42,592	2,280	Very low	NOS: Risk of bias: Low

Wolf et al. 2017 ³⁹	Multivitamin supplements	Low birth weight	2	7,498	452	Very low	NOS: Risk of bias: Low
Wolf et al. 2017 ³⁹	Multivitamin supplements	Small gestational age	3	36,965	1,413	Very low	NOS: Risk of bias: Low
Xiang et al. 2019 ¹⁴³	Selenium status	Cardiovascular mortality	3	16,928	4,431	NA	NOS: 7.7
Ye et al. 2012 ¹³⁹	Whole grain intake	Body weight	3	119,054	NA	NA	NA
Yuan et al. 2019 ⁸	Vitamin D status	Pre-eclampsia	15	29,101	1,909	NA	NA
Zhang et al. 2015 ³¹	Vitamin D intake	Lung cancer	3	135,244	3,004	NA	NOS: high (all studies 6 or more stars)
Zhang et al. 2016a ⁴³	Selenium status	Cardiovascular disease	14	34,109	3,749	NA	NA
Zhang et al. 2016b ¹⁴⁷	Omega-3 intake	Dementia	2	6,237	286	NA	NOS: 8.5
Zhu et al. 2019 ²²	Polyunsaturated fat intake	Cardiovascular disease	30	982,336	NA	NA	NA
Zhu et al. 2019 ²²	Low-fat intake	Cardiovascular disease	32	1,009,839	NA	NA	NA

MCI: mild cognitive impairment; NA: not applicable/assessed; NOS: Newcastle-Ottawa-Scale; ROBINS-I: Risk Of Bias In Non-randomised Studies - of Interventions; STROBE: Strengthening the Reporting of Observational studies in Epidemiology.

Supplementary Table 13: P	opulation (P). Intervention/Exposu	re (I/E), Comparator (C), Outc	come (O) matching similarities fo	r all identified diet-disease associations.
	The second	(\cdot, \cdot)		

Bodies of evidence from	randomized controlled tr	ials (Cochrane Reviews)	Bodie	es of evidence from coho	ort studies			PI/ECO similarities	8	
Reference	Intervention (as defined by the authors)	Outcome (as defined by the authors)	Reference	Exposure (as defined by the authors)	Outcome (as defined by the authors)	Patients / population	Intervention / Exposure	Comparator	Outcome	Overall
Abdelhamid et al. 2018a ¹⁵	Omega-3 intake + supplements	Cardiovascular mortality	Chowdhury et al. 2014a ¹⁸	Omega-3 intake	Coronary heart disease mortality	3	2	2	2	3
Abdelhamid et al. 2018a ¹⁵	Omega-3 intake + supplements	Cardiovascular disease	Chowdhury et al. 2014a ¹⁸	Omega-3 intake	Coronary heart disease	2	2	2	2	2
Abdelhamid et al. 2018a ¹⁵	α-Linolenic acid intake (Supplementary/ enriched foods)	Cardiovascular disease	Pan et al. 2012 ¹⁹	α-Linolenic acid intake	Cardiovascular disease	2	2	2	1	2
Abdelhamid et al. 2018a ¹⁵	Omega-3 intake + supplements	Body weight	Schlesinger et al. 2019 ¹⁶	Fish intake	Weight gain	3	2	2	1	3
Abdelhamid et al. 2018a ¹⁵	Omega-3 intake + supplements	All-cause mortality	Wan et al. 2017 ¹¹⁵	Omega-3 intake	All-cause mortality	2	2	2	1	2
Abdelhamid et al. 2018a ¹⁵	α-Linolenic acid intake (Supplementary/ enriched foods)	Cardiovascular mortality	Wei et al. 2018 ²⁰	α-Linolenic acid intake	Coronary heart disease mortality	2	2	2	2	2
Abdelhamid et al. 2018a ¹⁵	α-Linolenic acid intake (Supplementary/ enriched foods)	Coronary heart disease	Wei et al. 2018 ²⁰	α-Linolenic acid intake	Coronary heart disease	2	2	2	1	2
Abdelhamid et al. 2018b ²¹	Polyunsaturated fat intake + supplements	All-cause mortality	Li et al. 2020 ¹¹⁶	Omega-3 intake	All-cause mortality	2	2	2	1	2
Abdelhamid et al. 2018b ²¹	Polyunsaturated fat intake + supplements	Coronary heart disease	Chowdhury et al. 2014a ¹⁸	Omega-6 intake	Coronary heart disease	2	2	2	1	2
Abdelhamid et al. 2018b ²¹	Polyunsaturated fat intake	Major cardiovascular events	Zhu et al. 2019 ²²	Polyunsaturated fat intake	Cardiovascular disease	2	1	1	1	2
Adler et al. 2014 ²³	Low-sodium intake	All-cause mortality	Aburto et al. 2013 ²⁴	Low-sodium intake	All-cause mortality	2	2	2	1	2
Adler et al. 2014 ²³	Low-sodium intake	Cardiovascular mortality	Aburto et al. 2013 ²⁴	Low-sodium intake	Cardiovascular mortality	2	2	2	1	2
Adler et al. 2014 ²³	Low-sodium intake	Cardiovascular disease	Aburto et al. 2013 ²⁴	Low-sodium intake	Cardiovascular disease	2	2	2	1	2
Adler et al. 2014 ²³	Low-sodium intake	Systolic blood pressure	Leyvraz et al. 2018 ²⁵	Low-sodium intake + status	Systolic blood pressure	3	2	2	1	3
Adler et al. 2014 ²³	Low-sodium intake	Diastolic blood pressure	Leyvraz et al. 2018 ²⁵	Low-sodium intake + status	Diastolic blood pressure	3	2	2	1	3
Al-Khudairy et al. 2017 ¹	Vitamin C supplements	Major cardiovascular events	Aune et al. 2018 ²⁶	Vitamin C intake	Cardiovascular disease	2	2	2	1	2
Al-Khudairy et al. 2017 ¹	Vitamin C supplements	Cardiovascular mortality	Aune et al. 2018 ²⁶	Vitamin C intake	Cardiovascular mortality	2	2	2	1	2

Al-Khudairy et al. 2017 ¹	Vitamin C supplements	All-cause mortality	Aune et al. 2018 ²⁶	Vitamin C intake	All-cause mortality	2	2	2	1	2
Avenell et al. 2014 ²⁷	Vitamin D supplements	Hip fracture	Feng et al. 2017 ²⁸	Vitamin D status	Hip fracture	2	3	3	1	3
Avenell et al. 2014 ²⁷	Vitamin D supplements	Any fracture	Feng et al. 2017 ²⁸	Vitamin D status	Any fracture	2	3	3	1	3
Bjelakovic et al. 2012 ¹¹⁷	β-carotene supplements	All-cause mortality	Aune et al. 2018 ²⁶	β-carotene intake	All-cause mortality	2	2	2	1	2
Bjelakovic et al. 2012 ¹¹⁷	Vitamin E supplements	All-cause mortality	Aune et al. 2018 ²⁶	Vitamin E intake	All-cause mortality	2	2	2	1	2
Bjelakovic et al. 2012 ¹¹⁷	Vitamin C supplements	All-cause mortality	Aune et al. 2018 ²⁶	Vitamin C intake	All-cause mortality	2	2	2	1	2
Bjelakovic et al. 2012 ¹¹⁷	Vitamin A supplements	All-cause mortality	Aune et al. 2018 ²⁶	β-carotene intake	All-cause mortality	2	3	3	1	3
Bjelakovic et al. 2014a ¹¹⁸	Vitamin D supplements	All-cause mortality	Chowdhury et al. 2014b ¹¹⁹	Vitamin D status	All-cause mortality	2	3	3	1	3
Bjelakovic et al. 2014a ¹¹⁸	Vitamin D supplements	Cardiovascular mortality	Chowdhury et al. 2014b ¹¹⁹	Vitamin D status	Cardiovascular mortality	2	3	3	1	3
Bjelakovic et al. 2014a ¹¹⁸	Vitamin D supplements	Cancer mortality	Han et al. 2019 ¹²⁰	Vitamin D status	Cancer mortality	2	3	3	1	3
Bjelakovic et al. 2014b ²⁹	Vitamin D supplements	Cancer occurrence	Han et al. 2019 ¹²⁰	Vitamin D status	Cancer incidence	2	3	3	1	3
Bjelakovic et al. 2014b ²⁹	Vitamin D3 supplements	Breast cancer	Hossain et al. 2019 ³⁰	Vitamin D supplements	Breast cancer	2	1	1	1	2
Bjelakovic et al. 2014b ²⁹	Vitamin D3 supplements	Lung cancer	Zhang et al. 2015 ³¹	Vitamin D intake	Lung cancer	2	2	2	1	2
Cormick et al. 2015 ¹²¹	Calcium supplements	Systolic blood pressure	Jayedi et al. 2019 ¹²²	Calcium intake + supplements	Hypertension	2	2	2	3	3
Cormick et al. 2015 ¹²¹	Calcium supplements	Diastolic blood pressure	Jayedi et al. 2019 ¹²²	Calcium intake + supplements	Hypertension	2	2	2	3	3
De-Regil et al. 2015 ¹²³	Folate supplements	Neural tube defect	Blencowe et al. 2010 ¹²⁴	Folate supplements	Neural tube defect	2	1	1	1	2
De-Regil et al. 2015 ¹²³	Folate supplements	Congenital cardiovascular anomalies	Feng et al. 2015 ¹²⁵	Folate supplements	Congenital heart defect	1	1	1	2	2
El Dib et al. 2015 ¹²⁶	Zinc supplements	HOMA-IR	Fernandez-Cao et al. 2019 ¹²⁷	Zinc supplements	Type 2 diabetes	2	1	1	3	3
Hartley et al. 2013 ¹²⁸	Fruit & Vegetables intake	Systolic blood pressure	Schwingshackl et al. 2017 ¹²⁹	Fruit intake	Hypertension	2	2	2	3	3
Hartley et al. 2013 ¹²⁸	Fruit & Vegetables intake	Diastolic blood pressure	Schwingshackl et al. 2017 ¹²⁹	Vegetables intake	Hypertension	2	2	2	3	3
Hartley et al. 2016 ¹³⁰	Fibre intake + supplements	Systolic blood pressure	Schwingshackl et al. 2017 ¹²⁹	Whole grain intake	Hypertension	2	2	2	3	3
Hartley et al. 2016 ¹³⁰	Fibre intake + supplements	Diastolic blood pressure	Schwingshackl et al. 2017 ¹²⁹	Whole grain intake	Hypertension	2	2	2	3	3
Hemmingsen et al. 2017 ¹³¹	Healthy diet (intake)	Type 2 diabetes	Schwingshackl et al. 2018 ¹³²	Diet quality (intake)	Type 2 diabetes	2	1	1	1	2

Hemmingsen et al. 2017 ¹³¹	Healthy diet (intake)	All-cause mortality	Schwingshackl et al. 2018 ¹³²	Diet quality (intake)	All-cause mortality	2	1	1	1	2
Hofmeyr et al. 2018 ³²	Calcium supplements	Pre-eclampsia	Newberry et al. 2014 ³³	Calcium intake	Pre-eclampsia	2	2	2	1	2
Hofmeyr et al. 2018 ³²	Calcium supplements	High blood pressure	Newberry et al. 2014 ³³	Calcium intake	High blood pressure	2	2	2	1	2
Hooper et al. 2012 ³⁴	Low-fat / modified fat (intake + supplements)	Cardiovascular mortality	Noto et al. 2013 ¹³³	High-carbohydrate intake	Cardiovascular mortality	2	2	2	1	2
Hooper et al. 2012 ³⁴	Low-fat / modified fat (intake + supplements)	All-cause mortality	Seidelmann et al. 2018 ¹³⁴	High-carbohydrate intake	All-cause mortality	2	2	2	1	2
Hooper et al. 2012 ³⁴	Low-fat / modified fat (intake + supplements)	Combined cardiovascular events	Zhu et al. 2019 ²²	Low-fat intake	Cardiovascular disease	2	2	2	1	2
Hooper et al. 2012 ³⁴	Low-fat intake	Body weight	Sartorius et al. 2018 ¹³⁵	High-carbohydrate intake	Obesity	2	2	2	3	3
Hooper et al. 2015a ¹³⁶	Low-fat intake	Body weight	Sartorius et al. 2018 ¹³⁵	High-carbohydrate intake	Obesity	2	2	2	3	3
Hooper et al. 2015b ³⁵	Low saturated fat intake	All-cause mortality	de Souza et al. 2015 ³⁶	Low saturated fat intake	All-cause mortality	2	1	1	1	2
Hooper et al. 2015b ³⁵	Low saturated fat intake	Cardiovascular mortality	de Souza et al. 2015 ³⁶	Low saturated fat intake	Cardiovascular mortality	2	1	1	1	2
Hooper et al. 2015b ³⁵	Low saturated fat intake	Combined cardiovascular events	de Souza et al. 2015 ³⁶	Low saturated fat intake	Coronary heart disease	2	1	1	1	2
Hooper et al. 2018 ³⁷	Omega-6 intake + supplements	Combined cardiovascular events	Chowdhury et al. 2014a ¹⁸	Omega-6 intake	Coronary heart disease	2	2	2	2	2
Hooper et al. 2018 ³⁷	Omega-6 intake + supplements	All-cause mortality	Li et al. 2020 ¹¹⁶	Linoleic acid intake	All-cause mortality	2	2	2	1	2
Hooper et al. 2018 ³⁷	Omega-6 intake + supplements	Cardiovascular mortality	Li et al. 2020 ¹¹⁶	Linoleic acid intake	Cardiovascular mortality	2	2	2	1	2
Jin et al. 2012 ¹³⁷	Total flavonoids intake (+co-dietary intervention)	Colorectal adenoma	Jin et al. 2012 ¹³⁷	Total flavonoids intake	Colorectal cancer	3	2	2	3	3
Jin et al. 2012 ¹³⁷	Isoflavonoes intake (+co-dietary intervention)	Colorectal adenoma	Jin et al. 2012 ¹³⁷	Isoflavonoes intake	Colorectal cancer	3	2	2	3	3
Jin et al. 2012 ¹³⁷	Flavonols intake (+co-dietary intervention)	Colorectal adenoma	Jin et al. 2012 ¹³⁷	Flavonols intake	Colorectal cancer	3	2	2	3	3
Keats et al. 2019 ³⁸	Micronutrients supplements (folic acid + iron)	Preterm birth	Wolf et al. 2017 ³⁹	Multivitamin supplements	Preterm birth	1	2	2	1	2
Keats et al. 2019 ³⁸	Micronutrients supplements (folic acid + iron)	Low birth weight	Wolf et al. 2017 ³⁹	Multivitamin supplements	Low birth weight	1	2	2	1	2

Keats et al. 2019 ³⁸	Micronutrients supplements (folic acid + iron)	Small gestational age	Wolf et al. 2017 ³⁹	Multivitamin supplements	Small gestational age	1	2	2	1	2
Kelly et al. 2017 ¹³⁸	Whole grains intake	Systolic blood pressure	Schwingshackl et al. 2017 ¹²⁹	Whole grain intake	Hypertension	2	1	1	3	3
Kelly et al. 2017 ¹³⁸	Whole grains intake	Diastolic blood pressure	Schwingshackl et al. 2017 ¹²⁹	Whole grain intake	Hypertension	2	1	1	3	3
Kelly et al. 2017 ¹³⁸	Whole grains intake	Body weight	Ye et al. 2012 ¹³⁹	Whole grain intake	Body weight	2	1	1	1	2
Mathew et al. 2012 ¹⁴⁰	β-carotene supplements	Cataract	Jiang et al. 2019 ¹⁴¹	β-carotene intake	Cataract	2	2	2	1	2
Mathew et al. 2012 ¹⁴⁰	Vitamin E supplements	Cataract	Jiang et al. 2019 ¹⁴¹	Vitamin E intake	Cataract	2	2	2	1	2
Mathew et al. 2012 ¹⁴⁰	Vitamin C supplements	Cataract	Jiang et al. 2019 ¹⁴¹	Vitamin C intake	Cataract	2	2	2	1	2
Palacios et al. 2019 ⁶	Vitamin D supplements	Gestational diabetes	Hu et al. 2018 ⁵	Vitamin D status	Gestational diabetes	1	3	3	1	3
Palacios et al. 2019 ⁶	Vitamin D supplements	Preterm birth	Tous et al. 2020 ⁷	Vitamin D status	Preterm birth	1	3	3	1	3
Palacios et al. 2019 ⁶	Vitamin D supplements	Birth length	Tous et al. 2020 ⁷	Vitamin D status	Birth length	2	3	3	1	3
Palacios et al. 2019 ⁶	Vitamin D supplements	Birth weight	Tous et al. 2020 ⁷	Vitamin D status	Birth weight	2	3	3	1	3
Palacios et al. 2019 ⁶	Vitamin D supplements	Head circumference at birth	Tous et al. 2020 ⁷	Vitamin D status	Head circumference at birth	2	3	3	1	3
Palacios et al. 2019 ⁶	Vitamin D supplements	Pre-eclampsia	Yuan et al. 2019 ⁸	Vitamin D status	Pre-eclampsia	1	3	3	1	3
Rees et al. 2013a ⁴⁰	Healthy diet (intake)	Systolic blood pressure	Kastorini et al. 2011 ⁴¹	Mediterranean diet (intake)	Systolic blood pressure	2	1	1	1	2
Rees et al. 2013a ⁴⁰	Healthy diet (intake)	Diastolic blood pressure	Kastorini et al. 2011 ⁴¹	Mediterranean diet (intake)	Diastolic blood pressure	2	1	1	1	2
Rees et al. 2013b ⁴²	Selenium supplements	All-cause mortality	Jayedi et al. 2018 ¹⁴²	Selenium intake	All-cause mortality	2	2	2	1	2
Rees et al. 2013b ⁴²	Selenium supplements	Cardiovascular mortality	Xiang et al. 2019 ¹⁴³	Selenium status	Cardiovascular mortality	2	3	3	1	3
Rees et al. 2013b ⁴²	Selenium supplements	Combined cardiovascular events	Zhang et al. 2016a ⁴³	Selenium status	Cardiovascular disease	2	3	3	1	3
Rees et al. 2019 ³	Mediterranean diet (intake)	High Density Lipoprotein	Kastorini et al. 2011 ⁴¹	Mediterranean diet (intake)	High Density Lipoprotein	2	1	1	1	2
Rees et al. 2019 ³	Mediterranean diet (intake)	Triglycerides	Kastorini et al. 2011 ⁴¹	Mediterranean diet (intake)	Triglycerides	2	1	1	1	2
Rees et al. 2019 ³	Mediterranean diet (intake)	Systolic blood pressure	Kastorini et al. 2011 ⁴¹	Mediterranean diet (intake)	Systolic blood pressure	2	1	1	1	2
Rees et al. 2019 ³	Mediterranean diet (intake)	Cardiovascular mortality	Rosato et al. 201944	Mediterranean diet (intake)	Cardiovascular mortality	2	1	1	1	2
Rees et al. 2019 ³	Mediterranean diet (intake)	Combined cardiovascular events	Rosato et al. 201944	Mediterranean diet (intake)	Cardiovascular disease	2	1	1	1	2

Rees et al. 2019^3	Mediterranean diet (intake)	All-cause mortality	Soltani et al. 2019 ¹⁴⁴	Mediterranean diet (intake)	All-cause mortality	2	1	1	1	2
Rutjes et al. 2018 ¹⁰	B-Vitamin supplements	Dementia /MCI	Doets et al. 2013 ¹⁴⁵	Vitamin B12 intake	Dementia	3	2	2	2	3
Rutjes et al. 2018 ¹⁰	Vitamin D3 supplements	Dementia	Goodwill et al. 2017 ⁹	Vitamin D status	Dementia / MCI	1	3	3	3	3
Sydenham et al. 2012 ¹⁴⁶	Omega-3 supplements	Mini-Mental State Examination	Zhang et al. 2016b ¹⁴⁷	Omega-3 intake	Dementia	1	2	2	3	3
Tieu et al. 2017 ¹²	Healthy diet	Preterm birth	Chia et al. 2019 ¹¹	Healthy diet (intake)	Preterm birth	2	1	1	1	2
Tieu et al. 2017 ¹²	Healthy diet	Small gestational age	Chia et al. 2019 ¹¹	Healthy diet (intake)	Small gestational age	2	1	1	1	2
Tieu et al. 2017 ¹²	Healthy diet	Birth weight	Chia et al. 2019 ¹¹	Healthy diet (intake)	Birth weight	2	1	1	1	2
Tieu et al. 2017 ¹²	Healthy diet	Gestational diabetes	Mijatovic-Vukas et al. 2018 ¹³	Mediterranean diet (intake)	Gestational diabetes	2	1	1	1	2
Usinger et al. 2012 ¹⁴⁸	Fermented milk intake + supplements	Systolic blood pressure	Soedamah-Muthu et al. 2012 ¹⁴⁹	Fermented milk intake	Hypertension	2	2	2	3	3
Usinger et al. 2012 ¹⁴⁸	Fermented milk intake + supplements	Diastolic blood pressure	Soedamah-Muthu et al. 2012 ¹⁴⁹	Fermented milk intake	Hypertension	2	2	2	3	3
Vinceti et al. 2018 ¹⁴	Selenium supplements	Cancer	Vinceti et al. 2018 ¹⁴	Selenium status	Cancer	2	3	3	1	3
Vinceti et al. 2018 ¹⁴	Selenium supplements	Cancer mortality	Vinceti et al. 2018 ¹⁴	Selenium intake	Cancer mortality	2	2	2	1	2
Vinceti et al. 2018 ¹⁴	Selenium supplements	Colorectal cancer	Vinceti et al. 2018 ¹⁴	Selenium supplements	Colorectal cancer	2	1	1	1	2
Yao et al. 2017 ⁴⁵	Fibre intake	Colorectal cancer	Aune et al. 2011 ¹⁵⁰	Fibre intake	Colorectal cancer	2	1	1	1	2
Yao et al. 2017 ⁴⁵	Fibre intake	Colorectal adenoma	Ben et al. 2014 ⁴⁶	Fibre intake	Colorectal adenoma	3	1	1	1	3

HOMA-IR: homeostasis model assessment-insulin resistance; MCI: mild cognitive impairment; PI/ECO: population – intervention/exposure – comparator – outcome; RCT: randomized controlled trial.

Supplementary Table 14: Heterogeneity including I^2 (%) and tau (τ^2) of bodies of evidence from randomized controlled trials and cohort studies in the metaanalysis.

	Bodies of evidence	e from randomized o	controlled tri	als (Cochrane Reviews)				Bodies of evidence	e from coho	rt studies	
Reference	Intervention and type of intake	Outcome (as defined by the authors)	Studies, n	Summary measure, and effect estimate (95% CI)	$I^{2}(\%)/\tau^{2}$	Reference	Exposure and type of intake/exposure	Outcome (as defined by the authors)	Studies, n	Summary measure, and effect estimate (95% CI)	$I^{2}(\%)/\tau^{2}$
Abdelhamid et al. 2018a ¹⁵	Omega-3 intake + supplements	Cardiovascular mortality	25	RR: 0.95 (0.87, 1.03)	24/ 0.01	Chowdhury et al. 2014a ¹⁸	Omega-3 intake	Coronary heart disease mortality	NA	RR: 0.90 (0.70, 1.14)	NR
Abdelhamid et al. 2018a ¹⁵	Omega-3 intake + supplements	Cardiovascular disease	38	RR: 0.99 (0.94, 1.04)	37/ 0.00	Chowdhury et al. 2014a ¹⁸	Omega-3 intake	Coronary heart disease	16	RR: 0.87 (0.78, 0.97)	76/ 0.03
Abdelhamid et al. 2018a ¹⁵	α-Linolenic acid intake	Cardiovascular disease	5	RR: 0.95 (0.83, 1.07)	0/ 0.00	Pan et al. et al. 2012 ¹⁹	α-Linolenic acid intake	Cardiovascular disease	11	RR: 0.93 (0.85, 1.03)	41/ 0.01
Abdelhamid et al. 2018a ¹⁵	Omega-3 intake + supplements	Body weight	12	MD: -0.01 (-0.84, 0.82)	49	Schlesinger et al. 2019 ¹⁶	Fish intake	Weight gain	1	RR: 1.06 (0.83, 1.35)	NA
Abdelhamid et al. 2018a ¹⁵	Omega-3 intake + supplements	All-cause mortality	39	RR: 0.98 (0.93, 1.03)	11/ 0.00	Wan et al. 2017 ¹¹⁵	Omega-3 intake	All-cause mortality	6	RR: 0.86 (0.80, 0.93)	56/ 0.00
Abdelhamid et al. 2018a ¹⁵	α-Linolenic acid intake	Cardiovascular mortality	4	RR: 0.96 (0.74, 1.25)	0/ 0.00	Wei et al. 2018 ²⁰	α-Linolenic acid intake	Coronary heart disease mortality	9	RR: 0.85 (0.75, 0.96)	16/ 0.01
Abdelhamid et al. 2018a ¹⁵	α-Linolenic acid intake	Coronary heart disease	4	RR: 1.00 (0.82, 1.22)	2/ 0.00	Wei et al. 2018 ²⁰	α-Linolenic acid intake	Coronary heart disease	13	RR: 0.91 (0.85, 0.97)	6/ 0.00
Abdelhamid et al. 2018b ²¹	Polyunsaturated fat intake + supplements	All-cause mortality	24	RR: 0.98 (0.89, 1.07)	0/ 0.00	Li et al. 2020 ¹¹⁶	Linoleic acid intake	All-cause mortality	11	RR: 0.87 (0.81, 0.94)	68/ 0.01
Abdelhamid et al. 2018b ²¹	Polyunsaturated fat intake + supplements	Coronary heart disease	15	RR: 0.87 (0.72, 1.06)	45/ 0.04	Chowdhury et al. 2014a ¹⁸	Omega-6 intake	Coronary heart disease	8	RR: 0.98 (0.90, 1.06)	54/ 0.01
Abdelhamid et al. 2018b ²¹	Polyunsaturated fat intake	Major cardiovascular events	2	RR: 0.84 (0.59, 1.20)	79/ 0.05	Zhu et al. 2019 ²²	Polyunsaturated fat intake	Cardiovascular disease	30	RR: 0.97 (0.93, 1.00)	54/ 0.00
Adler et al. 2014 ²³	Low-sodium intake	All-cause mortality	7	RR: 0.96 (0.83, 1.10)	0/ 0.00	Aburto et al. 2013 ²⁴	Low-sodium intake	All-cause mortality	2	RR: 0.95 (0.71, 1.27)	82/ 0.05
Adler et al. 2014 ²³	Low-sodium intake	Cardiovascular mortality	3	RR: 0.67 (0.45, 1.01)	0/ 0.00	Aburto et al. 2013 ²⁴	Low-sodium intake	Cardiovascular mortality	3	RR: 0.87 (0.64, 1.18)	79/ 0.07
Adler et al. 2014 ²³	Low-sodium intake	Cardiovascular disease	4	RR: 0.76 (0.57, 1.01)	0/ 0.00	Aburto et al. 2013 ²⁴	Low-sodium intake	Cardiovascular disease	3	RR: 0.87 (0.64, 1.18)	79/ 0.07
Adler et al. 2014 ²³	Low-sodium intake	Systolic blood pressure	6	MD: -1.79 (-3.23, -0.36)	74	Leyvraz et al. 2018 ²⁵	Low-sodium intake + status	Systolic blood pressure	1	MD: -1.20 (-1.50, -0.90)	NA
Adler et al. 2014 ²³	Low-sodium intake	Diastolic blood pressure	5	MD: -1.17 (-2.08, -0.26)	58	Leyvraz et al. 2018 ²⁵	Low-sodium intake + status	Diastolic blood pressure	1	MD: 1.20 (1.00, 1.50)	NA
Al-Khudairy et al. 2017 ¹	Vitamin C supplements	Major cardiovascular events	1	HR: 0.99 (0.89, 1.10)	NA	Aune et al. 2018 ²⁶	Vitamin C intake	Cardiovascular disease	9	RR: 0.84 (0.77, 0.91)	0/ 0.00
Al-Khudairy et al. 2017 ¹	Vitamin C supplements	Cardiovascular mortality	1	HR: 1.02 (0.85, 1.22)	NA	Aune et al. 2018 ²⁶	Vitamin C intake	Cardiovascular mortality	9	RR: 0.88 (0.83, 0.94)	29/ NR

Al-Khudairy et al. 2017 ¹	Vitamin C supplements	All-cause mortality	1	HR: 1.07 (0.97, 1.18)	NA	Aune et al. 2018 ²⁶	Vitamin C intake	All-cause mortality	16	RR: 0.86 (0.80, 0.92)	69/ 0.01
Avenell et al. 2014 ²⁷	Vitamin D supplements	Hip fracture	10	RR: 1.12 (0.97, 1.30)	0/ 0.00	Feng et al. 2017 ²⁸	Vitamin D status	Hip fracture	11	RR: 0.68 (0.60, 0.78)	17/ 0.01
Avenell et al. 2014 ²⁷	Vitamin D supplements	Any fracture	14	RR: 1.04 (0.96, 1.12)	18/ 0.01	Feng et al. 2017 ²⁸	Vitamin D status	Any fracture	11	RR: 0.80 (0.68, 0.94)	72/ 0.06
Bjelakovic et al. 2012 ¹¹⁷	β-carotene supplements	All-cause mortality	31	RR: 1.02 (0.98, 1.07)	34/ 0.00	Aune et al. 2018 ²⁶	β-carotene intake	All-cause mortality	8	RR: 0.82 (0.78, 0.87)	0/ 0.00
Bjelakovic et al. 2012 ¹¹⁷	Vitamin E supplements	All-cause mortality	64	RR: 1.02 (0.99, 1.04)	0/ 0.00	Aune et al. 2018 ²⁶	Vitamin E intake	All-cause mortality	9	RR: 0.98 (0.93, 1.04)	6/ 0.00
Bjelakovic et al. 2012 ¹¹⁷	Vitamin C supplements	All-cause mortality	41	RR: 1.01 (0.97, 1.05)	0/ 0.00	Aune et al. 2018 ²⁶	Vitamin C intake	All-cause mortality	16	RR: 0.86 (0.80, 0.92)	69/ 0.01
Bjelakovic et al. 2012 ¹¹⁷	Vitamin A supplements	All-cause mortality	18	RR: 1.04 (0.96, 1.13)	25/ 0.00	Aune et al. 2018 ²⁶	β-carotene intake	All-cause mortality	8	RR: 0.82 (0.78, 0.87)	0/ 0.00
Bjelakovic et al. 2014a ¹¹⁸	Vitamin D supplements	All-cause mortality	56	RR: 0.97 (0.94, 0.99)	0/ 0.00	Chowdhury et al. 2014b ¹¹⁹	Vitamin D status	All-cause mortality	68	RR: 0.69 (0.65, 0.75)	83/ 0.05
Bjelakovic et al. 2014a ¹¹⁸	Vitamin D supplements	Cardiovascular mortality	10	RR: 0.98 (0.90, 1.07)	0/ 0.00	Chowdhury et al. 2014b ¹¹⁹	Vitamin D status	Cardiovascular mortality	29	RR: 0.70 (0.61, 0.80)	84/ 0.10
Bjelakovic et al. 2014a ¹¹⁸	Vitamin D supplements	Cancer mortality	4	RR: 0.88 (0.78, 0.98)	0/ 0.00	Han et al. 2019 ¹²⁰	Vitamin D status	Cancer mortality	16	RR: 0.81 (0.71, 0.93)	49/ 0.04
Bjelakovic et al. 2014b ²⁹	Vitamin D supplements	Cancer occurrence	18	RR: 1.00 (0.94, 1.06)	0/ 0.00	Han et al. 2019 ¹²⁰	Vitamin D status	Cancer incidence	8	RR: 0.86 (0.73, 1.02)	71/ 0.03
Bjelakovic et al. 2014b ²⁹	Vitamin D3 supplements	Breast cancer	7	RR: 0.97 (0.86, 1.09)	0/ 0.00	Hossain et al. 2019 ³⁰	Vitamin D supplements	Breast cancer	2	RR: 0.94 (0.87, 1.02)	69/ 0.00
Bjelakovic et al. 2014b ²⁹	Vitamin D3 supplements	Lung cancer	5	RR: 0.86 (0.69, 1.07)	0/ 0.00	Zhang et al. 2015 ³¹	Vitamin D intake	Lung cancer	3	RR: 0.89 (0.74, 1.06)	0/ 0.00
De-Regil et al. 2015 ¹²³	Folate supplements	Neural tube defect	5	RR: 0.31 (0.17, 0.58)	0/ 0.00	Blencowe et al. 2010 ¹²⁴	Folate supplements	Neural tube defect	3	RR: 0.37 (0.23, 0.58)	30/ 0.06
De-Regil et al. 2015 ¹²³	Folate supplements	Congenital cardiovascular anomalies	3	RR: 0.57 (0.24, 1.33)	0/ 0.00	Feng et al. 2015 ¹²⁵	Folate supplements	Congenital heart defect	1	RR: 0.60 (0.38, 0.96)	NA
Hemmingsen et al. 2017 ¹³¹	Healthy diet (intake)	Type 2 diabetes	1	RR: 0.65 (0.52, 0.81)	NA	Schwingshackl et al. 2018 ¹³²	Diet quality (intake)	Type 2 diabetes	10	RR: 0.82 (0.78, 0.85)	72/ 0.01
Hemmingsen et al. 2017 ¹³¹	Healthy diet (intake)	All-cause mortality	1	RR: 1.02 (0.21, 4.98)	NA	Schwingshackl et al. 2018 ¹³²	Diet quality (intake)	All-cause mortality	13	RR: 0.78 (0.77, 0.80)	59/ 0.00
Hofmeyr et al. 2018 ³²	Calcium supplements	Pre-eclampsia	13	RR: 0.45 (0.31, 0.65)	70/ 0.18	Newberry et al. 2014 ³³	Calcium intake	Pre-eclampsia	2	RR: 0.97 (0.78, 1.21)	13/ 0.01
Hofmeyr et al. 2018 ³²	Calcium supplements	High blood pressure	12	RR: 0.65 (0.53, 0.81)	74/ 0.06	Newberry et al. 2014 ³³	Calcium intake	High blood pressure	2	RR: 1.12 (0.83, 1.50)	66/ 0.03
Hooper et al. 2012 ³⁴	Low-fat / modified fat (intake + supplements)	Cardiovascular mortality	14	RR: 0.94 (0.85, 1.04)	0/ 0.00	Noto et al. 2013 ¹³³	High-carbohydrate intake	Cardiovascular mortality	3	RR: 0.91 (0.81, 1.02)	0/ 0.00
Hooper et al. 2012 ³⁴	Low-fat / modified fat (intake + supplements)	All-cause mortality	20	RR: 0.98 (0.93, 1.04)	0/ 0.00	Seidelmann et al. 2018 ¹³⁴	High-carbohydrate intake	All-cause mortality	6	RR: 0.83 (0.76, 0.92)	40/ 0.00

	Low-fat /										
Hooper et al. 2012 ³⁴	modified fat (intake + supplements)	Combined cardiovascular events	18	RR: 0.86 (0.77, 0.96)	50/ 0.02	Zhu et al. 2019 ²²	Low-fat intake	Cardiovascular disease	32	RR: 1.03 (0.99, 1.08)	55/ 0.01
Hooper et al. 2015b ³⁵	Low saturated fat intake	All-cause mortality	11	RR: 0.97 (0.90, 1.05)	3/ 0.00	de Souza et al. 2015 ³⁶	Low saturated fat intake	All-cause mortality	5	RR: 1.01 (0.92, 1.10)	33/ 0.00
Hooper et al. 2015b ³⁵	Low saturated fat intake	Cardiovascular mortality	10	RR: 0.95 (0.80, 1.12)	30/ 0.02	de Souza et al. 2015 ³⁶	Low saturated fat intake	Cardiovascular mortality	3	RR: 1.03 (0.89, 1.19)	18/ 0.00
Hooper et al. 2015b ³⁵	Low saturated fat intake	Combined cardiovascular events	11	RR: 0.83 (0.72, 0.96)	65/ 0.03	de Souza et al. 2015 ³⁶	Low saturated fat intake	Coronary heart disease	12	RR: 0.94 (0.85, 1.05)	47/ 0.02
Hooper et al. 2018 ³⁷	Omega-6 intake + supplements	Combined cardiovascular events	7	RR: 0.97 (0.81, 1.15)	45/ 0.02	Chowdhury et al. 2014a ¹⁸	Omega-6 intake	Coronary heart disease	8	RR: 0.98 (0.90, 1.06)	54/ 0.01
Hooper et al. 2018 ³⁷	Omega-6 intake + supplements	All-cause mortality	10	RR: 1.00 (0.88, 1.12)	0/ 0.00	Li et al. 2020 ¹¹⁶	Linoleic acid intake	All-cause mortality	11	RR: 0.87 (0.81, 0.94)	68/ 0.01
Hooper et al. 2018 ³⁷	Omega-6 intake + supplements	Cardiovascular mortality	7	RR: 1.09 (0.76, 1.55)	61/ 0.1	Li et al. 2020 ¹¹⁶	Linoleic acid intake	Cardiovascular mortality	14	RR: 0.87 (0.82, 0.92)	6/ 0.00
Jin et al. 2012 ¹³⁷	Total flavonoids intake	Colorectal adenoma	1	RR: 1.09 (0.93, 1.28)	NA	Jin et al. 2012 ¹³⁷	Total flavonoids intake	Colorectal cancer	3	RR: 1.00 (0.80, 1.25)	66/ 0.02
Jin et al. 2012 ¹³⁷	Isoflavonoes intake	Colorectal adenoma	1	RR: 0.98 (0.83, 1.16)	NA	Jin et al. 2012 ¹³⁷	Isoflavonoes intake	Colorectal cancer	1	RR: 1.16 (0.96, 1.41)	NA
Jin et al. 2012 ¹³⁷	Flavonols intake	Colorectal adenoma	1	RR: 0.94 (0.80, 1.10)	NA	Jin et al. 2012 ¹³⁷	Flavonols intake	Colorectal cancer	1	RR: 0.95 (0.83, 1.08)	NA
Keats et al. 2019 ³⁸	Micronutrients supplements	Preterm birth	18	RR: 0.95 (0.90, 1.01)	51/ 0.01	Wolf et al. 2017 ³⁹	Multivitamin supplements	Preterm birth	4	RR: 0.84 (0.69, 1.03)	73/ 0.03
Keats et al. 2019 ³⁸	Micronutrients supplements	Low birth weight	18	RR: 0.88 (0.85, 0.91)	0/ 0.00	Wolf et al. 2017 ³⁹	Multivitamin supplements	Low birth weight	2	RR: 0.79 (0.45, 1.41)	89/ 0.15
Keats et al. 2019 ³⁸	Micronutrients supplements	Small gestational age	17	RR: 0.92 (0.88, 0.97)	40/ 0.00	Wolf et al. 2017 ³⁹	Multivitamin supplements	Small gestational age	3	RR: 0.77 (0.63, 0.93)	43/ 0.01
Kelly et al. 2017 ¹³⁸	Whole grain intake	Body weight	5	MD: -0.41 (-1.04, 0.23)	0	Ye et al. 2012 ¹³⁹	Whole grain intake	Body weight	3	MD: -0.30 (-0.37, -0.24)	99
Mathew et al. 2012 ¹⁴⁰	β-carotene supplements	Cataract	2	RR: 0.99 (0.91, 1.08)	0/ 0.00	Jiang et al. 2019 ¹⁴¹	β-carotene intake	Cataract	7	RR: 0.90 (0.83, 0.99)	0/ 0.00
Mathew et al. 2012 ¹⁴⁰	Vitamin E supplements	Cataract	3	RR: 0.97 (0.91, 1.04)	0/ 0.00	Jiang et al. 2019 ¹⁴¹	Vitamin E intake	Cataract	6	RR: 0.90 (0.80, 1.00)	31/ 0.01
Mathew et al. 2012 ¹⁴⁰	Vitamin C supplements	Cataract	1	RR: 1.02 (0.91, 1.14)	NA	Jiang et al. 2019 ¹⁴¹	Vitamin C intake	Cataract	7	RR: 0.80 (0.72, 0.88)	78/ 0.07
Palacios et al. 2019 ⁶	Vitamin D supplements	Gestational diabetes	5	RR: 0.54 (0.34, 0.86)	0/ 0.00	Hu et al. 2018 ⁵	Vitamin D status	Gestational diabetes	21	OR: 0.76 (0.64, 0.90)	61/ 0.08
Palacios et al. 2019 ⁶	Vitamin D supplements	Preterm birth	4	RR: 1.25 (0.92, 1.69)	0/ 0.00	Tous et al. 2020 ⁷	Vitamin D status	Preterm birth	19	OR: 0.78 (0.65, 0.93)	63/ 0.08
Palacios et al. 2019 ⁶	Vitamin D supplements	Birth length	11	MD: -0.04 (-0.26, 0.19)	23	Tous et al. 2020 ⁷	Vitamin D status	Birth length	7	MD: -0.12 (-0.33, 0.09)	62
Palacios et al. 2019 ⁶	Vitamin D supplements	Birth weight	13	MD: 32.61 (-9.51, 74.72)	22	Tous et al. 2020 ⁷	Vitamin D status	Birth weight	14	MD: 84.20 (52.59, 115.81)	58

				•	1					1	1
Palacios et al. 2019 ⁶	Vitamin D supplements	Head circumference at birth	10	MD: 0.08 (-0.09, 0.25)	40	Tous et al. 2020 ⁷	Vitamin D status	Head circumference at birth	7	MD: 0.47 (-0.16, 1.11)	98
Palacios et al. 2019 ⁶	Vitamin D supplements	Pre-eclampsia	5	RR: 0.96 (0.65, 1.42)	0/ 0.00	Yuan et al. 2019 ⁸	Vitamin D status	Pre-eclampsia	15	OR: 0.62 (0.50, 0.78)	60/ 0.10
Rees et al. 2013a ⁴⁰	Healthy diet (intake)	Systolic blood pressure	11	MD: -2.61 (-3.91, -1.31)	55	Kastorini et al. 2011 ⁴¹	Mediterranean diet (intake)	Systolic blood pressure	1	MD: 0.80 (-0.84, 2.44)	NA
Rees et al. 2013a ⁴⁰	Healthy diet (intake)	Diastolic blood pressure	11	MD: -1.45 (-2.22, -0.68)	45	Kastorini et al. 2011 ⁴¹	Mediterranean diet (intake)	Diastolic blood pressure	1	MD: 0.90 (-0.38, 2.18)	NA
Rees et al. 2013b ⁴²	Selenium supplements	All-cause mortality	2	RR: 0.97 (0.88, 1.08)	0/ 0.00	Jayedi et al. 2018 ¹⁴²	Selenium intake	All-cause mortality	3	RR: 0.79 (0.73, 0.85)	0/ 0.00
Rees et al. 2013b ⁴²	Selenium supplements	Cardiovascular mortality	2	RR: 0.97 (0.79, 1.20)	44/ 0.03	Xiang et al. 2019 ¹⁴³	Selenium status	Cardiovascular mortality	3	RR: 0.77 (0.63, 0.94)	6/ 0.00
Rees et al. 2013b ⁴²	Selenium supplements	Combined cardiovascular events	2	RR: 1.03 (0.95, 1.11)	0/ 0.00	Zhang et al. 2016a ⁴³	Selenium status	Cardiovascular disease	14	RR: 0.87 (0.76, 0.99)	4/ 0.00
Rees et al. 2019 ³	Mediterranean diet (intake)	High Density Lipoprotein	6	MD: 0.02 (-0.01, 0.04)	0	Kastorini et al. 2011 ⁴¹	Mediterranean diet (intake)	High Density Lipoprotein	1	MD: 0.01 (-0.046, 0.061)	NA
Rees et al. 2019 ³	Mediterranean diet (intake)	Triglycerides	7	MD: -0.09 (-0.16, -0.01)	16	Kastorini et al. 2011 ⁴¹	Mediterranean diet (intake)	Triglycerides	1	MD: -0.023 (-0.076, 0.031)	NA
Rees et al. 2019 ³	Mediterranean diet (intake)	Systolic blood pressure	4	MD: -1.50 (-3.92, 0.92)	16	Kastorini et al. 2011 ⁴¹	Mediterranean diet (intake)	Systolic blood pressure	1	MD: 0.80 (-0.84, 2.44)	NA
Rees et al. 2019 ³	Mediterranean diet (intake)	Cardiovascular mortality	1	HR: 0.81 (0.50, 1.32)	NA	Rosato et al. 2019 ⁴⁴	Mediterranean diet (intake)	Cardiovascular mortality	7	RR: 0.73 (0.67, 0.81)	47/ 0.01
Rees et al. 2019 ³	Mediterranean diet (intake)	Combined cardiovascular events	1	HR: 0.70 (0.58, 0.85)	NA	Rosato et al. 2019 ⁴⁴	Mediterranean diet (intake)	Cardiovascular disease	11	RR: 0.81 (0.74, 0.88)	80/ 0.01
Rees et al. 2019 ³	Mediterranean diet (intake)	All-cause mortality	1	HR: 1.00 (0.81, 1.24)	NA	Soltani et al. 2019 ¹⁴⁴	Mediterranean diet (intake)	All-cause mortality	26	RR: 0.90 (0.89, 0.91)	80/ 0.00
Rutjes et al. 2018 ¹⁰	B-Vitamin supplements	Dementia / MCI	1	RR: 1.01 (0.69, 1.48)	NA	Doets et al. 2013 ¹⁴⁵	Vitamin B12 intake	Dementia	3	RR: 0.99 (0.99, 1.00)	22/ 0.00
Rutjes et al. 2018 ¹⁰	Vitamin D3 supplements	Dementia	1	RR: 1.09 (0.70, 1.71)	NA	Goodwill et al. 2017 ⁹	Vitamin D status	Dementia / MCI	14	OR: 0.88 (0.81, 0.95)	56/ 0.01
Tieu et al. 2017 ¹²	Healthy diet (intake)	Preterm birth	3	RR: 0.51 (0.21, 1.25)	0/ 0.00	Chia et al. 2019 ¹¹	Healthy diet (intake)	Preterm birth	5	OR: 0.81 (0.69, 0.94)	31/ 0.01
Tieu et al. 2017 ¹²	Healthy diet (intake)	Small gestational age	2	RR: 0.84 (0.49, 1.42)	0/ 0.00	Chia et al. 2019 ¹¹	Healthy diet (intake)	Small gestational age	8	OR: 0.88 (0.71, 1.08)	36/ 0.03
Tieu et al. 2017 ¹²	Healthy diet (intake)	Birth weight	5	MD: 5.94 (-51.11, 62.99)	0	Chia et al. 2019 ¹¹	Healthy diet (intake)	Birth weight	12	MD: -9.61 (-53.12, 33.91)	86
Tieu et al. 2017 ¹²	Healthy diet (intake)	Gestational diabetes	5	RR: 0.60 (0.35, 1.04)	54/0.18	Mijatovic-Vukas et al. 2018 ¹³	Mediterranean diet (intake)	Gestational diabetes	4	OR: 0.70 (0.62, 0.80)	6/ 0.00
Vinceti et al. 2018 ¹⁴	Selenium supplements	Cancer	5	RR: 0.99 (0.86, 1.14)	46/0.01	Vinceti et al. 2018 ¹⁴	Selenium status	Cancer	7	OR: 0.72 (0.55, 0.93)	46/ 0.06
Vinceti et al. 2018 ¹⁴	Selenium supplements	Cancer mortality	2	RR: 0.81 (0.49, 1.32)	79/ 0.10	Vinceti et al. 2018 ¹⁴	Selenium intake	Cancer mortality	1	OR: 0.93 (0.83, 1.04)	NA
Vinceti et al. 2018 ¹⁴	Selenium supplements	Colorectal cancer	3	RR: 0.74 (0.41, 1.33)	48/0.13	Vinceti et al. 2018 ¹⁴	Selenium supplements	Colorectal cancer	1	OR: 0.80 (0.68, 0.94)	NA

Yao et al. 2017 ⁴⁵	Fibre intake	Colorectal cancer	2	RR: 2.70 (1.07, 6.85)	0/ 0.00	Aune et al. 2011 ¹⁵⁰	Fibre intake	Colorectal cancer	19	RR: 0.88 (0.82, 0.94)	4/ 0.00
Yao et al. 2017 ⁴⁵	Fibre intake	Colorectal adenoma	5	RR: 1.04 (0.95, 1.13)	4/ 0.00	Ben et al. 2014 ⁴⁶	Fibre intake	Colorectal adenoma	4	RR: 0.92 (0.76, 1.10)	33/ 0.01

HR: hazard ratio; MCI: mild cognitive impairment; MD: mean difference; N: no; NA: not applicable; NR: not reported; OR: odds ratio; RR: risk ratio; Y: yes; 95% CI: 95% confidence interval.

Reference pair	Intervention in RCTs	Type of intake in RCTs	Exposure in CSs	Type of exposure in CSs	Outcome in RCTs	Outcome in CSs	R	atio of Risk Ratios	RRR 95	5%-CI \	Neight
Abdelhamid 2018a+Chowdhury 2014a	Omega-3	Intake + Supplements	Omega-3	Intake	Cardiovascular mortality	Coronary heart disease	mortality		1.06 [0.82]	; 1.37]	1.4%
Abdelhamid 2018a+Chowdhury 2014a	Omega-3	Intake + Supplements	Omega-3	Intake	Cardiovascular disease	Coronary heart disease		1000	1.14 [1.01;	1.28]	2.4%
Abdelhamid 2018a+Pan 2012	a-Linolenic acid	Intake	a-Linolenic acid	Intake	Cardiovascular disease	Cardiovascular disease		÷	1.02 [0.87;		2.1%
	Omega-3	Intake + Supplements	Omega-3	Intake	All-cause mortality	All-cause mortality			1.14 [1.04;	; 1.25]	2.7%
	α-Linolenic acid	Intake	a-Linolenic acid	Intake	Cardiovascular mortality	Coronary heart disease	mortality		1.13 [0.85]	; 1.51]	1.3%
	α-Linolenic acid	Intake	a-Linolenic acid	Intake	Coronary heart disease	Coronary heart disease		*	1.10 [0.89]		1.8%
	Polyunsaturated fat	Intake + Supplements	Omega-6	Intake	Coronary heart disease	Coronary heart disease			0.89 [0.72]		1.8%
Abdelhamid 2018b+Li 2020	Polyunsaturated fat	Intake + Supplements	Linoleic acid	Intake	All-cause mortality	All-cause mortality			1.13 [1.00]		2.5%
	Polyunsaturated fat	Intake	Polyunsaturated fat		Major cardiovascular events	Cardiovascular disease			0.87 [0.61]		1.0%
	Low-sodium	Intake	Low-sodium	Intake	All-cause mortality	All-cause mortality		- <u>+</u> -	1.01 [0.73]		1.1%
	Low-sodium	Intake	Low-sodium	Intake	Cardiovascular mortality	Cardiovascular mortalit			0.77 [0.46]		0.6%
	Low-sodium	Intake	Low-sodium	Intake	Cardiovascular disease	Cardiovascular disease			0.87 [0.57]		0.8%
	Vitamin C Vitamin C	Supplements Supplements	Vitamin C Vitamin C	Intake Intake	Major cardiovascular events Cardiovascular mortality	Cardiovascular disease Cardiovascular mortalit			1.18 [1.03]		2.3% 1.9%
Al-Khudairy 2017+Aune 2018	Vitamin C	Supplements	Vitamin C	Intake	All-cause mortality	All-cause mortality	y	den	1.23 [1.10]		2.5%
	Vitamin D	Supplements	Vitamin D	Status	Hip fracture	Hip fracture		1.00	1.65 [1.35]		1.8%
	Vitamin D	Supplements	Vitamin D	Status	Any fracture	Any fracture		in the second se	1.30 [1.09:		2.0%
Bielakovic 2012+Aune 2018	B-carotene	Supplements	ß-carotene	Intake	All-cause mortality	All-cause mortality		1	1.24 [1.16]		2.8%
Bielakovic 2012+Aune 2018	Vitamin E	Supplements	Vitamin E	Intake	All-cause mortality	All-cause mortality		12	1.04 [0.98		2.8%
Bjelakovic 2012+Aune 2018	Vitamin C	Supplements	Vitamin C	Intake	All-cause mortality	All-cause mortality			1.17 [1.08		2.7%
Bjelakovic 2012+Aune 2018	Vitamin A	Supplements	β-carotene	Intake	All-cause mortality	All-cause mortality		12	1.27 [1.15]		2.6%
Bjelakovic 2014a+Chowdhury 2014b	Vitamin D	Supplements	Vitamin D	Status	All-cause mortality	All-cause mortality			1.41 [1.30]		2.8%
Bjelakovic 2014a+Chowdhury 2014b	Vitamin D	Supplements	Vitamin D	Status	Cardiovascular mortality	Cardiovascular mortalit	y		1.40 [1.19]	; 1.64]	2.1%
	Vitamin D	Supplements	Vitamin D	Status	Cancer mortality	Cancer mortality		÷	1.09 [0.91;		2.0%
	Vitamin D	Supplements	Vitamin D	Status	Cancer	Cancer		-	1.16 [0.97;		2.0%
	Vitamin D3	Supplements	Vitamin D	Supplements	Breast cancer	Breast cancer		÷	1.03 [0.89]		2.3%
	Vitamin D3	Supplements	Vitamin D	Intake	Lung cancer	Lung cancer		-	0.97 [0.73]		1.3%
	Folate	Supplements	Folate	Supplements	Neural tube defect	Neural tube defect				; 1.81]	0.3%
De-Regil 2015+Feng 2015	Folate	Supplements	Folate	Supplements	Congenital cardiovascular anomalies					; 2.51]	0.2%
Hemmingsen 2017+Schwingshackl 2018		Intake	Diet quality	Intake	Type 2 diabetes	Type 2 diabetes		-		; 0.99]	1.6%
Hemmingsen 2017+Schwingshackl 2018 Hofmeyr 2018+Newberry 2014	Calcium	Intake Supplements	Diet quality Calcium	Intake	All-cause mortality Pre-eclampsia	All-cause mortality Pre-eclampsia				; 6.37]	0.1%
Homeyr 2013+Newberry 2014 Hooper 2012+Noto 2013	Low-fat/modified fat	Intake + Supplements	High-carbohydrate		Cardiovascular mortality	Cardiovascular mortalit			1.03 [0.89]		2.2%
	Low-fat/modified fat	Intake + Supplements	High-carbohydrate		All-cause mortality	All-cause mortality	y	The second se	1.18 [1.06]		2.2%
	Low saturated fat	Intake		Intake	Combined cardiovascular events	Coronary heart disease		-	0.88 [0.74]		2.0%
Hooper 2018+Chowdhury 2014a	Omega-6	Intake + Supplements	Omega-6	Intake	Combined cardiovascular events	Coronary heart disease			0.99 [0.82]		1.9%
Hooper 2018+Li 2020	Omega-6	Intake + Supplements	Linoleic acid	Intake	All-cause mortality	All-cause mortality		Ter .	1.15 [1.00:		2.3%
Hooper 2018+Li 2020	Omega-6	Intake + Supplements	Linoleic acid	Intake	Cardiovascular mortality	Cardiovascular mortalit	v		1.25 [0.87]		1.0%
Jin 2012+Jin 2012	Flavonols	Intake	Flavonols	Intake	Colorectal adenoma	Colorectal cancer		- <u>+</u> -	0.99 [0.80]	; 1.22]	1.8%
Keats 2019+Wolf 2017	Micronutrients	Supplements	Multivitamins	Supplements	Preterm birth	Preterm birth		-	1.13 [0.92;	; 1.39]	1.8%
	Micronutrients	Supplements	Multivitamins	Supplements	Low birth weight	Low birth weight			1.11 [0.63;		0.5%
	Micronutrients	Supplements	Multivitamins	Supplements	Small gestational age	Small gestational age		100	1.19 [0.98;		1.8%
Mathew 2012+Jiang 2019	β-carotene	Supplements	β-carotene	Intake	Cataract	Cataract		100	1.10 [0.97]		2.4%
Mathew 2012+Jiang 2019	Vitamin E	Supplements	Vitamin E	Intake	Cataract	Cataract		青	1.08 [0.95]		2.4%
Mathew 2012+Jiang 2019	Vitamin C	Supplements	Vitamin C	Intake	Cataract	Cataract		-	1.27 [1.10]		2.2%
Palacios 2019+Hu 2018 Palacios 2019+Tous 2020	Vitamin D Vitamin D	Supplements Supplements	Vitamin D Vitamin D	Status Status	Gestational diabetes Preterm birth	Gestational diabetes Preterm birth			0.62 [0.37; 1.58 [1.12;		0.6%
	Vitamin D	Supplements	Vitamin D	Status	Pre-eclampsia	Pre-eclampsia			1.50 [1.12]		0.7%
Rees 2013b+Jayedi 2018	Selenium	Supplements	Selenium	Infake	All-cause mortality	All-cause mortality		area	1.23 [1.08]		2.4%
Rees 2013b+Xiang 2019	Selenium	Supplements	Selenium	Status	Cardiovascular mortality	Cardiovascular mortalit	v	in the second se	1.26 [0.94]		1.3%
Rees 2013b+Zhang 2016a	Selenium	Supplements	Selenium	Status	Combined cardiovascular events	Cardiovascular disease		dias.	1.18 [1.02]		2.2%
	Mediterranean diet	Intake	Mediterranean diet		Cardiovascular mortality	Cardiovascular mortalit			1.27 [0.81]		0.7%
Rees 2019+Rosato 2019	Mediterranean diet	Intake	Mediterranean diet		Combined cardiovascular events	Cardiovascular disease		- <u>+</u> -	1.00 [0.78		1.5%
Rees 2019+Soltani 2019	Mediterranean diet	Intake	Mediterranean diet	Intake	All-cause mortality	All-cause mortality			1.11 [0.89]		1.7%
	B-vitamins	Supplements	Vitamin B12	Intake	Dementia/MCI	Dementia			1.02 [0.70;		0.9%
Rutjes 2018+Goodwill 2017	Vitamin D3	Supplements	Vitamin D	Status	Dementia	Dementia/MCI		- <u>i</u> a-	1.24 [0.79;		0.7%
Tieu 2017+Chia 2019	Healthy diet	Intake	Healthy diet	Intake	Preterm birth	Preterm birth			0.63 [0.25;		0.2%
Tieu 2017+Chia 2019	Healthy diet	Intake	Healthy diet	Intake	Small gestational age	Small gestational age		<u> </u>	0.94 [0.54]		0.5%
Tieu 2017+Mijatovic-Vukas 2018	Healthy diet	Intake		Intake	Gestational diabetes	Gestational diabetes			0.81 [0.46]		0.5%
Vinceti 2018+Vinceti 2018	Selenium	Supplements	Selenium	Status	Cancer	Cancer		100	1.32 [1.01]		1.4%
Vinceti 2018+Vinceti 2018 Vinceti 2018+Vinceti 2018	Selenium Selenium	Supplements	Selenium Selenium	Intake	Cancer mortality Colorectal cancer	Cancer mortality Colorectal cancer			0.87 [0.52]		0.6%
	Fibre	Supplements Intake	Fibre	Supplements Intake	Colorectal cancer	Colorectal cancer			0.92 [0.50]		0.4%
	Fibre	Intake	Fibre	Intake	Colorectal cancer Colorectal adenoma	Colorectal cancer Colorectal adenoma			3.07 [1.21; 1.13 [0.92]		0.2%
100 201/ TDell 2014	TIDIE	mane	r ibi e	Intake	Colorecial adenoma	Colorectal adenoma		1	1.13 [0.92]	, 1.59]	1.070
Random effects model									1.12 [1.07;	: 1.171 1	00.0%
Prediction interval										; 1.45]	
Heterogeneity: $l^2 = 60\%$, $\tau^2 = 0.0159$, $p < 0.0$	1						r				
							0.2	0.5 1 2 5			
							RR in RCTs < RF	R in CSs RR in RCTs > R	R in CSs		

Supplementary Figure 3: Forest plot of comparisons between bodies of evidence from randomized controlled trials vs. cohort studies for dichotomous outcomes as pooled ratio of risk ratios (RRR) including only CSs with a RR <1.

CS: cohort studies; RCTs: randomized controlled trials; RR: risk ratio; RRR: ratio of risk ratios;

Reference pair	Intervention in RCTs	Type of intake in RCT	s Exposure in CSs	Type of exposure in CS	s Outcome in RCTs	Outcome in CSs	Ratio of Risk Ratios	RRR 95%-CI Weight
Abdelhamid 2018a+Schlesinger 2019 Hofmeyr 2018-Newberry 2014 Hooper 2012+Zhu 2019 Hooper 2015b+de Souza 2015 Hooper 2015b+de Souza 2015 Jin 2012+Jin 2012 Jin 2012+Jin 2012	9 Omega-3 Calcium Low-fat/modified fat Low saturated fat Low saturated fat Total flavonoids Isoflavonoes	Intake + Supplements Supplements Intake + Supplements Intake Intake Intake Intake	Fish Calcium Low-fat Low saturated fat Low saturated fat Total flavonoids Isoflavonoes		Body weight High blood pressure Combined cardiovascular events All-cause mortality Cardiovascular mortality Colorectal adenoma Colorectal adenoma	Weight gain High blood pressure Cardiovascular disease All-cause mortality Calorectal cancer Colorectal cancer		$\begin{array}{llllllllllllllllllllllllllllllllllll$
Random effects model Prediction interval Heterogeneity: $l^2 = 44\%$, $\tau^2 = 0.0132$, p	= 0.10					RR in RCT	0.5 1 2 s < RR in CSs RR in RCTs >	0.89 [0.79; 1.00] 100.0% [0.64; 1.24] RR in CSs

Supplementary Figure 4: Forest plot of comparisons between bodies of evidence from randomized controlled trials vs. cohort studies for dichotomous outcomes as pooled ratio of risk ratios (RRR) including only CSs with a RR \geq 1.

CS: cohort studies; RCTs: randomized controlled trials; RR: risk ratio; RRR: ratio of risk ratios;

Reference pair	Intervention in RCTs	Type of intake in RCTs	Exposure in CSs	Type of exposure in CSs	Outcome in RCTs	Outcome in CSs	Ratio of Risk Ratios	RRR	95%-CI	Weight
Abdelhamid 2018a+Pan 2012	α-Linolenic acid	Intake	α-Linolenic acid	Intake	Cardiovascular disease	Cardiovascular disease	1944 1947	1.02	0.87; 1.20]	3.9%
Abdelhamid 2018a+Wan 2017	Omega-3	Intake + Supplements	Omega-3	Intake	All-cause mortality	All-cause mortality	10		1.04; 1.25]	
Abdelhamid 2018b+Li 2020	Polyunsaturated fat	Intake + Supplements	Linoleic acid	Intake	All-cause mortality	All-cause mortality	100		1.00; 1.27]	
Adler 2014+Aburto 2013	Low-sodium	Intake	Low-sodium	Intake	All-cause mortality	All-cause mortality	- <u>E</u> -		0.73; 1.40]	
Al-Khudairy 2017+Aune 2018	Vitamin C	Supplements	Vitamin C	Intake	All-cause mortality	All-cause mortality	100	1.23	1.10; 1.38]	4.3%
Avenell 2014+Feng 2017	Vitamin D	Supplements	Vitamin D	Status	Hip fracture	Hip fracture	·		1.35; 2.00]	
Bjelakovic 2012+Aune 2018	β-carotene	Supplements	β-carotene	Intake	All-cause mortality	All-cause mortality	100	1.24	1.16; 1.33]	4.6%
Bjelakovic 2012+Aune 2018	Vitamin E	Supplements	Vitamin E	Intake	All-cause mortality	All-cause mortality		1.04	0.98; 1.11]	4.7%
Bjelakovic 2012+Aune 2018	Vitamin C	Supplements	Vitamin C	Intake	All-cause mortality	All-cause mortality		1.17	1.08; 1.27]	4.6%
Bjelakovic 2012+Aune 2018	Vitamin A	Supplements	β-carotene	Intake	All-cause mortality	All-cause mortality		1.27	[1.15; 1.40]	4.4%
Bjelakovic 2014a+Chowdhury 2014b	Vitamin D	Supplements	Vitamin D	Status	All-cause mortality	All-cause mortality	+	1.41	1.30; 1.52]	4.6%
Bjelakovic 2014b+Han 2019	Vitamin D	Supplements	Vitamin D	Status	Cancer	Cancer		1.16	0.97; 1.39]	3.7%
De-Regil 2015+Blencowe 2010	Folate	Supplements	Folate	Supplements	Neural tube defect	Neural tube defect		0.84	0.39; 1.81]	0.7%
Hemmingsen 2017+Schwingshackl 2018	B Healthy diet	Intake	Diet quality	Intake	All-cause mortality	All-cause mortality		1.31	0.27; 6.37]	0.2%
Hofmeyr 2018+Newberry 2014	Calcium	Supplements	Calcium	Intake	Pre-eclampsia	Pre-eclampsia		0.46	0.30; 0.71]	1.7%
Hooper 2012+Seidelmann 2018	Low-fat/modified fat	Intake + Supplements	High-carbohydrate	Intake	All-cause mortality	All-cause mortality		1.18	[1.06; 1.32]	4.3%
Hooper 2015b+de Souza 2015	Low saturated fat	Intake	Low saturated fat	Intake	All-cause mortality	All-cause mortality		0.96	[0.85; 1.08]	4.3%
Hooper 2018+Li 2020	Omega-6	Intake + Supplements	Linoleic acid	Intake	All-cause mortality	All-cause mortality	and the second se	1.15	[1.00; 1.32]	4.1%
Jin 2012+Jin 2012	Total flavonoids	Intake	Total flavonoids	Intake	Colorectal adenoma	Colorectal cancer		1.09	[0.83; 1.43]	2.8%
Keats 2019+Wolf 2017	Micronutrients	Supplements	Multivitamin	Supplements	Preterm birth	Preterm birth	1	1.13	[0.92; 1.39]	3.4%
Mathew 2012+Jiang 2019	β-carotene	Supplements	β-carotene	Intake	Cataract	Cataract	and the second se	1.10	[0.97; 1.24]	4.2%
Mathew 2012+Jiang 2019	Vitamin E	Supplements	Vitamin E	Intake	Cataract	Cataract	100	1.08	[0.95; 1.23]	4.2%
Mathew 2012+Jiang 2019	Vitamin C	Supplements	Vitamin C	Intake	Cataract	Cataract	- train	1.27	[1.10; 1.48]	4.0%
Palacios 2019+Hu 2018	Vitamin D	Supplements	Vitamin D	Status	Gestational diabetes	Gestational diabetes		0.62	[0.37; 1.05]	1.3%
Rees 2013b+Jayedi 2018	Selenium	Supplements	Selenium	Intake	All-cause mortality	All-cause mortality	10400	1.23	[1.08; 1.39]	4.2%
Rees 2019+Soltani 2019	Mediterranean diet	Intake	Mediterranean diet	Intake	All-cause mortality	All-cause mortality		1.12	0.90; 1.39]	3.3%
Rutjes 2018+Doets 2013	B-vitamins	Supplements	Vitamin B12	Intake	Dementia/MCI	Dementia		1.02	[0.70; 1.49]	2.0%
Rutjes 2018+Goodwill 2017	Vitamin D3	Supplements	Vitamin D	Status	Dementia	Dementia/MCI		1.24	[0.79; 1.95]	1.6%
Tieu 2017+Chia 2019	Healthy diet	Intake	Healthy diet	Intake	Preterm birth	Preterm birth		0.63	[0.25; 1.55]	0.5%
Vinceti 2018+Vinceti 2018	Selenium	Supplements	Selenium	Status	Cancer	Cancer		1.32	[1.00; 1.73]	2.8%
Yao 2017+Aune 2011	Fibre	Intake	Fibre	Intake	Colorectal cancer	Colorectal cancer		- 3.07	[1.21; 7.78]	0.5%
Random effects model Prediction interval Heterogeneity: J^2 = 72%, τ^2 = 0.0269, p < 0.	01						0.2 0.5 1 2 5 s< RR in CSs RR in RCTs>	i	1.06; 1.22] 0.81; 1.61] Ss	

Supplementary Figure 5: Forest plot of comparisons: Sensitivity analysis (where only one outcome with the largest number of RCTs) for bodies of evidence from randomized controlled trials vs. cohort studies for dichotomous outcomes as pooled ratio of risk ratios (RRR).

CS: cohort studies; RCTs: randomized controlled trials; RR: risk ratio; RRR: ratio of risk ratios;

Reference pair	Intervention in RCTs	Type of intake in RCTs	Exposure in CSs	Type of exposure in CSs	Outcome in RCTs	Outcome in CSs	Ratio of	Risk Ratios F	RRR 95%-CI	Weight
	Omega-3	Intake + Supplements	Omega-3	Intake	Cardiovascular mortality	Coronary heart disease	mortality		1.06 [0.82; 1.37]	1.9%
Abdelhamid 2018a+Schlesinger 2019	Omega-3	Intake + Supplements	Fish	Intake	Body weight	Weight gain	-	11)	0.98 [0.70; 1.35]	1.5%
Abdelhamid 2018a+Wan 2017	Omega-3	Intake + Supplements	Omega-3	Intake	All-cause mortality	All-cause mortality			1.14 [1.04; 1.25]	3.1%
Abdelhamid 2018a+Wei 2018	a-Linolenic acid	Intake	a-Linolenic acid	Intake	Cardiovascular mortality	Coronary heart disease	mortality	-	1.13 [0.85; 1.51]	1.7%
Abdelhamid 2018b+Chowdhury 2014a	Polyunsaturated fat	Intake + Supplements	Omega-6	Intake	Coronary heart disease	Coronary heart disease		÷ (0.89 [0.72; 1.10]	2.3%
Abdelhamid 2018b+Li 2020	Polyunsaturated fat	Intake + Supplements	Linoleic acid	Intake	All-cause mortality	All-cause mortality		100	1.13 [1.00; 1.27]	2.9%
Adler 2014+Aburto 2013	Low-sodium	Intake	Low-sodium	Intake	All-cause mortality	All-cause mortality		<u>+</u>	1.01 [0.73; 1.40]	1.5%
Adler 2014+Aburto 2013	Low-sodium	Intake	Low-sodium	Intake	Cardiovascular mortality	Cardiovascular mortality			0.77 [0.46; 1.28]	0.9%
Al-Khudairy 2017+Aune 2018	Vitamin C	Supplements	Vitamin C	Intake		Cardiovascular disease			1.18 [1.03; 1.35]	2.8%
Al-Khudairy 2017+Aune 2018	Vitamin C	Supplements	Vitamin C	Intake	All-cause mortality	All-cause mortality			1.23 [1.10; 1.38]	3.0%
Avenell 2014+Feng 2017	Vitamin D	Supplements	Vitamin D	Status		Hip fracture			1.65 [1.35: 2.00]	2.3%
Bjelakovic 2012+Aune 2018	B-carotene	Supplements	β-carotene	Intake	All-cause mortality	All-cause mortality		10	1.24 [1.16: 1.33]	3.2%
Bjelakovic 2012+Aune 2018	Vitamin E	Supplements	Vitamin E	Intake		All-cause mortality			1.04 [0.98; 1.11]	3.2%
	Vitamin C	Supplements	Vitamin C	Intake		All-cause mortality			1.17 [1.08: 1.27]	3.2%
Bjelakovic 2012+Aune 2018	Vitamin A	Supplements	B-carotene	Intake	All-cause mortality	All-cause mortality		123	1.27 [1.15: 1.40]	3.1%
	Vitamin D	Supplements	Vitamin D	Status		All-cause mortality			1.41 [1.30; 1.52]	3.2%
Bjelakovic 2014a+Chowdhury 2014b	Vitamin D	Supplements	Vitamin D	Status	Cardiovascular mortality	Cardiovascular mortality			1.40 [1.19; 1.64]	2.6%
	Vitamin D	Supplements	Vitamin D	Status		Cancer mortality		<u>1</u>	1.09 [0.91; 1.30]	2.5%
	Vitamin D	Supplements	Vitamin D	Status		Cancer			1.16 [0.97; 1.39]	2.5%
	Folate	Supplements	Folate	Supplements		Neural tube defect			0.84 [0.39; 1.81]	0.4%
	Folate	Supplements	Folate	Supplements	Congenital cardiovascular anomalies	Concenital heart defect			0.95 [0.36; 2.51]	0.3%
Hemmingsen 2017+Schwingshackl 2018		Intake	Diet quality	Intake		Type 2 diabetes			0.79 [0.63; 0.99]	2.1%
Hemmingsen 2017+Schwingshackl 2018		Intake	Diet quality	Intake		All-cause mortality			1.31 [0.27; 6.37]	0.1%
	Calcium	Supplements	Calcium	Intake		Pre-eclampsia			0.46 [0.30; 0.71]	1.1%
	Low-fat/modified fat	Intake + Supplements	High-carbohydrate			Cardiovascular mortality			1.03 [0.89; 1.20]	2.7%
	Low-fat/modified fat	Intake + Supplements	High-carbohydrate			All-cause mortality			1.18 [1.06; 1.32]	3.0%
	Low saturated fat	Intake		Intake		All-cause mortality		and a second	0.96 [0.85; 1.08]	2.9%
	Low saturated fat	Intake		Intake		Cardiovascular mortality			0.92 [0.74; 1.15]	2.2%
	Omega-6		Linoleic acid	Intake		All-cause mortality		i.	1.15 [1.00; 1.32]	2.8%
Hooper 2018+Li 2020	Omega-6	Intake + Supplements	Linoleic acid	Intake		Cardiovascular mortality		Lee .	1.25 [0.87; 1.80]	1.4%
	Total flavonoids	Intake	Total flavonoids	Intake		Colorectal cancer		The second	1.09 [0.83; 1.43]	1.8%
	Isoflavonoes	Intake	Isoflavonoes	Intake		Colorectal cancer	-	al i	0.84 [0.65: 1.09]	1.9%
	Flavonols	Intake	Flavonols	Intake		Colorectal cancer			0.99 [0.80; 1.22]	2.3%
	Micronutrients	Supplements	Multivitamins	Supplements		Preterm birth		<u>1</u>	1.13 [0.92; 1.39]	2.3%
	B-carotene	Supplements	B-carotene	Intake		Cataract		The second secon	1.10 [0.97; 1.24]	2.9%
Mathew 2012+Jiang 2019	Vitamin E	Supplements	Vitamin E	Intake		Cataract		14	1.08 [0.95; 1.23]	2.8%
	Vitamin C	Supplements	Vitamin C	Intake		Cataract			1.27 [1.10; 1.48]	2.7%
	Vitamin D	Supplements	Vitamin D	Status		Gestational diabetes			0.62 [0.37; 1.04]	0.8%
	Vitamin D	Supplements	Vitamin D	Status		Preterm birth			1.58 [1.12; 2.24]	1.4%
	Vitamin D	Supplements	Vitamin D	Status		Pre-eclampsia			1.52 [0.97; 2.38]	1.0%
Rees 2013b+Jayedi 2018	Selenium	Supplements	Selenium	Intake		All-cause mortality			1.23 [1.08; 1.39]	2.9%
Rees 2013b+Xiang 2019	Selenium	Supplements	Selenium	Status		Cardiovascular mortality			1.26 [0.94; 1.68]	1.7%
	Mediterranean diet	Intake		Intake		Cardiovascular mortality	3		1.27 [0.81; 2.00]	1.0%
	Mediterranean diet	Intake	Mediterranean diet			All-cause mortality			1.12 [0.90; 1.39]	2.2%
	B-vitamins	Supplements	Vitamin B12	Intake		Dementia			1.02 [0.70; 1.49]	1.3%
	Vitamin D3	Supplements	Vitamin D	Status		Dementia/MCI			1.24 [0.79; 1.95]	1.0%
	Healthy diet	Intake	Healthy diet	Intake		Small gestational age			0.94 [0.54; 1.66]	0.7%
	Healthy diet	Intake		Intake		Gestational diabetes			0.81 [0.46: 1.41]	0.7%
	Selenium	Supplements	Selenium	Status		Cancer			1.32 [1.01; 1.73]	1.8%
	Fibre	Intake	Fibre	Intake		Colorectal cancer			3.07 [1.21; 7.78]	0.3%
Tao 2017 #Aune 2011	FIDIE	make	Fibre	make	Colorectal cancer	Colorectal cancer			5.07 [1.21; 7.78]	0.5%
Random effects model								•	1.12 [1.06; 1.18]	100.0%
Prediction interval								-	[0.82; 1.52]	
Heterogeneity: $l^2 = 68\%$, $\tau^2 = 0.0227$, $p < 0.0$	1								······	
· · · · · · · · · · · · · · · · · · ·							0.2 0.5	1 2 5		
						1	RR in RCTs < RR in CSs	RR in RCTs > RI	R in CSs	

Supplementary Figure 6: Forest plot of comparisons between bodies of evidence from randomized controlled trials vs. cohort studies for dichotomous outcomes as pooled ratio of risk ratios (RRR) excluding highly correlated outcomes.

Re	ference pair	Intervention in RCTs	Type of intake in RCTs	Exposure in CSs	Type of exposure in CSs	Outcome in RCTs	Outcome in CSs	Ratio of Risk Ratios	RRR 95%-CI
Ab Bje De He Ho Ho Re Re Re Tie Tie Ya Ya Ra Pr	re or less identical delhamid 2018b+Zhu 2019 ilakovic 2014b+Hossain 2019 -Regil 2015+Flencowe 2010 -Regil 2015+Feng 2015 mmingsen 2017+Schwingshackd 2018 oper 2015b+de Souza 2015 oper 2015b+de Souza 2015 oper 2015b+de Souza 2015 ess 2019+Rosato 2019 ess 2019+Rosato 2019 ess 2019+Sottani 2019 u 2017+Chia 2019 u 2017+Chia 2019 u 2017+Chia 2019 u 2017+Chia 2019 u 2017+Chia 2019 z 2017+Aune 2011 o 2017-Aune 2014 ndom effects model adiction interval kerogenety: l^2 = 7%, l^2 = 0.0015, p = 0.37	Healthy diet Low saturated fat Low saturated fat Low saturated fat Mediterranean diet Mediterranean diet Mediterranean diet Healthy diet Healthy diet Healthy diet Selenium Fibre Fibre	Intake Supplements Supplements Supplements Intake	Polyunsaturated fat Vitamin D Folate Folate Diet quality Low saturated fat Low saturated fat Mediterranean diet Mediterranean diet Healthy diet Healthy diet Healthy diet Fibre Fibre	Supplements Supplements Supplements Intake Intake Intake Intake Intake Intake Intake Intake Intake Intake	Major cardiovascular events Breast cancer Neural tube defect Congenital cardiovascular anomalies Type 2 diabetes All-cause mortality Cardiovascular mortality Combined cardiovascular events Cardiovascular mortality Combined cardiovascular events All-cause mortality Preterm birth Small gestational age Gestational diabetes Colorectal cancer Colorectal acneer Colorectal adenoma	Cardiovascular disease Breast cancer Neural tube defect Congenital heart defect Type 2 diabetes All-cause mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular disease Cardiovascular disease All-cause mortality Preterm birth Small gestational age Gestational diabetes Colorectal cancer Colorectal acncer Colorectal adenoma	+++++++++++++++++++++++++++++++++++++++	$\begin{array}{c} 0.87 & [0.61; 1.24] \\ 1.03 & [0.89; 1.19] \\ 0.84 & [0.39; 1.81] \\ 0.95 & [0.36; 2.51] \\ 0.79 & [0.63; 0.99] \\ 1.31 & [0.27; 6.37] \\ 0.96 & [0.85; 1.06] \\ 0.92 & [0.74; 1.15] \\ 0.88 & [0.74; 1.15] \\ 0.88 & [0.74; 1.16] \\ 1.27 & [0.81; 2.00] \\ 1.27 & [0.81; 2.00] \\ 1.28 & [0.47; 1.42] \\ 0.92 & [0.47; 1.42] \\ 0.92 & [0.51; 1.70] \\ 0.92 & [0.51; 1.70] \\ 0.93 & [0.91; 1.20] \\ 1.13 & [0.92; 1.39] \\ 0.98 & [0.91; 1.04] \\ [0.88; 1.09] \end{array}$
Abb Abb Abb Abb Abb Abb Abb Abb Abb Abb	nilar but not identical delhamid 2018a+Chowdhury 2014a delhamid 2018a+Chowdhury 2014a delhamid 2018a+Chowdhury 2014a delhamid 2018a+Vei 2019 delhamid 2018a+Vei 2018 delhamid 2018a+Vei 2018 delhamid 2018b+Chowdhury 2014a delhamid 2018b+Chowdhury 2014a delhamid 2018b+Li 2020 ler 2014+Aburto 2013 ler 2014+Aburto 2013 ler 2014+Aburto 2013 ler 2014+Aburto 2013 Hakovic 2012+Aune 2018 Hakovic 2012+Aune 2018 Hakovic 2012+Aune 2018 Hakovic 2012+Aune 2018 Hakovic 2012+Aune 2018 Jakovic 2014-Li 2018 Jakovic 2014-Li 2018 Jakovic 2014-Li 2018 Jakovic 2014b-Zhang 2015 Theyr 2018+Newberry 2014 Grey 2012+Noto 2013 oper 2012+Seidelmann 2018 oper 2012+Li 2020 2012+Jin 2012 2012+Jin 2012 2012+Jin 2012 2012+Jin 2012 2012+Jing 2019 Hitew 2012+Jing 2019 thew 2012+Jing 2018 Jing 2018+Vinceli 2018	Omega-3 Omega-3 a-Linolenic acid Omega-3 Omega-3 -Cinolenic acid Polyunsaturated fat Dolyunsaturated fat Low-sodium Low-sodium Low-sodium Cow-sodium Vitamin C Vitamin C Calcium Low-fat/modified fat Low-fat/modified fat Low-fat/modified fat Low-fat/modified fat Low-fat/modified fat Softavonols Micronutrients Micronutrients Micronutrients Micronutrients Micronutrients Micronutrients Micronutrients Selenium Selenium		Omega-3 α-Linolenic acid Fish Omega-3 α-Linolenic acid α-Linolenic acid Comega-6 Linoleic acid Low-sodium Low-sodium Low-sodium C Vitamin C Vitamin C Vitamin C Vitamin C Vitamin C Vitamin C Vitamin C Calcium		Cardiovascular mortality Cardiovascular disease Cardiovascular disease Body weight All-cause mortality Cardiovascular mortality Cardiovascular mortality All-cause mortality All-cause mortality All-cause mortality Cardiovascular mortality Cardiovascular mortality All-cause mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality Combined cardiovascular events All-cause mortality Combined cardiovascular events All-cause mortality Colorectal adenoma Colorectal aden	Coronary heart disease mortality Coronary heart disease Cardiovascular disease Weight gain All-cause mortality Coronary heart disease Coronary heart disease Coronary heart disease Coronary heart disease Cardiovascular mortality All-cause mortality Cardiovascular mortality Cardiovascular disease Cardiovascular disease Cardiovascular disease Cardiovascular disease Cardiovascular disease Cardiovascular disease Cardiovascular mortality All-cause mortality All-cause mortality All-cause mortality All-cause mortality All-cause mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality Colorectal cancer Colorectal cancer Cataract	╹╾┠╽ _{┿┿} ┿┿┿┿┿┿┿┿┿┿┿┿┿ ^{┿┿┿┿┿} ┿┿┿┿┿┿┿┿┿	1.06 [0.82; 1.37] 1.14 [1.01; 1.28] 1.02 [0.87; 1.20] 0.98 [0.70; 1.35] 1.13 [0.85; 1.55] 1.13 [0.86; 1.55] 1.13 [0.06; 1.25] 0.89 [0.72; 1.10] 1.13 [1.00; 1.27] 1.01 [0.73; 1.40] 0.77 [0.46; 1.28] 0.87 [0.57; 1.33] 1.15 [0.96; 1.38] 1.23 [1.10; 1.38] 1.24 [1.16; 1.33] 1.24 [1.16; 1.33] 1.24 [1.16; 1.33] 1.24 [0.96; 1.28] 0.46 [0.30; 0.71] 0.46 [0.32] 1.15 [1.00; 1.32] 1.15 [1.00; 1.32] 1.25 [0.87; 1.80] 1.49 [0.82; 1.20] 1.15 [1.00; 1.32] 1.14 [0.97; 1.24] 1.19 [0.83; 1.47] 1.19 [0.83; 1.47] 1.27 [1.10; 1.48] 1.27 [1.10; 1.48] 1.27 [1.10; 1.48] 1.27 [1.00; 1.49] 0.29 [0.70; 1.49] 0.47 [0.52; 1.45] 1.07 [0.02; 1.12] 1.37 [0.22; 1.45] 1.07 [0.72; 1.12] 0.83; 1.37]
Br Av Bje Bje Bje Pa Pa Re Ru Vir Ra	adily similar anell 2014+Feng 2017 nenell 2014+Feng 2017 ilakovic 2014+Aune 2018 ilakovic 2014+Chowdhury 2014b ilakovic 2014a+Chowdhury 2014b ilakovic 2014a+Han 2019 ilakois 2019+Hu 2018 ilakois 2019+Hu 2018 ilakois 2019+Vuan 2019 es 2013b+Xiang 2019 es 2013b+Xiang 2019 es 2013b+Xiang 2019 es 2013b+Chordwill 2017 netit 2018+Chordwill 2017 est 2018+Chordwill 2017 netit 2018+Chordwill 2017 netit 2018+Chordwill 2017 est 2018+Chordwill 2018 est 2018	Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Selenium Selenium Selenium	Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements	Vitamin D Vitamin D §-carotene Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Selenium Vitamin D Selenium	Status Status Intake Status Status Status Status Status Status Status Status Status Status Status Status Status Status Status Status Status Status	Hip fracture Any fracture All-cause mortality All-cause mortality Cancius mortality Cancer mortality Cancer Gestational diabetes Preterm birth Pre-eclampsia Cardiovascular mortality Combined cardiovascular events Dementia Cancer		++++++++++++++++++++++++++++++++++++++	1.65 [1.35; 2.00] 1.30 [1.09; 1.56] 1.27 [1.15; 1.40] 1.41 [1.30; 1.52] 1.40 [1.19; 1.64] 1.09 [0.91; 1.30] 1.56 [0.37; 1.39] 0.62 [0.37; 1.05] 1.56 [0.94; 1.68] 1.24 [0.79; 1.39] 1.26 [0.94; 1.68] 1.24 [0.79; 1.95] 1.24 [0.77; 1.71] P RR in CSs

Supplementary Figure 7: Forest plot of comparisons between bodies of evidence from randomized controlled trials vs. cohort studies for dichotomous outcomes as pooled ratio of risk ratios (RRR) stratified by intervention/exposure similarity degree.

Reference pair	Intervention in RCTs	Type of intake in RCTs	Exposure in CSs	Type of exposure in CSs	Outcome in RCTs	Outcome in CSs	Ratio of Risk Ratios	RRR 95%-CI
Fatty acids Abdelhamid 2018a+Chowdhury 2014a Abdelhamid 2018a+Chowdhury 2014a Abdelhamid 2018a+Chowdhury 2014a Abdelhamid 2018a+Scheisinger 2019 Abdelhamid 2018a+Wei 2018 Abdelhamid 2018a+Wei 2018 Abdelhamid 2018a+Wei 2018 Abdelhamid 2018b+Li 2020 Abdelhamid 2018b+Li 2020 Random elfects model Prediction interval Heterogeneity: l^2 = 26%, r^2 = 0.0021, p = 0	Omega-3 on-Linolenic acid Omega-3 Omega-3 on-Linolenic acid on-Linolenic acid on-Linolenic acid polyunsaturated fat polyunsaturated fat Low saturated fat Low saturated fat Omega-6 Omega-6 Omega-6	Intake + Supplements Intake + Supplements Intake + Supplements Intake + Supplements Intake + Supplements Intake + Supplements Intake + Supplements Intake Intake + Supplements Intake + Supplements Intake + Supplements	Omega-3 Omega-3 a-Linolenic acid Fish Omega-3 a-Linolenic acid a-Linolenic acid Omega-6 Linoleic acid Polyunsaturated fat Low saturated fat Dow saturated fat Omega-6 Linoleic acid Linoleic acid	Intake Intake Intake Intake Intake Intake Intake Intake Intake Intake Intake Intake Intake Intake Intake Intake Intake Intake	Cardiovascular mortality Cardiovascular disease Cardiovascular disease Body weight All-cause mortality Cardiovascular mortality Coronary heart disease All-cause mortality Major cardiovascular events All-cause mortality Cardiovascular mortality Combined cardiovascular events All-cause mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality	Coronary heart disease r Coronary heart disease Cardiovascular disease Weight gain All-cause mortality Coronary heart disease Coronary heart disease All-cause mortality Cardiovascular disease All-cause mortality Coronary heart disease Coronary heart disease All-cause mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality	+	$\begin{array}{c} 1.06 & [0.82; 1.37] \\ 1.14 & [1.01; 1.28] \\ 1.02 & [0.87; 1.20] \\ 0.98 & [0.70; 1.35] \\ 1.14 & [1.04; 1.25] \\ 1.13 & [0.85; 1.51] \\ 1.10 & [0.89; 1.35] \\ 0.89 & [0.72; 1.10] \\ 1.13 & [1.00; 1.27] \\ 0.87 & [0.61; 1.24] \\ 0.96 & [0.85; 1.08] \\ 0.92 & [0.74; 1.16] \\ 0.99 & [0.82; 1.20] \\ 1.15 & [1.00; 1.32] \\ 1.25 & [0.87; 1.80] \\ 1.26 & [1.00; 1.10] \\ [0.94; 1.17] \\ \end{array}$
Micronutrients Adier 2014+Aburto 2013 Adier 2014+Aburto 2013 Adier 2014+Aburto 2013 Adier 2014+Aburto 2013 Al-Khudairy 2017+Aune 2018 Al-Khudairy 2017+Aune 2018 Al-Khudairy 2017+Aune 2018 Aveneil 2014+Feng 2017 Bjelakovic 2012+Aune 2018 Bjelakovic 2012+Aune 2018 Bjelakovic 2012+Aune 2018 Bjelakovic 2012+Aune 2018 Bjelakovic 2012+Aune 2018 Bjelakovic 2014a+Cnowdhury 2014b Bjelakovic 2014a+Cnowdhury 2014b Bjelakovic 2014a+Cnowdhury 2014b Bjelakovic 2014a+Cnowdhury 2014b Bjelakovic 2014a+Cnowdhury 2014b Bjelakovic 2014b+Han 2019 Bjelakovic 2014b+Han 2019 Bjelakovic 2014b+Han 2019 Bjelakovic 2014b+Han 2019 Bjelakovic 2014b+Han 2019 Bjelakovic 2014b+Han 2019 Bjelakovic 2014b+Una 2019 De-Regil 2015+Biencow 2010 De-Regil 2015+Biencow 2010 De-Regil 2015+Biencow 2010 Bielakovic 2014b+Una 2019 Mathew 2012+Jiang 2019 Mathew 2012+Jiang 2019 Mathew 2012+Jiang 2019 Mathew 2012+Jiang 2019 Mathew 2019+Vian 2019 Rees 2013b+Xjang 2019	Low-sodium Low-sodium Vitamin C Vitamin C Vitamin D Vitamin D β -carotene Vitamin D Vitamin C Vitamin C Vitamin C Vitamin D Vitamin D Selenium Selenium Selenium	Intake Intake Supplements	Low-sodium Low-sodium Vitamin C Vitamin C Vitamin C Vitamin D β -carotene Vitamin D β -carotene Vitamin D Vitamin B Calcium Calcium Multivitamin Multivitamin Multivitamin Multivitamin D Vitamin D Selenium Selenium Selenium Selenium Selenium	Intake Intake Intake Intake Intake Intake Intake Intake Status Supplements Intake Supplements Supplements Supplements Supplements Supplements Status	All-cause mortality Cardiovascular mortality Cardiovascular disease Major cardiovascular events Cardiovascular mortality All-cause mortality All-cause mortality All-cause mortality All-cause mortality All-cause mortality All-cause mortality Cardiovascular mortality Cancer mortality Cardiovascular anomalies Pre-eclampsia All-cause mortality Cataract Cataract Cataract Cataract Cataract Cataract Cardiovascular mortality Combined cardiovascular events Dementia/MCI Dementia Cancer mortality Colorectal cancer	All-cause mortality Cardiovascular mortality Cardiovascular disease Cardiovascular mortality All-cause mortality Hip fracture All-cause mortality All-cause mortality All-cause mortality All-cause mortality All-cause mortality Cancer mortality Cataract Catarac	┥┥┥┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿	$\begin{array}{c} 1.01 & [0.73; 1.40] \\ 0.77 & [0.46; 1.28] \\ 0.87 & [0.57; 1.33] \\ 1.16 & [1.03; 1.35] \\ 1.15 & [0.96; 1.38] \\ 1.23 & [1.01; 1.38] \\ 1.65 & [1.35; 2.00] \\ 1.30 & [1.00; 1.56] \\ 1.24 & [1.16; 1.33] \\ 1.04 & [0.98; 1.11] \\ 1.17 & [1.08; 1.27] \\ 1.27 & [1.15; 1.40] \\ 1.41 & [1.30; 1.52] \\ 1.40 & [1.30; 1.52] \\ 1.40 & [1.30; 1.52] \\ 1.40 & [1.30; 1.52] \\ 1.40 & [1.30; 1.52] \\ 1.40 & [1.30; 1.52] \\ 1.40 & [1.30; 1.52] \\ 1.40 & [1.30; 1.52] \\ 1.40 & [1.30; 1.52] \\ 1.40 & [1.30; 1.52] \\ 1.40 & [1.30; 1.52] \\ 1.40 & [1.30; 1.52] \\ 1.40 & [1.30; 1.52] \\ 1.40 & [1.30; 1.52] \\ 1.40 & [1.30; 1.52] \\ 1.40 & [0.36; 2.51] \\ 0.46 & [0.30; 0.71] \\ 0.58 & [0.40; 0.84] \\ 1.13 & [0.36; 1.97] \\ 1.19 & [0.98; 1.46] \\ 1.10 & [0.97; 1.24] \\ 1.08 & [0.95; 1.23] \\ 1.27 & [1.10; 1.48] \\ 1.62 & [0.37; 1.10] \\ 1.52 & [0.77; 2.38] \\ 1.23 & [1.00; 1.73] \\ 0.26 & [0.52; 1.45] \\ 0.22 & [0.50; 1.70] \\ 1.44 & [1.06; 1.22] \\ [0.79; 1.63] \\ 0.22 & [0.50; 1.70] \\ 1.44 & [1.06; 1.22] \\ [0.79; 1.63] \\ 0.22 & [0.79; 1.63] \\ 0.22 & [0.79; 1.63] \\ 0.22 & [0.79; 1.63] \\ 0.22 & [0.79; 1.63] \\ 0.21 & $
Dietary approach Hemmingsen 2017+Schwingshackl 2011 Hooper 2012+Noto 2013 Hooper 2012+Vato 2013 Hooper 2012+Zhu 2019 Rees 2019+Rosato 2019 Rees 2019+Rosato 2019 Rees 2019+Solatni 2019 Tieu 2017-Chia 2019 T	 Healthy diet Healthy diet Low-fal/modified fat Low-fal/modified fat Mediterranean diet Mediterranean diet Mediterranean diet Healthy diet Healthy diet Healthy diet 	Intake Intake + Supplements Intake + Supplements Intake + Supplements Intake Intake Intake Intake Intake Intake Intake	Diet quality Diet quality High-carbohydrate High-carbohydrate Low-fat Mediterranean diet Mediterranean diet Healthy diet Healthy diet Mediterranean diet	Intake Intake Intake Intake Intake Intake Intake Intake	Type 2 diabetes All-cause mortality Cardiovascular mortality All-cause mortality Combined cardiovascular events Cardiovascular mortality Combined cardiovascular events All-cause mortality Preterm birth Small gestational age Gestational diabetes	Type 2 diabetes All-cause mortality Cardiovascular mortality Cardiovascular disease Cardiovascular mortality Cardiovascular mortality Preterm birth Small gestational age Gestational diabetes	*	0.79 [0.63; 0.99] - 1.31 [0.27; 6.37] 1.03 [0.89; 1.20] 1.18 [1.06; 1.32] 0.83 [0.74; 0.94] 1.27 [0.81; 2.00] 1.00 [0.78; 1.28] 1.12 [0.90; 1.39] 0.63 [0.25; 1.55] 0.95 [0.54; 1.67] 0.82 [0.47; 1.42] 0.89 [0.90; 1.09] [0.77; 1.27]
Jin 2012-Jin 2012 Jin 2012-Jin 2012 Jin 2012-Jin 2012 Random effects model Prediction interval Heterogeneity: $l^2 = 0\%$, $r^2 = 0$, $p = 0.40$	Total flavonoids Isoflavonoes Flavonois	Intake Intake Intake	Total flavonoids Isoflavonoes Flavonols	Intake Intake Intake	Colorectal adenoma Colorectal adenoma Colorectal adenoma	Colorectal cancer Colorectal cancer Colorectal cancer	*	1.09 [0.83; 1.43] 0.84 [0.65; 1.09] 0.99 [0.80; 1.22] 0.97 [0.84; 1.11] [0.39; 2.38]
Other Yao 2017+Aune 2011 Yao 2017+Ben 2014 Random effects model Prediction interval Heterogeneity: $l^2 = 76\%$, $\tau^2 = 0.3803$, $p = 0$	Fibre Fibre	Intake Intake	Fibre Fibre	Intake Intake	Colorectal cancer Colorectal adenoma	Colorectal cancer Colorectal adenoma		3.07 [1.21; 7.78] 1.13 [0.92; 1.39] 1.67 [0.64; 4.35] [0.36; 7.81]
						F	0.2 0.5 1 2 5 R in RCTs < RR in CSs RR in RCTs =	> RR in CSs

Supplementary Figure 8: Forest plot of comparisons between bodies of evidence from randomized controlled trials vs. cohort studies for dichotomous outcomes as pooled ratio of risk ratios (RRR) stratified by type of dietary intervention/exposure.

Reference pair	Intervention in RCTs	S Type of intake in RCT	s Exposure in CSs	Type of exposure in CSs	Outcome in RCTs	Outcome in CSs	Ratio of Risk Ratios	RRR 95%-CI
Intake vs. Intake Abdelhamid 2018a+Pan 2012 Abdelhamid 2018a+Wei 2018 Abdelhamid 2018a+Wei 2018 Abdelhamid 2018b+Zhu 2019 Adler 2014+Aburto 2013 Adler 2014+Aburto 2013 Adler 2014+Aburto 2013 Hemmingsen 2017+Schwingshackl 2011 Hooper 2015b+de Souza 2015 Hooper 2015b+de Souza 2015 Hooper 2015b+de Souza 2015 Hooper 2015b+de Souza 2015 Jin 2012+Jin 2012 Jin 2012+Jin 2012 Jin 2012+Jin 2012 Jin 2012+Jin 2012 Rees 2019+Rosato 2019 Rees 2019+Rosato 2019 Rees 2019+Rosato 2019 Tieu 2017+Chia 2019 Tieu 2017+Chia 2019 Tieu 2017+Chia 2019 Tieu 2017+Mintavic-Vukas 2018 Yao 2017+Hane 2014 Random effects model Prediction interval	8 Healthy diet Low saturated fat Low saturated fat Low saturated fat Total flavonces Flavonois Mediterranean diet Mediterranean diet Mediterranean diet Healthy diet Healthy diet Healthy diet Fibre Fibre	Intake Intake	α−Linolenic acid α−Linolenic acid α−Linolenic acid Polyunsaturated fat Low-sodium Low-sodium Diet quality Diet quality Diet quality Low saturated fat Low saturated fat Low saturated fat Total flavonoids Isoflavonoes Flavonoids Mediterranean diet Mediterranean diet Healthy diet Mediterranean diet Fibre Fibre	Intake Intake Intake Intake	Cardiovascular disease Cardiovascular mortality Coronary heart disease Major cardiovascular events All-cause mortality Cardiovascular mortality Cardiovascular mortality All-cause mortality All-cause mortality Cardiovascular mortality Combined cardiovascular events Colorectal adenoma Colorectal adenoma Colorectal adenoma Cardiovascular mortality Combined cardiovascular events All-cause mortality Combined cardiovascular events All-cause mortality Combined cardiovascular events All-cause mortality Preterm birth Smail gestational age Gestational diabetes Colorectal adenoma	Cardiovascular disease Coronary heart disease morta Cardiovascular disease All-cause mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality All-cause mortality All-cause mortality Cardiovascular mortality Coronary heart disease Colorectal cancer Colorectal cancer Cardiovascular mortality Cardiovascular mortality Cardiovascular disease All-cause mortality Preterm birth Small gestational age Gestational diabetes Colorectal cancer Colorectal cancer Colorectal cancer Cardiovascular disease All-cause mortality Preterm birth Small gestational age Gestational diabetes Colorectal cancer Colorectal adenoma	lity ++++++++++++++++++++++++++++++++++++	$\begin{array}{c} 1.02 & [0.87; 1.20] \\ 1.13 & [0.85; 1.51] \\ 1.10 & [0.96; 1.35] \\ 0.87 & [0.61; 1.24] \\ 1.01 & [0.73; 1.40] \\ 0.77 & [0.46; 1.28] \\ 0.87 & [0.57; 1.33] \\ 0.79 & [0.83; 0.99] \\ 0.79 & [0.83; 0.99] \\ 0.92 & [0.74; 1.15] \\ 0.92 & [0.74; 1.16] \\ 1.09 & [0.33; 1.43] \\ 0.84 & [0.85; 1.09] \\ 0.99 & [0.80; 1.22] \\ 1.27 & [0.81; 2.20] \\ 1.27 & [0.81; 2.20] \\ 1.09 & [0.33; 1.43] \\ 0.84 & [0.75; 1.55] \\ 0.95 & [0.54; 1.65] \\ 0.95 & [0.54; 1.67] \\ 0.82 & [0.47; 1.42] \\ 1.13 & [0.92; 1.39] \\ 0.98 & [0.93; 1.04] \\ [0.90; 1.07] \\ \end{array}$
Supplements vs. Supplements Bjelakovic 2014b+Hossain 2019 De-Regil 2015+Blencowe 2010 De-Regil 2015+Feng 2015 Keats 2019+Wolf 2017 Keats 2019+Wolf 2017 Keats 2019+Wolf 2017 Vinceti 2018+Vinceti 2018 Random effects model Prediction interval Heterogeneity: $l^2 = 0\%, r^2 = 0, p = 0.89$	Vitamin D3 Folate Folate Micronutrients Micronutrients Selenium	Supplements Supplements Supplements Supplements Supplements Supplements Supplements	Vitamin D Folate Folate Multivitamin Multivitamin Multivitamin Selenium	Supplements Supplements Supplements Supplements Supplements Supplements Supplements	Breast cancer Neural tube defect Congenital cardiovascular anomalies Preterm birth Low birth weight Small gestational age Colorectal cancer	Breast cancer Neural tube defect Congenital heart defect Preterm birth Low birth weight Small gestational age Colorectal cancer		1.03 [0.89; 1.19] 0.84 [0.39; 1.81] 0.95 [0.36; 2.51] 1.13 [0.92; 1.39] 1.11 [0.63; 1.97] 1.19 [0.96; 1.46] 0.92 [0.50; 1.70] 1.08 [0.98; 1.20] [0.95; 1.23]
Intake + Supplements vs. Intake Abdelhamid 2018a+Chowdhury 2014a Abdelhamid 2018a+Chowdhury 2014a Abdelhamid 2018a+Schlesinger 2019 Abdelhamid 2018a+Van 2017 Abdelhamid 2018b+Li 2020 Hooper 2012+Noto 2013 Hooper 2012+Seidelmann 2018 Hooper 2012+Seidelmann 2018 Hooper 2018+Li 2020 Hooper 2018+Li 2020 Random effects model Prediction interval Hetergoneity: $J^2 = 62\%$, $c^2 = 0.0074$, $p < 0$	Omega-3 Omega-3 Omega-3 Polyunsaturated fat Polyunsaturated fat Low-fat/modified fat Low-fat/modified fat Omega-6 Omega-6 Omega-6	Intake + Supplements Intake + Supplements	Omega-3 Omega-3 Fish Omega-6 Linoleic acid High-carbohydrate High-carbohydrate Low-fat Omega-6 Linoleic acid Linoleic acid		Cardiovascular mortality Cardiovascular disease Body weight All-cause mortality Coronary heart disease All-cause mortality Cardiovascular mortality All-cause mortality Combined cardiovascular events All-cause mortality Cardiovascular events All-cause mortality Cardiovascular mortality	Coronary heart disease morta Coronary heart disease Weight gain All-cause mortality Coronary heart disease All-cause mortality Cardiovascular mortality All-cause mortality Cardiovascular disease Coronary heart disease All-cause mortality Cardiovascular mortality	iity *	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Supplements vs. Intake AI-Khudairy 2017+Aune 2018 AI-Khudairy 2017+Aune 2018 Bielakovic 2012+Aune 2018 Bjelakovic 2012+Aune 2018 Bjelakovic 2012+Aune 2018 Bjelakovic 2012+Aune 2018 Bjelakovic 2012+Aune 2018 Bjelakovic 2012+Aune 2018 Hofmeyr 2018+Newberry 2014 Hofmeyr 2018+Newberry 2014 Hofmeyr 2018+Newberry 2014 Mathew 2012+Jiang 2019 Mathew 2012+Jiang 2019 Mathew 2012+Jiang 2019 Mathew 2012+Jiang 2019 Kees 2018+Doets 2013 Vinceti 2018+Vinceti 2018 Random effects model Prediction Interval Heterogeneity: $l^2 = 74\%$, $\tau^2 = 0.0489$, $p < 0$	Vitamin C Vitamin C Vitamin C β -carotene Vitamin E Vitamin A Vitamin A Vitamin A Calcium Calcium Galcium β -carotene Vitamin C Selenium B-vitamins Selenium	Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements	$\begin{array}{l} \mbox{Vitamin C} \\ \mbox{Vitamin C} \\ \mbox{P-carotene} \\ \mbox{Vitamin E} \\ \mbox{P-carotene} \\ \mbox{Vitamin D} \\ \mbox{Calcium} \\ \mbox{Calcium} \\ \mbox{Calcium} \\ \mbox{P-carotene} \\ \mbox{Vitamin E} \\ \mbox{Vitamin E} \\ \mbox{Vitamin B12} \\ \mbox{Selenium} \\ \mbox{Vitamin B12} \\ \mbox{Selenium} \end{array}$	Intake Intake	Major cardiovascular events Cardiovascular mortality All-cause mortality All-cause mortality All-cause mortality All-cause mortality All-cause mortality Lung cancer Pre-eclampsia High blood pressure Cataract Cataract Cataract All-cause mortality Dementia/MCI Cancer mortality	Cardiovascular disease Cardiovascular mortality All-cause mortality All-cause mortality All-cause mortality All-cause mortality All-cause mortality Lung cancer Pre-eclampsia High blood pressure Cataract Cataract Cataract All-cause mortality Dementia Cancer mortality	*++***********************************	$ \begin{array}{lllllllllllllllllllllllllllllll$
Supplements vs. Status Avenell 2014+Feng 2017 Avenell 2014+Feng 2017 Bjelakovic 2014a+Chowdhury 2014b Bjelakovic 2014a+Chowdhury 2014b Bjelakovic 2014a+Chan 2019 Palacios 2014+Tuan 2019 Palacios 2019+Huu 2018 Palacios 2019+Tous 2020 Palacios 201	Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Selenium Selenium Selenium	Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements	Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Selenium Selenium Selenium	Status Status Status Status Status Status Status Status Status Status Status Status Status Status Status Status Status Status	Hip fracture Any fracture All-cause motality Cardiovascular mortality Cancer motality Cancer Gestational diabetes Preterm birth Pre-eclampsia Cardiovascular mortality Combined cardiovascular events Dementia Cancer	Hip fracture Any fracture All-cause mortality Cancer mortality Cancer mortality Gestational diabetes Pretern birth Pre-eclampsia Cardiovascular mortality Cardiovascular mo	0.2 0.5 1 2 5 RCTs < RR in CSs RR in RCTs	1.65 [1.35; 2.00] 1.30 [1.09; 1.56] 1.41 [1.30; 1.52] 1.40 [1.19; 1.64] 1.09 [0.91; 1.30] 1.16 [0.97; 1.05] 1.58 [1.12; 2.24] 1.52 [0.97; 2.38] 1.26 [0.94; 1.68] 1.18 [1.02; 1.38] 1.24 [0.79; 1.95] 1.32 [1.00; 1.73] 1.29 [1.17; 1.42] [0.94; 1.77] ► RR in CSs

Supplementary Figure 9: Forest plot of comparisons between bodies of evidence from randomized controlled trials vs. cohort studies for dichotomous outcomes as pooled ratio of risk ratios (RRR) stratified by type of intake/exposure.

Reference pair	Intervention in RCTs	Type of intake in RCTs	Exposure in CSs	Type of exposure in CSs	Outcome in RCTs	Outcome in CSs	Ratio of Risk Ratios	RRR 95%-CI Weight
Abdelhamid 2018a+Chowdhury 2014a Abdelhamid 2018a+Chowdhury 2014a Abdelhamid 2018a+Cholesinger 2019 Abdelhamid 2018a+Chowdhury 2014a Abdelhamid 2018b+Chowdhury 2014a Hooper 2018+Chowdhury 2014a Hoo	Omega-3 Omega-3 Omega-3		Omega-3 Omega-3 Fish Omega-3 Omega-6 Linoleic acid Omega-6 Linoleic acid Linoleic acid	Intake Intake Intake Intake Intake Intake Intake Intake Intake Intake	Cardiovascular mortality Cardiovascular disease Body weight All-cause mortality Coronary heart disease All-cause mortality Combined cardiovascular events All-cause mortality Cardiovascular mortality	All−cause mortality Cardiovascular mortality	0.75 1 1.5 CTS < RR in CSS RR in RCTS >	1.06 [0.82; 1.37] 3.8% 1.14 [1.01; 1.28] 17.6% 0.98 [0.70; 1.35] 2.4% 1.14 [1.04; 1.25] 30.8% 0.68 [0.72; 1.10] 5.8% 1.13 [1.00; 1.27] 18.2% 0.99 [0.82; 1.20] 6.8% 1.15 [1.00; 1.32] 12.7% - 1.25 [0.87; 1.80] 2.0% 1.11 [1.06; 1.16] 100.0% [1.04; 1.18]

Supplementary Figure 10: Forest plot of comparisons: Sensitivity analysis of n-3, n-6 and PUFA for bodies of evidence from randomized controlled trials (dietary intake + dietary supplements) vs. cohort studies (dietary intake) for dichotomous outcomes as pooled ratio of risk ratios (RRR).

CS: cohort studies; PUFA: polyunsaturated fat; RCTs: randomized controlled trials; RR: risk ratio; RRR: ratio of risk ratios;

Reference pair	Intervention in RCTs	Type of intake in RCTs	Exposure in CSs	Type of exposure in CSs	Outcome in RCTs	Outcome in CSs	Ratio of Risk Ratios	RRR 9	95%-CI \	Weight
Al-Khudairy 2017+Aune 2018 Al-Khudairy 2017+Aune 2018 Al-Khudairy 2017+Aune 2018 Bjelakovic 2012+Aune 2018 Bjelakovic 2012+Aune 2018 Bjelakovic 2014-Denag 2019 Mathew 2012-Jiang 2019 Mathew 2012-Jiang 2019 Mathew 2012-Jiang 2019 Rutjes 2018+Doets 2013 Vinceti 2018+Vinceti 2018 Random effects model Prediction interval Heterogeneity: I ² = 38%, r ² = 0.0	Vitamin C Vitamin C Vitamin C Vitamin D β-carotene Vitamin E Vitamin E Selenium B-vitamins Selenium	Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements	Vitamin C Vitamin C Vitamin C Vitamin E Vitamin D β-carotene Vitamin B Selenium Vitamin B12 Selenium		Major cardiovascular events Cardiovascular mortality All-cause mortality All-cause mortality All-cause mortality Lung cancer Cataract Cataract Cataract All-cause mortality Dementia/MCI Cancer mortality	Cardiovascular mortality All-cause mortality All-cause mortality All-cause mortality Lung cancer Cataract Cataract Cataract All-cause mortality Dementia Cancer mortality	0.75 1 1.5 RR in CSs RR in RCTs > 1		6; 1.38] 0; 1.38] 8; 1.11] 8; 1.27] 3; 1.28] 7; 1.24] 5; 1.23] 0; 1.48] 8; 1.39] 0; 1.49] 2; 1.45]	8.3% 5.1% 10.7% 20.9% 6.3% 2.3% 9.6% 8.8% 7.0% 9.0% 1.3% 0.8%

Supplementary Figure 11: Forest plot of comparisons: Sensitivity analysis (excluding pregnancy outcomes, β -carotene, and vitamin A comparisons) for bodies of evidence from randomized controlled trials (dietary supplements) vs. cohort studies (dietary intake) for dichotomous outcomes as pooled ratio of risk ratios (RRR).

Reference pair	Intervention in RCTs	Type of intake in RCTs	Exposure in CSs	Type of exposure in CSs	Outcome in RCTs	Outcome in CSs	Ratio of Risk Ratios	RRR 95%-CI
Cardiovascular disease Abdelmanid 2018a+Chowdhury 2014a Abdelmanid 2018a+Chowdhury 2014a Abdelmanid 2018a+Pan 2012 Abdelmanid 2018a+Vel 2018 Abdelmanid 2018a+Vel 2018 Abdelmanid 2018b+Chowdhury 2014a Abdelmanid 2018b+Chowdhury 2014a Abdelmanid 2018b+Chowdhury 2014a Abdelmanid 2018b+Chowdhury 2014a Aler 2014+Aburto 2013 Aler 2014+Aburto 2013 Aler 2014+Aburto 2013 Aler 2014+Aburto 2013 Aler Xudairy 2017+Aune 2018 Bjelakovic 2014a+Chowdhury 2014b Hooper 2012+Nuc 2019 Hooper 2012+Nuc 2019 Hooper 2015b+de Souza 2015 Hooper 2015b+Clas 2015 Hooper 2018+Chowdhury 2014a Hooper 2018+Chang 2019 Rees 2018+Zhang 2019 Rees 2019+Rosato 2019 Random effects model Prediction Interval Hetorogenety, <i>P²</i> = 57%, <i>C²</i> = 0.098, <i>p</i> < 0.0	Omega-3 Omega-3 a-Linolenic acid a-Linolenic acid a-Linolenic acid Polyunsaturated fat Low-sodium Low-sodium Vitamin C Vitamin C Vitamin C Vitamin C Vitamin C Jow-fat/modified fat Low saturated fat Low saturated fat Domega-6 Selenium Mediterranean diet Mediterranean diet	Intake + Supplements Intake + Supplements Intake Intake Intake Intake + Supplements Intake Intake Supplements Supplements Supplements Intake + Supplements Intake + Supplements Intake + Supplements Supplements Supplements Supplements Intake + Intake + Supplements Intake + Supplements Intake + Supplements Intake + Supplements Intake + Supplements Intake + Supplements Intake + Supplements	Omega-3 Omega-3 a-Linolenic acid a-Linolenic acid Omega-6 Polyunsaturated fal Low-sodium Vitamin C Vitamin C Vitamin C Vitamin C Vitamin C Vitamin C Utamin C Utamin C Low-fat Low-fat Low saturated fat Omega-6 Linoleic acid Selenium Mediterranean diet	Intake Intake Intake Status Intake Intake Intake Intake Intake Status Status Intake	Cardiovascular mortality Cardiovascular disease Cardiovascular disease Cardiovascular disease Cardiovascular mortality Coronary heart disease Major cardiovascular events Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality Combined cardiovascular events Combined cardiovascular events Combined cardiovascular events Combined cardiovascular events Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality Combined cardiovascular events Cardiovascular mortality Combined cardiovascular events Cardiovascular mortality Combined cardiovascular events	Coronary heart disease r Coronary heart disease Cardiovascular disease Coronary heart disease Coronary heart disease Cardiovascular disease Cardiovascular mortality Cardiovascular mortality	+	
Intermediate disease markers Abdelhamid 2018a+Schlesinger 2019 Random effects model Prediction interval Heterogeneity: not applicable	Omega-3	Intake + Supplements	Fish	Intake	Body weight	Weight gain	*	0.98 [0.70; 1.35] 0.98 [0.70; 1.35]
Overall mortality Abdelhamid 2018+1/2020 Abdelhamid 2018-1/2020 Aller 2014+Aburto 2013 Al-Khudairy 2017-Aune 2018 Bjelakovic 2012+Aune 2018 Bjelakovic 2012+Aune 2018 Bjelakovic 2012+Aune 2018 Bjelakovic 2012+Aune 2018 Bjelakovic 2014=Achowdhury 2014b Hemmingsen 2017+Schwingshackl 2018 Hooper 2014=Chowdhury 2014b Hemper 2012+Seidelman 2018 Hooper 2015b+de Souza 2015 Hooper 2015b+de Souza 2015 Hooper 2015b-de Souza 2015 Hooper 2015b-de Souza 2015 Heoper 2015b-de souza 2019 Rees 2019-soltani 2019 Random effects model Prediction interval Hetorogenety: / ² = 75%, z ² = 0.056, p < 0.1	Low-fat/modified fat Low saturated fat Omega-6 Selenium Mediterranean diet	Intake + Supplements Intake + Supplements Intake Supplements Supplements Supplements Supplements Intake Intake + Supplements Intake + Supplements Supplements Intake + Supplements Intake	Omega-3 Linoleic acid Low-sodium Vitamin C Ø-carotene Vitamin E Vitamin B Ø-carotene Vitamin D Diet quality High-carobohydrate Low saturated fat Linoleic acid Selenium Mediterranean diet	Intake Intake Intake	All-cause mortality All-cause mortality	All-cause mortality All-cause mortality	* * * * * * * * * * * * * * * * * * * *	
Bone health Avenell 2014+Feng 2017 Avenell 2014+Feng 2017 Random effects model Prediction interval Heterogeneity. $J^2 = 67\%$, $z^2 = 0.0188$, $p = 0.1$	Vitamin D Vitamin D	Supplements Supplements	Vitamin D	D Status Status	Hip fracture Any fracture	Hip fracture Any fracture	***	1.65 [1.35; 2.00] 1.30 [1.09; 1.56] 1.46 [1.16; 1.84] [1.02; 2.08]
Cancer Bjelakovic 2014a+Han 2019 Bjelakovic 2014b+Han 2019 Bjelakovic 2014b+Hossain 2019 Bjelakovic 2014b+Zhang 2015 Jin 2012+Jin 2012 Jin 2012+Jin 2012 Jin 2012+Jin 2012 Jin 2012+Jin 2012 Vinceti 2018+Vinceti 2018 Vinceti 2018+Vinceti 2018 Vinceti 2018+Vinceti 2018 Yao 2017+Ban 2014 Yao 2017+Ban 2014 Hatrogenetic f^2 = 20,60, f^2 = 0.0069, p = 0.3	Vitamin D Vitamin D Vitamin D3 Vitamin D3 Total flavonoids Isoflavonois Selenium Selenium Fibre Fibre	Supplements Supplements Supplements Supplements Intake Intake Supplements Supplements Supplements Intake Intake	Vitamin D Vitamin D Vitamin D Total flavonoids Isoflavonois Selenium Selenium Selenium Fibre Fibre	Status Status Supplements Intake Intake Status Status Status Intake Supplements Intake Intake	Cancer mortality Cancer Breast cancer Lung cancer Colorectal adenoma Colorectal adenoma Colorectal adenoma Cancer Cancer mortality Colorectal cancer Colorectal cancer Colorectal adenoma	Cancer mortality Cancer Breast cancer Lung cancer Colorectal cancer Colorectal cancer Colorectal cancer Cancer mortality Colorectal cancer Colorectal cancer Colorectal cancer	**** *** **	1.09 [0.91; 1.30] 1.16 [0.97; 1.39] 1.03 [0.89; 1.19] 0.97 [0.73; 1.28] 1.09 [0.83; 1.43] 0.84 [0.65; 1.09] 0.99 [0.80; 1.22] 1.32 [100; 1.73] 0.87 [0.52; 1.45] 1.32 [0.02; 1.39] 1.13 [0.22; 1.39] 1.13 [0.26; 1.39] 1.07 [0.36; 1.16] [0.36; 1.31]
$\label{eq:product} Pregnancy outcomes\\ De-Regil 2015+Bencowe 2010\\ De-Regil 2015+Feng 2015\\ Hofmeyr 2015+Newberry 2014\\ Hofmeyr 2018+Newberry 2014\\ Keats 2019+V081 2017\\ Keats 2019+V081 2017\\ Palacios 2019+V081 2017\\ Palacios 2019+Tous 2020\\ Palacios 2019+Tous 2010\\ Palacios 2019+Tous 2010\\ Palacios 2019+Tous 2020\\ Pa$	Folate Folate Calcium Calcium Micronutrients Micronutrients Vitamin D Vitamin D Vitamin D Vitamin U Healthy diet Healthy diet Healthy diet	Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Intake Intake Intake	Folate Folate Calcium Calcium Multivitamin Multivitamin Multivitamin Vitamin D Vitamin D Vitamin D Vitamin D Healthy diet Healthy diet Mediterranean diet	Supplements Supplements Intake Supplements Supplements Supplements Status Status Status Intake Intake Intake	Neural tube defect Congenital cardiovascular anomalies Pre-eclampsia High blood pressure Preterm birth Small gestational age Gestational diabetes Preterm birth Pre-eclampsia Preterm birth Small gestational age Gestational diabetes	Neural tube defect Congenital heart defect Pre-eclampsia High blood pressure Preterm birth Small gestational age Gestational diabetes Preterm birth Pre-eclampsia Preterm birth Small gestational age Gestational diabetes	 + + + + + + + + + + + + +	$\begin{array}{c} 0.84 & [0.39; 1.81]\\ 0.95 & [0.36; 2.51]\\ 0.46 & [0.30; 0.71]\\ 0.58 & [0.40; 0.84]\\ 1.13 & [0.52; 1.39]\\ 1.11 & [0.63; 1.97]\\ 1.19 & [0.98; 1.46]\\ 0.62 & [0.37; 1.05]\\ 1.58 & [1.12; 2.24]\\ 1.52 & [0.97; 2.38]\\ 0.63 & [0.25; 1.55]\\ 0.95 & [0.54; 1.67]\\ 0.82 & [0.47; 1.42]\\ 0.93 & [0.75; 1.16]\\ 0.46; 1.88] \end{array}$
Diabetes Hemmingsen 2017+Schwingshackl 2018 Random effects model Prediction interval Heterogeneity: not applicable	Healthy diet	Intake	Diet quality	Intake	Type 2 diabetes	Type 2 diabetes	* ¢	0.79 [0.63; 0.99] 0.79 [0.63; 0.99]
Eye disease Mathew 2012+Jiang 2019 Mathew 2012+Jiang 2019 Mathew 2012+Jiang 2019 Random effects model Prediction interval Heterogeneity: $I^2 = 36\%$, $\varsigma^2 = 0.0031$, $p = 0$.	β-carotene Vitamin E Vitamin C	Supplements Supplements Supplements	β-carotene Vitamin E Vitamin C	Intake Intake Intake	Cataract Cataract Cataract	Cataract Cataract Cataract	* * *	1.10 [0.97; 1.24] 1.08 [0.95; 1.23] 1.27 [1.10; 1.48] 1.14 [1.03; 1.26] [0.44; 2.96]
Neurodegenerative disease Rutjes 2018+Cootwill 2017 Rutjes 2018+Cootwill 2017 Random effects model Prediction interval Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $p = 0.53$	B-vitamins Vitamin D3	Supplements Supplements	Vitamin B12 Vitamin D	Intake Status	Dementia/MCI Dementia	Dementia Dementia/MCI		1.02 [0.70; 1.49] 1.24 [0.79; 1.95] 1.10 [0.82; 1.48] [0.82; 1.48]
						R	0.2 0.5 1 2 5 R in RCTs < RR in CSs RR in RCTs =	RR in CSs

Supplementary Figure 12: Forest plot of comparisons between bodies of evidence from randomized controlled trials vs. cohort studies for dichotomous outcomes as pooled ratio of risk ratios (RRR) stratified by type of outcome.

Reference pair	Intervention in RCTs	Type of intake in RCTs	Exposure in CSs	Type of exposure in CSs	Outcome in RCTs	Outcome in CSs	Ratio of Risk Ratios	RRR	95%-CI
Similar but not identical									
Abdelhamid 2018a+Wan 2017	Omega-3	Intake + Supplements	Omega-3	Intake	All-cause mortality	All-cause mortality	23	1.14 [1.04; 1.25]
Abdelhamid 2018a+Wei 2018	a-Linolenic acid	Intake	a-Linolenic acid	Intake	Cardiovascular mortality	Coronary heart disease mortality			0.85; 1.51]
Abdelhamid 2018b+Chowdhury 2014a	Polyunsaturated fat	Intake + Supplements	Omega-6	Intake	Coronary heart disease	Coronary heart disease			0.72; 1.10]
Abdelhamid 2018b+Li 2020	Polyunsaturated fat	Intake + Supplements	Linoleic acid	Intake	All-cause mortality	All-cause mortality	-		1.00; 1.27]
Adler 2014+Aburto 2013	Low-sodium	Intake	Low-sodium	Intake	All-cause mortality	All-cause mortality	- * -		0.73; 1.40]
Adler 2014+Aburto 2013	Low-sodium	Intake	Low-sodium	Intake	Cardiovascular mortality	Cardiovascular mortality			0.46; 1.28]
Al-Khudairy 2017+Aune 2018	Vitamin C	Supplements	Vitamin C	Intake	Major cardiovascular events	Cardiovascular disease	*		1.03; 1.35]
Al-Khudairy 2017+Aune 2018	Vitamin C	Supplements	Vitamin C	Intake	All-cause mortality	All-cause mortality	*		1.10; 1.38]
Bjelakovic 2012+Aune 2018	β-carotene	Supplements	β-carotene	Intake	All-cause mortality	All-cause mortality			1.16; 1.33]
Bjelakovic 2012+Aune 2018	Vitamin E Vitamin C	Supplements	Vitamin E	Intake	All-cause mortality	All-cause mortality	E.		0.98; 1.11]
Bjelakovic 2012+Aune 2018		Supplements	Vitamin C		All-cause mortality	All-cause mortality	-		1.08; 1.27]
De-Regil 2015+Blencowe 2010	Folate Folate	Supplements	Folate Folate	Supplements Supplements	Neural tube defect	Neural tube defect			0.39; 1.81] 0.36; 2.51]
De-Regil 2015+Feng 2015 Hemmingsen 2017+Schwingshackl 2018		Supplements Intake	Diet quality	Intake	Congenital cardiovascular anomalies Type 2 diabetes	Type 2 diabetes			0.63: 0.991
Hemmingsen 2017+Schwingshacki 2018 Hemmingsen 2017+Schwingshacki 2018		Intake	Diet quality	Intake	All-cause mortality	All-cause mortality			0.27; 6.37]
Hofmeyr 2018+Newberry 2014	Calcium	Supplements	Calcium	Intake	Pre-eclampsia	Pre-eclampsia			0.30: 0.711
Hooper 2012+Noto 2013	Low-fat/modified fat	Intake + Supplements	High-carbohydrate		Cardiovascular mortality	Cardiovascular mortality			0.89; 1.20]
Hooper 2012+Seidelmann 2018	Low-fat/modified fat	Intake + Supplements	High-carbohydrate		All-cause mortality	All-cause mortality	-		1.06; 1.32]
Hooper 2015b+de Souza 2015	Low saturated fat	Intake		Intake	All-cause mortality	All-cause mortality	±		0.85; 1.08]
Hooper 2015b+de Souza 2015	Low saturated fat	Intake	Low saturated fat	Intake	Cardiovascular mortality	Cardiovascular mortality			0.74; 1.15]
Hooper 2018+Li 2020	Omega-6	Intake + Supplements	Linoleic acid	Intake	All-cause mortality	All-cause mortality	-		1.00; 1.32]
Hooper 2018+Li 2020	Omega-6	Intake + Supplements	Linoleic acid	Intake	Cardiovascular mortality	Cardiovascular mortality			0.87; 1.80]
Keats 2019+Wolf 2017	Micronutrients	Supplements	Multivitamins	Supplements	Preterm birth	Preterm birth			0.92; 1.39]
Mathew 2012+Jiang 2019	ß-carotene	Supplements	β-carotene	Intake	Cataract	Cataract			0.97; 1.24]
Mathew 2012+Jiang 2019	Vitamin E	Supplements	Vitamin E	Intake	Cataract	Cataract	두		0.95; 1.23]
Mathew 2012+Jiang 2019	Vitamin C	Supplements	Vitamin C	Intake	Cataract	Cataract	+		1.10; 1.48]
Rees 2013b+Jayedi 2018	Selenium	Supplements	Selenium	Intake	All-cause mortality	All-cause mortality	-		1.08: 1.391
Rees 2019+Rosato 2019	Mediterranean diet	Intake	Mediterranean diet	Intake	Cardiovascular mortality	Cardiovascular mortality		1.27	0.81; 2.00]
Rees 2019+Soltani 2019	Mediterranean diet	Intake	Mediterranean diet	Intake	All-cause mortality	All-cause mortality		1.12	0.90; 1.39]
Tieu 2017+Chia 2019	Healthy diet	Intake	Healthy diet	Intake	Small gestational age	Small gestational age		0.94 [0.54; 1.66]
Tieu 2017+Mijatovic-Vukas 2018	Healthy diet	Intake	Mediterranean diet	Intake	Gestational diabetes	Gestational diabetes		0.81	0.46; 1.41]
Yao 2017+Aune 2011	Fibre	Intake	Fibre	Intake	Colorectal cancer	Colorectal cancer			1.21; 7.78]
Random effects model							¢		1.02; 1.15]
Prediction interval								[0.83; 1.43]
Heterogeneity: $I^2 = 59\%$, $\tau^2 = 0.0171$, $p < 0.0171$	01								
Broadly similar									
Abdelhamid 2018a+Chowdhury 2014a	Omega-3	Intake + Supplements	Omega-3	Intake	Cardiovascular mortality	Coronary heart disease mortality		1.06 [0.82; 1.37]
Abdelhamid 2018a+Schlesinger 2019	Omega-3	Intake + Supplements	Fish	Intake	Body weight	Weight gain		0.98	0.70; 1.35]
Avenell 2014+Feng 2017	Vitamin D	Supplements	Vitamin D	Status	Hip fracture	Hip fracture	-	1.65	1.35; 2.00]
Bjelakovic 2012+Aune 2018	Vitamin A	Supplements	β-carotene	Intake	All-cause mortality	All-cause mortality	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1.15; 1.40]
Bjelakovic 2014a+Chowdhury 2014b	Vitamin D	Supplements	Vitamin D	Status	All-cause mortality	All-cause mortality	12		1.30; 1.52]
Bjelakovic 2014a+Chowdhury 2014b	Vitamin D	Supplements	Vitamin D	Status	Cardiovascular mortality	Cardiovascular mortality	-		1.19; 1.64]
Bjelakovic 2014a+Han 2019	Vitamin D	Supplements	Vitamin D	Status	Cancer mortality	Cancer mortality	き		0.91; 1.30]
Bjelakovic 2014b+Han 2019	Vitamin D	Supplements	Vitamin D	Status	Cancer	Cancer	in the second se		0.97; 1.39]
Jin 2012+Jin 2012	Total flavonoids	Intake	Total flavonoids	Intake	Colorectal adenoma	Colorectal cancer			0.83; 1.43]
Jin 2012+Jin 2012	Isoflavonoes	Intake	Isoflavonoes	Intake	Colorectal adenoma	Colorectal cancer			0.65; 1.09]
Jin 2012+Jin 2012	Flavonols	Intake	Flavonols	Intake	Colorectal adenoma	Colorectal cancer	+		0.80; 1.22]
Palacios 2019+Hu 2018	Vitamin D	Supplements	Vitamin D	Status	Gestational diabetes	Gestational diabetes			0.37; 1.04]
Palacios 2019+Tous 2020	Vitamin D	Supplements	Vitamin D	Status	Preterm birth	Preterm birth			1.12; 2.24]
Palacios 2019+Yuan 2019	Vitamin D	Supplements	Vitamin D	Status	Pre-eclampsia	Pre-eclampsia			0.97; 2.38]
Rees 2013b+Xiang 2019	Selenium	Supplements	Selenium	Status	Cardiovascular mortality	Cardiovascular mortality	T		0.94; 1.68]
Rutjes 2018+Doets 2013	B-vitamins	Supplements	Vitamin B12		Dementia/MCI	Dementia Dementia (MC)			0.70; 1.49]
Rutjes 2018+Goodwill 2017	Vitamin D3	Supplements	Vitamin D	Status	Dementia	Dementia/MCI			0.79; 1.95]
Vinceti 2018+Vinceti 2018 Random effects model	Selenium	Supplements	Selenium	Status	Cancer	Cancer	•		1.01; 1.73] 1.08; 1.31]
							~		
Prediction interval	24							l	0.83; 1.71]
Heterogeneity: $l^2 = 67\%$, $\tau^2 = 0.0270$, $p < 0.0270$	01								
							0.2 0.5 1 2 5		
							< RR in CSs RR in RCTs >	RR in C	Ss
									1.00

CS: cohort studies; RCTs: randomized controlled trials; RR: risk ratio; RRR: ratio of risk ratios;

Supplementary Figure 13: Forest plot of comparisons between bodies of evidence from randomized controlled trials vs. cohort studies for dichotomous outcomes as pooled ratio of risk ratios (RRR) excluding highly correlated outcomes stratified by PI/ECO similarity degree.

Reference pair	Intervention in RCT	Type of intake in RCTs	Exposure in CSs	Type of exposure in CSs	Outcome in RCTs	Outcome in CSs	Ratio of Risk Ratios	RRR 95%-CI
More or less identical De-Regil 2015+Feng 2015 Hemmingsen 2017+Schwingshackl 2016 Hompingsen 2017+Schwingshackl 2018 Hooper 2015b+de Souza 2015 Rees 2019+Rosato 2019 Rees 2019+Rosato 2019 Tieu 2017+Chia 2019 Tieu 2017+Chia 2019 Tieu 2017+Aune 2011 Random effects model Prediction interval Hetorogeneity: $l^2 = 23\%$, $t^2 = 0.0116$, $p = 0$.	B Healthy diet Low saturated fat Low saturated fat Mediterranean diet Mediterranean diet Healthy diet Healthy diet Fibre	Supplements Supplements Intake Intake Intake Intake Intake Intake Intake Intake Intake		Intake Intake	Neural tube defect Congenital cardiovascular anomalies Type 2 diabetes All-cause mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality All-cause mortality Small gestational age Gestational diabetes Colorectal cancer	Neural tube defect Congenital heart defect Type 2 diabetes All-cause mortality All-cause mortality Cardiovascular mortality Cardiovascular mortality All-cause mortality Small gestational age Gestational diabetes Colorectal cancer		0.84 [0.39; 1.81] 0.95 [0.36; 2.51] 0.79 [0.63; 0.99] 1.31 [0.27; 6.37] 0.96 [0.85; 1.08] 0.92 [0.74; 1.15] 1.27 [0.81; 2.00] 1.12 [0.90; 1.39] 0.94 [0.54; 1.66] 0.81 [0.46; 1.41] 0.97 [1.21; 7.78] 0.98 [0.86; 1.11] [0.74; 1.30]
Similar but not identical Abdelhamid 2018 a+Schesinger 2019 Abdelhamid 2018 a+Schesinger 2019 Abdelhamid 2018 a+Wan 2017 Abdelhamid 2018 a+Wal 2018 Abdelhamid 2018 b+Li 2018 Abdelhamid 2018 b+Li 2018 Aler 2014+Abutto 2013 Aler 2014+Abutto 2013 Al-Khudairy 2017+Aune 2018 Bjelakovic 2012+Aune 2018 Hofmeyr 2018+Newberry 2014 Hooper 2012+Seidelmann 2018 Hooper 2018-Li 2020 Jin 2012+Jin 2012 Jin 2012+Jin 2012 Jin 2012+Jin 2012 Jin 2012+Jing 2019 Mathew 2012+Jiang 2019 Mathew 2012+Jiang 2019 Ress 2013b+Jayedi 2018 Random effects model Prediction Interval Hetorogenetic, r^2 = 54%, r^2 = 0.0115, $p < 0$.	Omega-3 Omega-3 Cmega-3 a-Linolenic acid Polyunsaturated fat Low-sodium Low-sodium Vitamin C %Contene Vitamin C A-carotene Vitamin C Calcium Low-fat/modified fat Omega-6 Total flavonoids Isoflavonoids Isoflavonois Flavonois Micronutrients B-carotene Vitamin C Selenium B-vitamins	Intake + Supplements Intake + Supplements Intake Intake + Supplements Intake Intake + Supplements Supplements Supplements Supplements Supplements Intake + Supplements Intake + Supplements Intake + Supplements Intake + Supplements Intake & Supplements Intake Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements	Omega-3 Fish Omega-3 a-Linolenic acid Omega-6 Linoleic acid Low-sodium Low-sodium Vitamin C Vitamin C Vitamin C Calcium High-carbohydrate Linoleic acid Exoflavonols Isoflavonols Multivitamins B-carotene Vitamin C Selenium Vitamin C Selenium Vitamin C		Cardiovascular mortality Body weight All-cause mortality Coronary heart disease All-cause mortality All-cause mortality Cardiovascular mortality All-cause mortality Colorectal adenoma Colorectal	Coronary heart disease mortality Weight gain All-cause mortality Coronary heart disease mortality Coronary heart disease mortality All-cause mortality Cardiovascular disease All-cause mortality Cardiovascular disease All-cause mortality All-cause mortality All-cause mortality All-cause mortality All-cause mortality All-cause mortality All-cause mortality All-cause mortality Cardiovascular mortality All-cause mortality Colorectal cancer Colorectal cancer Colorectal cancer Preterm birth Cataract Cataract Cataract Cataract All-cause mortality Dementia	╹ ╾╎ ₊₊ ++ ⁺ + _† + _* + _* [†]	$ 1.06 \ \ [0.82; 1.37] \\ 0.98 \ \ [0.70; 1.35] \\ 1.14 \ \ [1.04; 1.25] \\ 1.13 \ \ [0.85; 1.51] \\ 0.89 \ \ [0.72; 1.10] \\ 1.13 \ \ [1.00; 1.27] \\ 1.10 \ \ [1.03; 1.35] \\ 1.23 \ \ [1.01; 0.73; 1.40] \\ 0.77 \ \ [0.46; 1.28] \\ 1.18 \ \ [1.03; 1.35] \\ 1.23 \ \ [1.10; 1.38] \\ 1.24 \ \ [1.16; 1.33] \\ 1.24 \ \ [1.16; 1.33] \\ 1.24 \ \ [1.16; 1.33] \\ 1.24 \ \ [1.16; 1.33] \\ 1.24 \ \ [1.16; 1.33] \\ 1.24 \ \ [1.16; 1.33] \\ 1.24 \ \ [1.16; 1.33] \\ 1.24 \ \ [1.16; 1.33] \\ 1.24 \ \ [0.36; 1.20] \\ 1.15 \ \ [1.00; 1.32] \\ 1.15 \ \ [1.00; 1.32] \\ 1.15 \ \ [1.00; 1.32] \\ 1.15 \ \ [1.00; 1.32] \\ 1.15 \ \ [1.00; 1.32] \\ 1.15 \ \ [1.00; 1.32] \\ 1.25 \ \ [0.83; 1.43] \\ 0.48 \ \ [0.85; 1.09] \\ 0.99 \ \ [0.80; 1.22] \\ 1.13 \ \ [0.95; 1.23] \\ 1.10 \ \ [0.7; 1.24] \\ 1.00 \ \ [0.7; 1.24] \\ 1.00 \ \ [1.00; 1.32] \\ 1.27 \ \ [1.00; 1.48] \\ 1.23 \ \ [1.00; 1.39] \\ 1.00 \ \ [0.7; 0.149] \\ 1.00 \ \ [1.00; 1.34] \\ 1.00 \ \ [0.88; 1.38] \\ 1.38] \\ $
Broadly similar Avenell 2014+Feng 2017 Bjelakovic 2014+Chowdhury 2014b Bjelakovic 2014a+Chowdhury 2014b Bjelakovic 2014a+Chowdhury 2014b Bjelakovic 2014a+Han 2019 Bjelakovic 2014a+Han 2019 Palacios 2019+Tous 2020 Palacios 2019+Tous 2020 Palacios 2019+Vana 2019 Rees 2013a-Xiang 2019 Rutjes 2018+Coodwill 2017 Vinceti 2018+Vinceti 2018 Random effects model Prediction interval Heterogeneity: j^2 = 56%, z^2 = 0.0210, p < 0.	Vitamin D Vitamin A Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Selenium Vitamin D3 Selenium	Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements	Vitamin D Ø-carotene Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Selenium Vitamin D Selenium	Status Intake Status Status Status Status Status Status Status Status Status Status Status Status Status	Hip fracture All-cause mortality All-cause mortality Cancer mortality Cancer and the second Gestational diabetes Preterm birth Pre-eclampsia Cardiovascular mortality Dementia Cancer			1.65 [1.35; 2.00] 1.27 [1.15; 1.40] 1.41 [1.30; 1.52] 1.40 [1.19; 1.64] 1.09 [0.91; 1.30] 1.16 [0.97; 1.39] 0.62 [0.37; 1.04] 1.58 [1.12; 2.24] 1.52 [0.97; 2.38] 1.26 [0.94; 1.68] 1.24 [0.79; 1.95] 1.32 [1.01; 1.73] 1.30 [1.17; 1.46] [0.92; 1.83]

Supplementary Figure 14: Forest plot of comparisons between bodies of evidence from randomized controlled trials vs. cohort studies for dichotomous outcomes as pooled ratio of risk ratios (RRR) excluding highly correlated outcomes stratified by intervention/exposure similarity degree.

Reference pair	Intervention in RCT	s Type of intake in RCTs	s Exposure in CSs	Type of exposure in CSs	s Outcome in RCTs	Outcome in CSs	Ratio of Risk Ratios	RRR	95%-CI
Falty acids Abdelhamid 2018a+Chowdhury 2014a Abdelhamid 2018a+Schlesinger 2019 Abdelhamid 2018a+Van 2017 Abdelhamid 2018b+Chowdhury 2014a Abdelhamid 2018b+Clowdhury 2014a Abdelhamid 2018b+Li 2020 Hooper 2015b+de Souza 2015 Hooper 2015b+de Souza 2015 Hooper 2018+Li 2020 Hooper 2018+Li 2020 Random effects model Prediction interval Heterogeneity: $I^2 = 29\%$, $I^2 = 0.0023$, $p = 0$	Omega-3 Omega-3 Omega-3 a-Linolenic acid Polyunsaturated fat Low saturated fat Low saturated fat Omega-6	Intake + Supplements Intake + Supplements Intake + Supplements Intake Intake + Supplements Intake + Supplements Intake Intake + Supplements Intake + Supplements	Omega-3 Fish Omega-3 a-Linolenic acid Omega-6 Linoleic acid Low saturated fat Low saturated fat Linoleic acid Linoleic acid	Intake Intake Intake Intake Intake Intake Intake Intake Intake	Cardiovascular mortality Body weight Ali-cause mortality Cardiovascular mortality Coronary heart disease Ali-cause mortality Ali-cause mortality Cardiovascular mortality Ali-cause mortality Cardiovascular mortality Cardiovascular mortality	Coronary heart disease mortality Weight gain All-cause mortality Coronary heart disease mortality Coronary heart disease All-cause mortality All-cause mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality	-+ +++++++	0.98 [0 1.14 [1 1.13 [0 0.89 [0 1.13 [1 0.96 [0 0.92 [0 1.15 [1 1.25 [0 1.06 [1	0.82; 1.37] 0.70; 1.35] 0.4; 1.25] 0.85; 1.51] 0.72; 1.10] 0.0; 1.27] 0.85; 1.08] 0.74; 1.15] 0.0; 1.32] 0.0; 1.32] 0.0; 1.13] 0.93; 1.21]
$\label{eq:second} \begin{array}{l} \mbox{Micronutrients} \\ \mbox{Adier 2014+Aburto 2013} \\ \mbox{Adier 2014+Aburto 2013} \\ \mbox{Adier 2014+Aburto 2013} \\ \mbox{Adier 2014+Aburto 2013} \\ \mbox{Alex 2012} \\ \mbox{Aune 2018} \\ \mbox{Bjelakovic 2012+Aune 2018} \\ \mbox{Bjelakovic 2014+Ane 2019} \\ \mbox{Bjelakovic 2014+Ane 2019} \\ \mbox{Bjelakovic 2014a+Chowdhury 2014b} \\ \mbox{Bjelakovic 2014a+Han 2019} \\ \mbox{Bjelakovic 2014+Han 2019} \\ \mbox{Bjelakovic 2014+Han 2019} \\ \mbox{Palacios 2019+Yuai 2019} \\ \mbox{Palacios 2019+Yuai 2019} \\ \mbox{Rees 2013b+Xiang 2019} \\ \mbox{Rutes 2018+Cootex 2013} \\ \mbox{Rutes 2018+Cootex 2013} \\ \mbox{Rutes 2018+Vionte 2018} \\ \mbox{Random effects model} \\ \mbox{Prediction interval} \\ \mbox{Hetorgeneity: } {}^{2} = 72\%, ^{2} = 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < 0.0310, < $	Low-sodium Low-sodium Vitamin C Vitamin C Joacarotene Vitamin B Vitamin B Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin C Calcium Micronutrients B-carotene Vitamin E Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Selenium B-oitaminsi Vitamin D Selenium	Intake Intake Supplements	Low-sodium Vitamin C Vitamin C Vitamin C B-carotene Vitamin E B-carotene Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Calcium Multivitamins B-carotene Vitamin C Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Selenium Vitamin B12 Vitamin D Selenium	Intake Intake Intake Intake Status Intake Intake Intake Status	All-cause mortality Major cardiovascular mortality Major cardiovascular events All-cause mortality Hip fracture All-cause mortality All-cause mortality All-cause mortality All-cause mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality Cancer Neural tube defect Congenital cardiovascular anomalies Pre-eclampsia Preterm birth Cataract Catara	All-cause mortality Cardiovascular disease All-cause mortality Hip fracture All-cause mortality All-cause mortality All-cause mortality All-cause mortality All-cause mortality All-cause mortality Cardiovascular mortality Cancer Neural tube defect Congenital heart defect Pre-eclampsia Preterm birth Cataract Cataract Cataract Gestational diabetes Preterm birth Pre-eclampsia All-cause mortality Cancer Cataract Catara		0.77 [c 1.18 [1 1.23 [1 1.24 [1 1.24 [1 1.24 [1 1.24 [1 1.27 [1 1.27 [1 1.27 [1 1.41 [1 1.41 [1 1.41 [1 1.40 [1 1.41 [1 1.40 [1 1.46 [0 1.17 [1 1.58 [0 1.58 [1 1.25 [0 1.52 [0 1.23 [1 1.26 [0] 1.24 [1 1.26 [0] 1.24 [1 1.26 [0] 1.24 [1 1.25 [1] 1.2	7.73: 1.40] 0.46; 1.28] 0.03: 1.35] 1.00: 1.38] .35; 2.00] .16: 1.33] .98; 1.11] .08; 1.27] .15; 1.40] .30; 1.52] .99; 1.130] .99; 1.64] .99; 1.64] .99; 1.39] .39; 1.81] .36; 2.51] .36; 5.251] .36; 1.23] .97; 1.39] .95; 1.23] .95; 1.23] .96; 1.48] .37; 1.04] .12; 2.24] .95; 1.23] .96; 1.39] .944; 1.68] .70; 1.49] .70; 1.49] .70; 1.49] .70; 1.49] .70; 1.49] .70; 1.49] .71; 1.73] .98; 1.27] .81; 1.70]
Dietary approach Hemmingsen 2017+Schwingshackl 201 Hemmingsen 2017+Schwingshackl 201 Hooper 2012+Noto 2013 Hooper 2012+Seidelmann 2018 Rees 2019+Rostato 2019 Tieu 2017+Chia 2019 Tieu 2017+Chia 2019 Tieu 2017+Mijätovic-Vukas 2018 Random effects model Prediction interval Heterogeneity: I^2 = 41%, τ^2 = 0.0073, p = 0	8 Healthy diet Low-fat/modified fat Low-fat/modified fat Mediterranean diet Mediterranean diet Healthy diet Healthy diet	Intake Intake + Supplements Intake + Supplements Intake Intake Intake Intake Intake	Diet quality Diet quality High-carbohydrate High-carbohydrate Mediterranean diet Mediterranean diet Healthy diet Mediterranean diet	 Intake Intake Intake Intake 	Type 2 diabetes All-cause mortality Cardiovascular mortality All-cause mortality Cardiovascular mortality All-cause mortality Small gestational age Gestational diabetes	Type 2 diabetes All-cause mortality Cardiovascular mortality All-cause mortality Cardiovascular mortality All-cause mortality Small gestational age Gestational diabetes	+++++++++++++++++++++++++++++++++++++++	- 1.31 [0 1.03 [0 1.18 [1 1.27 [0 1.12 [0 0.94 [0 0.81 [0 1.05 [0	0.63; 0.99] 0.27; 6.37] 0.89; 1.20] 0.6; 1.32] 0.81; 2.00] 0.90; 1.39] 0.54; 1.66] 0.46; 1.41] 9.44; 1.41] 9.44; 1.41]
Phytonutrients Jin 2012+Jin 2012 Jin 2012+Jin 2012 Jin 2012+Jin 2012 Random effects model Prediction interval Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $p = 0.40$	Total flavonoids Isoflavonoes Flavonols	Intake Intake Intake	Total flavonoids Isoflavonoes Flavonols	Intake Intake Intake	Colorectal adenoma Colorectal adenoma Colorectal adenoma	Colorectal cancer Colorectal cancer Colorectal cancer	*	0.84 [0 0.99 [0 0.97 [0	0.83; 1.43] 0.65; 1.09] 0.80; 1.22] .84; 1.11] .39; 2.38]
Other Yao 2017+Aune 2011 Random effects model Prediction interval Heterogeneity: not applicable	Fibre	Intake	Fibre	Intake	Colorectal cancer	Colorectal cancer	0.2 0.5 1 2 5 s <rr css="" in="" rcts<="" rr="" td=""><td>- 3.07 [1</td><td>.21; 7.78] .21; 7.78] s</td></rr>	- 3.07 [1	.21; 7.78] .21; 7.78] s

Supplementary Figure 15: Forest plot of comparisons between bodies of evidence from randomized controlled trials vs. cohort studies for dichotomous outcomes as pooled ratio of risk ratios (RRR) excluding highly correlated outcomes stratified by type of dietary intervention/exposure.

Reference pair	Intervention in RCTs	Type of intake in RCTs	Exposure in CSs	Type of exposure in CSs	Outcome in RCTs	Outcome in CSs	Ratio of Risk Ratios	RRR 95%-CI
Intake vs. Intake Abdelhamid 2018a+Vkei 2018 Adler 2014+Aburto 2013 Adler 2014+Aburto 2013 Hemmingsen 2017+Schwingshackl 2018 Hooper 2015b+de Souza 2015 Hooper 2015b+de Souza 2015 Jin 2012+Jin 2012 Jin 2012+Jin 2012 Jin 2012+Jin 2012 Rees 2019+Rosato 2019 Rees 2019+Rosato 2019 Rees 2019+Rosato 2019 Rees 2019+Rosato 2019 Tieu 2017+Mijatovic-Vukas 2018 Yao 2017+Abure 2011 Random effects model Prediction Interval Heterogeneity: $l^2 = 18\%, l^2 = 0.0056, p = 0.3$	Healthy diet Low saturated fat Low saturated fat Total flavonoids Isoflavonoes Flavonois Mediterranean diet Mediterranean diet Healthy diet Fibre	Intake Intake Intake Intake Intake Intake Intake Intake Intake Intake Intake Intake Intake Intake Intake Intake	a-Linolenic acid Low-sodium Low-sodium Diet quality Diet quality Low saturated fat Low saturated fat Total flavonoids Isoflavonoes Flavonols Mediterranean diet Mediterranean diet Healthy diet Mediterranean diet Fibre	Intake Intake	Cardiovascular mortality All-cause mortality Cardiovascular mortality Type 2 diabetes All-cause mortality All-cause mortality Cardiovascular mortality Colorectal adenoma Colorectal adenoma Colorectal adenoma Colorectal adenoma Cardiovascular mortality All-cause mortality Small gestational age Gestational diabetes Colorectal cancer	Coronary heart disease mortality All-cause mortality Cardiovascular mortality Type 2 diabetes All-cause mortality Cardiovascular mortality Cardiovascular mortality Colorectal cancer Colorectal cancer Colorectal cancer Cardiovascular mortality All-cause mortality Small gestational age Gestational diabetes Colorectal cancer	-+++++++++++++++++++++++++++++++++++++	1.13 [0.85; 1.51] 1.01 [0.73; 1.40] 0.77 [0.63; 0.99] 1.31 [0.27; 6.37] 0.96 [0.85; 1.08] 0.92 [0.74; 1.15] 1.99 [0.83; 1.43] 0.84 [0.65; 1.09] 0.99 [0.80; 1.22] 1.27 [0.81; 2.00] 1.12 [0.90; 1.39] 0.94 [0.54; 1.66] 0.81 [0.46; 1.41] 0.98 [0.90; 1.06] [0.81; 1.18]
Supplements vs. Supplements De-Regil 2015+Blencowe 2010 De-Regil 2015+Feng 2015 Keats 2019+Wolf 2017 Random effects model Prediction interval Heterogeneity: $l^2 = 0\%$, $r^2 = 0$, $\rho = 0.73$	Folate Folate Micronutrients	Supplements Supplements Supplements	Folate Folate Multivitamins	Supplements Supplements Supplements	Neural tube defect Congenital cardiovascular anomalies Preterm birth	Neural tube defect Congenital heart defect Preterm birth		0.84 [0.39; 1.81] 0.95 [0.36; 2.51] 1.13 [0.92; 1.39] 1.10 [0.90; 1.34] [0.31; 3.95]
Intake + Supplements vs. Intake Abdelhamid 2018a+Chowdhury 2014a Abdelhamid 2018a+Schlesinger 2019 Abdelhamid 2018a+Wan 2017 Abdelhamid 2018b+Li 2020 Hooper 2012+Noto 2013 Hooper 2012+Noto 2013 Hooper 2012+Seidelmann 2018 Hooper 2018+Li 2020 Random effects model Prediction Interval Heterogeneity: $l^2 = 2\%$, $\tau^2 = 0.0002$, $p = 0.42$	Omega-3 Omega-3 Polyunsaturated fat Polyunsaturated fat Low-fatmodified fat Omega-6 Omega-6	Intake + Supplements Intake + Supplements	Omega-3 Fish Omega-3 Linoleic acid High-carbohydrate Linoleic acid Linoleic acid		Cardiovascular mortality Body weight All-cause mortality Coronary heart disease All-cause mortality Cardiovascular mortality All-cause mortality All-cause mortality Cardiovascular mortality	Coronary heart disease mortality Weight gain All-cause mortality Coronary heart disease All-cause mortality Cardiovascular mortality All-cause mortality All-cause mortality Cardiovascular mortality	+++++++++++++++++++++++++++++++++++++++	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Supplements vs. Intake AI-Khudairy 2017+Aune 2018 AI-Khudairy 2017+Aune 2018 Bjelakovic 2012+Aune 2018 Bjelakovic 2012+Aune 2018 Bjelakovic 2012+Aune 2018 Hofmeyr 2018+Newberry 2014 Mathew 2012+Jiang 2019 Mathew 2012+Jiang 2019 Rees 2013b+Jayedi 2018 Rutjes 2013b+Daets 2013 Random effects model Prediction interval Heterogeneity: $I^2 = 74\%$, $t^2 = 0.0372$, $p < 0.01$	Vitamin C Vitamin C β -carotene Vitamin E Vitamin A Calcium β -carotene Vitamin E Vitamin E Vitamin C Selenium B-vitamins	Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements	Vitamin C Vitamin C β -carotene Vitamin E Vitamin C β -carotene Calcium β -carotene Vitamin E Vitamin C Selenium Vitamin B12	Intake Intake Intake Intake Intake Intake Intake Intake Intake Intake Intake Intake	Major cardiovascular events All-cause mortality All-cause mortality All-cause mortality All-cause mortality All-cause mortality Pre-eclampsia Cataract Cataract Cataract All-cause mortality Dementia/MCI	Cardiovascular disease All-cause mortality All-cause mortality All-cause mortality All-cause mortality All-cause mortality Pre-eclampsia Cataract Cataract Cataract All-cause mortality Dementia	***	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Supplements vs. Status Avenell 2014+Feng 2017 Bjelakovic 2014a+Chowdhury 2014b Bjelakovic 2014a+Chowdhury 2014b Bjelakovic 2014a+Han 2019 Palacios 2014b+Han 2019 Palacios 2019+Tous 2020 Palacios 2019+Tous 2019 Palacios 2019 Palacios 2019+Tous 2019 Palacios 20	Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Selenium Vitamin D3 Selenium	Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements	Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Selenium Vitamin D Selenium	Status Status Status Status Status Status Status Status Status Status Status Status	Hip fracture All-cause mortality Cancer mortality Cancer mortality Cancer Gestational diabetes Preterm birth Pre-eclampsia Cardiovascular mortality Dementia Cancer		++++++++++++++++++++++++++++++++++++++	1.65 [1.35; 2.00] 1.41 [1.30; 1.52] 1.40 [1.19; 1.64] 1.09 [0.91; 1.30] 1.16 [0.97; 1.39] 0.62 [0.37; 1.04] 1.58 [1.12; 2.24] 1.52 [0.97; 2.38] 1.26 [0.94; 1.68] 1.26 [0.94; 1.65] 1.32 [1.01; 1.73] 1.30 [1.15; 1.47] [0.88; 1.92] RR in CSs

Supplementary Figure 16: Forest plot of comparisons between bodies of evidence from randomized controlled trials vs. cohort studies for dichotomous outcomes as pooled ratio of risk ratios (RRR) excluding highly correlated outcomes stratified by type of intake/exposure.

Reference pair	Intervention in RCTs	Type of intake in RCTs	Exposure in CSs	Type of exposure in CSs	Outcome in RCTs	Outcome in CSs	Ratio of Risk Ratios	RRR 95%-CI
Cardiovascular disease Abdelhamid 2018a+Vchwdhury 2014a Abdelhamid 2018a+Vvei 2018 Abdelhamid 2018b+Chowdhury 2014a Adler 2014+Aburto 2013 Al-Khudairy 2017+Aune 2018 Bjelakovic 2014a+Chowdhury 2014b Hooper 2012+Noto 2013 Hooper 2012+Noto 2013 Heoper 2012+Noto 2019 Rees 2019+Rosato 2019 Rees 2019+Rosato 2019 Readom effects model Prediction interval Heterogeneity: $J^2 = 51\%$, $\tau^2 = 0.0114$, $p = 0.0114$	Omega-3 α-Linolenic acid Polyunsaturated fat Low-sodium Vitamin C Vitamin C Low-fat/modified fat Low-saturated fat Omega-6 Selenium Mediterranean diet	Intake + Supplements Intake Intake + Supplements Supplements Supplements Intake + Supplements Intake + Supplements Supplements Intake	Omega-3 α-Linolenic acid Omega-6 Low-sodium Vitamin C Vitamin C Vitamin C Vitamin C Vitamic C Vitamin C Subarrony Saturated fat Linoleic acid Selenium Mediterranean diet	Intake Intake Status	Cardiovascular mortality Cardiovascular mortality Coronary heart disease Cardiovascular mortality Major cardiovascular events Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality	Coronary heart disease mortality Coronary heart disease mortality Coronary heart disease Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality		$\begin{array}{c} 1.06 & [0.82; 1.37] \\ 1.13 & [0.85; 1.51] \\ 0.89 & [0.72; 1.10] \\ 0.77 & [0.46; 1.28] \\ 1.18 & [1.03; 1.35] \\ 1.40 & [1.19; 1.64] \\ 1.03 & [0.89; 1.20] \\ 0.92 & [0.74; 1.15] \\ 1.25 & [0.87; 1.80] \\ 1.26 & [0.94; 1.68] \\ 1.27 & [0.81; 2.00] \\ 1.10 & [1.02] \\ [0.85; 1.44] \end{array}$
Overall mortality Abdelhamid 2018a+V&n 2017 Abdelhamid 2018a+V&n 2017 Adler 2014+Aburto 2013 Adler 2014+Aburto 2013 Bjelakovic 2012+Aune 2018 Bjelakovic 2012+Aune 2018 Bjelakovic 2012+Aune 2018 Bjelakovic 2012+Aune 2018 Bjelakovic 2012+Aune 2018 Bjelakovic 2012+Aune 2018 Henmingsen 2017+Schwingshackl 2018 Hooper 2013b+Jagedi 2018 Rees 2013b+Jagedi 2018 Rees 2013b+Jagedi 2019 Random effects model Prediction Interval Heterogenethy: I ² = 75%, r ² = 0.0056, p < 0.0	Low-fat/modified fat Low saturated fat Omega-6 Selenium Mediterranean diet	Intake + Supplements Intake + Supplements Intake Supplements Supplements Supplements Supplements Intake + Supplements Intake + Supplements Supplements Intake + Supplements Supplements Intake	$\begin{array}{l} \text{Omega-3} \\ \text{Linoleic acid} \\ \text{Low-sodium} \\ \text{Vitamin C} \\ \beta-carotene \\ \text{Vitamin E} \\ \text{Vitamin E} \\ \text{Vitamin D} \\ \text{Diet quality} \\ \text{High-carbohydrate} \\ \text{Low saturated fat} \\ \text{Linoleic acid} \\ \text{Selenium} \\ \text{Mediterranean diet} \\ \end{array}$	Intake Intake Intake	All-cause mortality All-cause mortality	All-cause mortality All-cause mortality	+ + + + + + + + + +	$\begin{array}{c} 1.14 & [1.04; 1.25] \\ 1.13 & [1.00; 1.27] \\ 1.01 & [0.73; 1.40] \\ 1.23 & [1.10; 1.33] \\ 1.24 & [1.16; 1.33] \\ 1.24 & [1.8; 1.11] \\ 1.7 & [1.15; 1.40] \\ 1.41 & [1.30; 1.52] \\ 1.31 & [0.27; 6.37] \\ 1.18 & [1.06; 1.32] \\ 1.26 & [1.06; 1.32] \\ 1.21 & [1.00; 1.32] \\ 1.21 & [1.00; 1.32] \\ 1.21 & [0.09; 1.38] \\ 1.47 & [1.41; 1.23] \\ [0.99; 1.38] \end{array}$
Intermediate disease markers Abdelhamid 2018a+Schlesinger 2019 Random effects model Prediction interval Heterogeneity: not applicable	Omega-3	Intake + Supplements	Fish	Intake	Body weight	Weight gain	+	0.98 [0.70; 1.35] 0.98 [0.70; 1.35]
Bone health Avenell 2014+Feng 2017 Random effects model Prediction interval Heterogeneity: not applicable	Vitamin D	Supplements	Vitamin D	Status	Hip fracture	Hip fracture	*	1.65 [1.35; 2.00] 1.65 [1.35; 2.00]
Cancer Bjelakovic 2014a+Han 2019 Bjelakovic 2014b+Han 2019 Jin 2012+Jin 2012 Jin 2012+Jin 2012 Jin 2012+Jin 2012 Vinceti 2018+Vinceti 2018 Yao 2017+Aune 2011 Random effects model Prediction interval Heterogeneity. $I^2 = 498_{\rm ek}$, $t^2 = 0.0405$, $p = 0.0$	Vitamin D Vitamin D Total flavonoids Isoflavonois Flavonois Selenium Fibre	Supplements Supplements Intake Intake Supplements Intake	Vitamin D Vitamin D Total flavonoids Isoflavonoes Flavonois Selenium Fibre	Status Status Intake Intake Status Intake	Cancer mortality Cancer Colorectal adenoma Colorectal adenoma Colorectal adenoma Cancer Colorectal cancer	Cancer mortality Cancer Colorectal cancer Colorectal cancer Colorectal cancer Cancer Colorectal cancer	**++	1.09 [0.91; 1.30] 1.16 [0.97; 1.39] 1.09 [0.83; 1.43] 0.84 [0.65; 1.09] 0.99 [0.80; 1.22] 1.32 [1.01; 1.73] 3.07 [1.21; 7.78] 1.11 [0.92; 1.33] [0.63; 1.96]
Pregnancy outcomes De-Regil 2015+Feng 2015 Hofmeyr 2018+Newberry 2014 Keats 2019+Wolf 2017 Palacios 2019+Hul 2018 Palacios 2019+Hul 2018 Palacios 2019+Tuas 2019 Tieu 2017+Chia 2019 Tieu 2017+Chia 2019 Tieu 2017+Chia 2019 Random effects model Prediction interval Heterogeneity: $l^2 = 71\%$, $t^2 = 0.1082$, $p < 0.00$	Folate Folate Calcium Micronutrients Vitamin D Vitamin D Vitamin D Healthy diet Healthy diet	Supplements Supplements Supplements Supplements Supplements Supplements Intake Intake	Folate Folate Calcium Multivitamins Vitamin D Vitamin D Vitamin D Healthy diet Mediterranean diet	Supplements Supplements Supplements Status Status Status Intake Intake	Neural tube defect Congenital cardiovascular anomalies Pre-eclampsia Preterm birth Gestational diabetes Preterm birth Pre-eclampsia Smail gestational age Gestational diabetes	Neural tube defect Congenital heart defect Pre-eclampsia Preterm birth Gestational diabetes Preterm birth Pre-eclampsia Small gestational age Gestational diabetes	++++++++++++++++++++++++++++++++++++++	$\begin{array}{c} 0.84 & [0.39; 1.81] \\ 0.95 & [0.36; 2.51] \\ 0.46 & [0.30; 0.71] \\ 1.13 & [0.92; 1.39] \\ 0.62 & [0.37; 1.04] \\ 1.58 & [1.12; 2.24] \\ 1.52 & [0.97; 2.38] \\ 0.94 & [0.54; 1.66] \\ 0.61 & [0.46; 1.41] \\ 0.84 & [0.72; 1.24] \\ \hline & [0.41; 2.20] \end{array}$
Diabetes Hemmingsen 2017+Schwingshackl 2018 Random effects model Prediction interval Heterogeneity: not applicable	i Healthy diet	Intake	Diet quality	Intake	Type 2 diabetes	Type 2 diabetes	* \$	0.79 [0.63; 0.99] 0.79 [0.63; 0.99]
Eye disease Mathew 2012+Jiang 2019 Mathew 2012+Jiang 2019 Mathew 2012+Jiang 2019 Random effects model Prediction interval Heterogeneity: $I^2 = 36\%, \tau^2 = 0.0031, p = 0.2$	β-carotene Vitamin E Vitamin C	Supplements Supplements Supplements	β-carotene Vitamin E Vitamin C	Intake Intake Intake	Cataract Cataract Cataract	Cataract Cataract Cataract	*	1.10 [0.97; 1.24] 1.08 [0.95; 1.23] 1.27 [1.10; 1.48] 1.14 [1.03; 1.26] [0.44; 2.96]
Neurodegenerative disease Rutjes 2018+0codwill 2017 Rutjes 2018+0codwill 2017 Random effects model Prediction interval Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $p = 0.52$	B-vitamins Vitamin D3	Supplements Supplements	Vitamin B12 Vitamin D	Intake Status	Dementia/MCI Dementia	Dementia Dementia/MCI		1.02 [0.70; 1.49] 1.24 [0.79; 1.95] 1.11 [0.83; 1.48]

Supplementary Figure 17: Forest plot of comparisons between bodies of evidence from randomized controlled trials vs. cohort studies for dichotomous outcomes as pooled ratio of risk ratios (RRR) excluding highly correlated outcomes stratified by type of outcome.

Intervention in DOTe	Tune of intake in DCTs	Europure in CCo	Turne of experience in CCs. Outcome in PCTs
intervention in RCTS	Type of make in RCTS	Exposure in Cos	Type of exposure in CSs Outcome in RCTs

Reference pair	Intervention in RCTs	Type of intake in RCTs	Exposure in CSs	Type of exposure in CSs	Outcome in RCTs	Outcome in CSs	Ratio of Risk Ratios	RRR	95%-CI
Similar but not identical							Ĩ.		
Abdelhamid 2018a+Chowdhury 2014a	Omega-3	Intake + Supplements	Omega-3	Intake	Cardiovascular disease	Coronary heart disease	-		1.01; 1.28]
Abdelhamid 2018a+Pan 2012	α-Linolenic acid	Intake	α-Linolenic acid	Intake	Cardiovascular disease	Cardiovascular disease	+		0.87; 1.20]
Abdelhamid 2018a+Wan 2017	Omega-3	Intake + Supplements	Omega-3	Intake	All-cause mortality	All-cause mortality	-		1.04; 1.25]
Abdelhamid 2018a+Wei 2018	α-Linolenic acid	Intake	α-Linolenic acid	Intake	Cardiovascular mortality	Coronary heart disease mortality			0.85; 1.51]
Abdelhamid 2018a+Wei 2018	α-Linolenic acid Polyunsaturated fat	Intake	α-Linolenic acid Omega-6	Intake Intake	Coronary heart disease	Coronary heart disease	-		0.89; 1.35] 0.72; 1.10]
Abdelhamid 2018b+Chowdhury 2014a Abdelhamid 2018b+Li 2020	Polyunsaturated fat	Intake + Supplements Intake + Supplements	Linoleic acid	Intake	Coronary heart disease All-cause mortality	Coronary heart disease All-cause mortality			1.00; 1.27]
Abdelhamid 2018b+Zhu 2019	Polyunsaturated fat	Intake	Polyunsaturated fat		Major cardiovascular events	Cardiovascular disease			0.61; 1.24]
Adler 2014+Aburto 2013	Low-sodium	Intake	Low-sodium	Intake		All-cause mortality	-		0.73; 1.40]
Adler 2014+Aburto 2013	Low-sodium	Intake	Low-sodium	Intake	Cardiovascular mortality	Cardiovascular mortality	-+-		0.46; 1.28]
Adler 2014+Aburto 2013	Low-sodium	Intake	Low-sodium	Intake	Cardiovascular disease	Cardiovascular disease		0.87 [0	0.57; 1.33]
Al-Khudairy 2017+Aune 2018	Vitamin C	Supplements	Vitamin C	Intake	Major cardiovascular events	Cardiovascular disease	*		1.03; 1.35]
Al-Khudairy 2017+Aune 2018	Vitamin C	Supplements	Vitamin C	Intake	Cardiovascular mortality	Cardiovascular mortality	-		0.96; 1.38]
Al-Khudairy 2017+Aune 2018 Bielakovic 2012+Aune 2018	Vitamin C B-carotene	Supplements	Vitamin C B-carotene	Intake Intake		All-cause mortality All-cause mortality	*		1.10; 1.38] 1.16; 1.33]
Bjelakovic 2012+Aune 2018	Vitamin E	Supplements Supplements	Vitamin E	Intake		All-cause mortality All-cause mortality	- Ind		0.98; 1.11]
Bjelakovic 2012+Aune 2018	Vitamin C	Supplements	Vitamin C	Intake	All-cause mortality	All-cause mortality	T-		1.08; 1.27]
Bjelakovic 2014b+Hossain 2019	Vitamin D3	Supplements	Vitamin D	Supplements		Breast cancer	+		0.89; 1.19]
Bjelakovic 2014b+Zhang 2015	Vitamin D3	Supplements	Vitamin D	Intake		Lung cancer			0.73; 1.28]
De-Regil 2015+Blencowe 2010	Folate	Supplements	Folate	Supplements	Neural tube defect	Neural tube defect		0.84 [0	0.39; 1.81]
De-Regil 2015+Feng 2015	Folate	Supplements	Folate	Supplements	Congenital cardiovascular anomalies				0.36; 2.51]
Hemmingsen 2017+Schwingshackl 2018		Intake	Diet quality	Intake	Type 2 diabetes	Type 2 diabetes			0.63; 0.99]
Hemmingsen 2017+Schwingshackl 2018		Intake	Diet quality	Intake	All-cause mortality	All-cause mortality			0.27; 6.37]
Hofmeyr 2018+Newberry 2014 Hooper 2012+Noto 2013	Calcium Low-fat/modified fat	Supplements Intake + Supplements	Calcium High-carbohydrate	Intake	Pre-eclampsia Cardiovascular mortality	Pre-eclampsia Cardiovascular mortality	<u> </u>		0.30; 0.71] 0.89; 1.20]
Hooper 2012+Noto 2013 Hooper 2012+Seidelmann 2018	Low-fat/modified fat	Intake + Supplements	High-carbohydrate		All-cause mortality	All-cause mortality	T_		1.06; 1.32]
Hooper 2012+Seidenhahn 2016 Hooper 2015b+de Souza 2015	Low saturated fat	Intake + Supplements	Low saturated fat	Intake		Coronary heart disease			0.74; 1.06]
Hooper 2018+Chowdhury 2014a	Omega-6	Intake + Supplements	Omega-6	Intake	Combined cardiovascular events	Coronary heart disease	1		0.82; 1.20]
Hooper 2018+Li 2020	Omega-6	Intake + Supplements	Linoleic acid	Intake		All-cause mortality	-		1.00; 1.32]
Hooper 2018+Li 2020	Omega-6		Linoleic acid	Intake	Cardiovascular mortality	Cardiovascular mortality	+		0.87; 1.80]
Keats 2019+Wolf 2017	Micronutrients	Supplements	Multivitamins	Supplements	Preterm birth	Preterm birth	*		0.92; 1.39]
Keats 2019+Wolf 2017	Micronutrients	Supplements	Multivitamins	Supplements	Low birth weight	Low birth weight			0.63; 1.97]
Keats 2019+Wolf 2017 Mathew 2012+Jiang 2019	Micronutrients B-carotene	Supplements Supplements	Multivitamins	Supplements Intake	Small gestational age Cataract	Small gestational age Cataract	<u> </u>		0.98; 1.46] 0.97; 1.24]
Mathew 2012+Jiang 2019 Mathew 2012+Jiang 2019	Vitamin E	Supplements	Vitamin E	Intake	Cataract	Cataract	÷		0.97; 1.24]
Mathew 2012+Jiang 2019	Vitamin C	Supplements	Vitamin C	Intake		Cataract	-		1.10; 1.48]
Rees 2013b+Jayedi 2018	Selenium	Supplements	Selenium	Intake		All-cause mortality	+		1.08; 1.39]
Rees 2019+Rosato 2019	Mediterranean diet	Intake	Mediterranean diet		Cardiovascular mortality	Cardiovascular mortality			0.81; 2.00]
Rees 2019+Rosato 2019	Mediterranean diet	Intake	Mediterranean diet	Intake	Combined cardiovascular events	Cardiovascular disease	+	1.00 [0	0.78; 1.28]
Rees 2019+Soltani 2019	Mediterranean diet	Intake	Mediterranean diet			All-cause mortality	+-		0.89; 1.38]
Tieu 2017+Chia 2019	Healthy diet	Intake	Healthy diet	Intake	Preterm birth	Preterm birth			0.25; 1.56]
Tieu 2017+Chia 2019	Healthy diet	Intake	Healthy diet	Intake	Small gestational age	Small gestational age			0.54; 1.66]
Tieu 2017+Mijatovic-Vukas 2018 Vinceti 2018+Vinceti 2018	Healthy diet Selenium	Intake Supplements	Mediterranean diet Selenium	Intake Intake	Gestational diabetes Cancer mortality	Gestational diabetes Cancer mortality			0.46; 1.41] 0.52; 1.45]
Vinceti 2018+Vinceti 2018	Selenium	Supplements	Selenium	Supplements	Colorectal cancer	Colorectal cancer			0.50; 1.70]
Yao 2017+Aune 2011	Fibre	Intake	Fibre	Intake	Colorectal cancer	Colorectal cancer			1.21; 7.78]
Random effects model							•		.04; 1.13]
Prediction interval							+	[0	.88; 1.32]
Heterogeneity: $I^2 = 47\%$, $\tau^2 = 0.0095$, $p < 0$.	.01								
Descally similar									
Broadly similar Abdelhamid 2018a+Chowdhury 2014a	Omega-3	Intake + Supplements	Omega-3	Intake	Cardiovascular mortality	Coronary heart disease mortality	-	1.06 0	0.82; 1.37]
Avenell 2014+Feng 2017	Vitamin D	Supplements	Vitamin D	Status	Hip fracture	Hip fracture	Γ 		1.35; 2.00]
Avenell 2014+Feng 2017	Vitamin D	Supplements	Vitamin D	Status		Any fracture			1.09; 1.56]
Bjelakovic 2012+Aune 2018	Vitamin A	Supplements	β-carotene	Intake		All-cause mortality			1.15; 1.40]
Bjelakovic 2014a+Chowdhury 2014b	Vitamin D	Supplements	Vitamin D	Status	All-cause mortality	All-cause mortality	E23		1.30; 1.52]
Bjelakovic 2014a+Chowdhury 2014b	Vitamin D	Supplements	Vitamin D	Status	Cardiovascular mortality	Cardiovascular mortality			1.19; 1.64]
Bjelakovic 2014a+Han 2019	Vitamin D	Supplements	Vitamin D	Status	Cancer mortality	Cancer mortality	亡		0.91; 1.30]
Bjelakovic 2014b+Han 2019	Vitamin D Flavonols	Supplements Intake	Vitamin D Flavonols	Status Intake	Cancer Colorectal adenoma	Cancer Colorectal cancer			0.97; 1.39] 0.80; 1.22]
Jin 2012+Jin 2012 Palacios 2019+Hu 2018	Vitamin D	Supplements	Vitamin D	Status	Gestational diabetes	Gestational diabetes			0.37; 1.04]
Palacios 2019+Hu 2018 Palacios 2019+Tous 2020	Vitamin D	Supplements	Vitamin D	Status	Preterm birth	Preterm birth			1.12; 2.24]
Palacios 2019+Yuan 2019	Vitamin D	Supplements	Vitamin D	Status	Pre-eclampsia	Pre-eclampsia			0.97; 2.38]
Rees 2013b+Xiang 2019	Selenium	Supplements	Selenium	Status	Cardiovascular mortality	Cardiovascular mortality		1.26 [0	0.94; 1.68]
Rees 2013b+Zhang 2016a	Selenium	Supplements	Selenium	Status	Combined cardiovascular events	Cardiovascular disease	-		1.02; 1.38]
Rutjes 2018+Doets 2013	B-vitamins	Supplements	Vitamin B12	Intake	Dementia/MCI	Dementia			0.70; 1.49]
Rutjes 2018+Goodwill 2017	Vitamin D3 Selenium	Supplements Supplements	Vitamin D Selenium	Status	Dementia Cancer	Dementia/MCI Cancer			0.79; 1.95] I.01; 1.73]
Vinceti 2018+Vinceti 2018 Yao 2017+Ben 2014	Fibre	Intake	Fibre	Intake	Colorectal adenoma	Colorectal adenoma			0.92; 1.39]
Yao 2017+Ben 2014 Random effects model	1 1010	intend	1 1010	interio	colorectal adenoma	Soloredal adenoma	0		1.14; 1.34]
Prediction interval							<u></u>		.93; 1.64]
Heterogeneity: $l^2 = 57\%$, $\tau^2 = 0.0160$, $p < 0$.	.01							ь	
	2004 C.								
						RP in PCT	0.2 0.5 1 2 5 < RR in CSs RR in RCTs >	RR in CS	ie.
						NN III ROTE			

Supplementary Figure 18: Forest plot of comparisons between bodies of evidence from randomized controlled trials vs. cohort studies for dichotomous outcomes as pooled ratio of risk ratios (RRR) including only CSs with a RR <1 stratified by PI/ECO similarity degree.

Reference pair	Intervention in RCTs	Type of intake in RCTs	Exposure in CSs	Type of exposure in CSs	Outcome in RCTs	Outcome in CSs	Ratio of Risk Ratios	RRR 95%-CI
More or less identical Abdelhamid 2018b+Zhu 2019 Bjelakovic 2014b+Hossain 2019 De-Regil 2015+Bencove 2010 De-Regil 2015+Feng 2015 Hemmingsen 2017+Schwingshackl 2011 Hooper 2015b+de Souza 2015 Rees 2019+Rosato 2019 Rees 2019+Rosato 2019 Rees 2019+Rosato 2019 Tieu 2017+Chia 2019 Tieu 2017+Chia 2019 Tieu 2017+Chia 2019 Tieu 2017+Chia 2019 Yao 2017+Aune 2011 Yao 2017+Gen 2014 Random effects model Prediction interval Heterogeneity: l^2 = 15%, l^2 = 0.0041, p = 0	3 Healthy diet Low saturated fat Mediterranean diet Mediterranean diet Mediterranean diet Healthy diet Healthy diet Healthy diet Selenium Fibre Fibre	Intake Supplements Supplements Intake Intake Intake Intake Intake Intake Intake Intake Supplements Intake Intake	Polyunsaturated fat Vitamin D Folate Folate Diet quality Diet quality Low saturated fat Mediterranean diet Mediterranean diet Mediterranean diet Healthy diet Healthy diet Mediterranean diet Selenium Fibre Fibre	Supplements Supplements Intake Intake Intake Intake Intake	Major cardiovascular events Breast cancer Neural tube defect Congenital cardiovascular anomalies Type 2 diabetes All-cause mortality Combined cardiovascular events Cardiovascular mortality Combined cardiovascular events All-cause mortality Preterm birth Small gestational age Gestational diabetes Colorectal cancer Colorectal adenoma	Cardiovascular disease Breast cancer Neural tube defect Congential heart defect Type 2 diabetes All-cause mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality Preterm birth Small gestational age Gestational diabetes Colorectal cancer Colorectal adenoma	╼ _╈ ╞┿┿┿┿┿┿ <mark>┿┝┝┝</mark> ╼┿	0.87 [0.61; 1.24] 1.03 [0.89; 1.19] 0.84 [0.39; 1.81] 0.95 [0.36; 2.51] 0.79 [0.63; 0.99] 1.31 [0.27; 6.37] 0.88 [0.74; 1.06] 1.27 [0.81; 2.00] 1.27 [0.81; 2.00] 1.31 [0.27; 1.28] 1.11 [0.89; 1.38] 1.14 [0.84; 1.48] 0.53 [0.55; 1.56] 0.84 [0.46; 1.41] 0.92 [0.50; 1.70] 1.13 [0.92; 1.39] 0.99 [0.91; 1.07] [0.83; 1.17]
Similar but not identical Abdelhamid 2018a+Chowdhury 2014a Abdelhamid 2018a+Chowdhury 2014a Abdelhamid 2018a+Chowdhury 2014a Abdelhamid 2018a+Van 2017 Abdelhamid 2018a+Vei 2018 Abdelhamid 2018a+Vei 2018 Abdelhamid 2018a+Vei 2018 Abdelhamid 2018b+Chowdhury 2014a Abdelhamid 2018b+Chowdhury 2013 Al=Khudairy 2017+Aune 2018 Bjelakovic 2012+Aune 2018 Bjelakovic 2018+Chowdhury 2014 Bjelakovic 2018+Chowdhury 2017 Kata 2018+Chowdhury 2017 Kata 2018+Chowdhury 2017 Bjelakovic 2018+Chowdhury 2019 Bjelakovic 2018+Chowdhury 2019 Bjelakov	Omega-3 Omega-3 α-Linolenic acid Omega-3 α-Linolenic acid Polyunsaturated fat Polyunsaturated fat Low-sodium Low-sodium Low-sodium Vitamin C Vitamin C Selenium Selenium	Intake + Supplements Intake + Supplements Intake + Supplements Intake Intake + Supplements Intake Intake + Supplements Intake Supplements Supplements Supplements Supplements Supplements Supplements Supplements Intake + Supplements Intake + Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements	Omega-3 Omega-3 α-Linolenic acid Omega-3 α-Linolenic acid Omega-6 Linolenic acid Low-sodium Vitamin C Vitamin S Jelico acid Flavonols Multivitamins Multivitamins β-carotene Vitamin C Vitamin C Vitamin S Vitamin S Vitamin S Vitamin S Selenium		Cardiovascular mortality Cardiovascular disease Cardiovascular disease All-cause mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality All-cause mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality Colorectal adenoma Preterm bith Small gestational age Cataract	Coronary heart disease mortality Coronary heart disease Cardiovascular disease All-cause mortality Coronary heart disease coronary heart disease Coronary heart disease Coronary heart disease Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality All-cause mortality Coronary heart disease All-cause mortality Colorectal cancer Preterm birth Low birth weight Small gestational age Catarad Catarad Catarad Catarad Catarat Catarat Catarat	╹╾┼╎ _{┿┿} ┿┿┿┿┿┿┿ [┿] ╵┿ [╍] ┈┿┿╫┼┿┿┿┾ ╵	$\begin{array}{c} 1.06 & [0.82; 1.37] \\ 1.14 & [1.01; 1.28] \\ 1.02 & [0.87; 1.20] \\ 1.14 & [1.04; 1.25] \\ 1.13 & [0.85; 1.51] \\ 1.10 & [0.89; 1.35] \\ 0.89 & [0.72; 1.10] \\ 1.13 & [1.00; 1.27] \\ 1.01 & [0.73; 1.40] \\ 0.77 & [0.46; 1.28] \\ 0.67 & [1.57; 1.33] \\ 1.16 & [1.03; 1.33] \\ 1.28 & [1.03; 1.33] \\ 1.28 & [1.03; 1.33] \\ 1.28 & [1.03; 1.33] \\ 1.24 & [1.16; 1.33] \\ 1.24 & [1.16; 1.33] \\ 1.24 & [1.16; 1.33] \\ 1.24 & [1.16; 1.33] \\ 1.24 & [1.16; 1.33] \\ 1.24 & [1.16; 1.33] \\ 1.24 & [1.16; 1.33] \\ 1.24 & [1.16; 1.33] \\ 1.24 & [1.16; 1.33] \\ 1.24 & [1.16; 1.33] \\ 1.24 & [1.16; 1.32] \\ 0.46 & [0.30; 0.71] \\ 1.17 & [1.08; 1.20] \\ 1.16 & [1.02; 1.20] \\ 1.16 & [1.02; 1.20] \\ 1.16 & [1.02; 1.20] \\ 1.16 & [1.02; 1.20] \\ 1.11 & [1.06; 1.22] \\ 1.19 & [0.98; 1.20] \\ 1.11 & [0.98; 1.23] \\ 1.11 & [0.98; 1.24] \\ 1.23 & [1.08; 1.30] \\ 1.22 & [1.07; 1.44] \\ 1.23 & [1.16; 1.16] \\ [0.94; 1.30] \\ \end{array}$
Broadly similar Avenell 2014+Feng 2017 Avenell 2014+Feng 2017 Bjelakovic 2012+Aune 2018 Bjelakovic 2014a+Chowdhury 2014b Bjelakovic 2014a+Chowdhury 2014b Bjelakovic 2014a+Han 2019 Palacios 2014b+Han 2019 Palacios 2014b+Han 2019 Rees 2013b+Xiang 2019 Rees 2013b+Xiang 2019 Rees 2013b+Xiang 2016a Rutjes 2018+Goodwill 2017 Vinceti 2018+Vinceti 2018 Random effects model Prediction interval Heterogenelty: $l^2 = 52\%$, $l^2 = 0.0148$, $p = 0$	Vitamin D Vitamin D Vitamin A Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Selenium Selenium Vitamin D3 Selenium	Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements	Vitamin D Vitamin D &-carotene Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Selenium Vitamin D Selenium	Status Status Intake Status Status Status Status Status Status Status Status Status Status Status Status Status Status Status Status Status Status	Hip fracture Any fracture All-cause mortality All-cause mortality Cancier mortality Cancer mortality Cancer Gestational diabetes Preterm birth Pre-eclampsia Cardiovascular mortality Combined cardiovascular events Dementia Cancer		+ + + + + + + + + + + + + + + + + + +	1.65 [1.35; 2.00] 1.30 [1.09; 1.56] 1.27 [1.15; 1.40] 1.41 [1.30; 1.52] 1.40 [1.19; 1.64] 1.09 [0.91; 1.30] 0.62 [0.37; 1.04] 1.52 [0.97; 1.39] 0.62 [0.37; 1.04] 1.52 [0.97; 1.39] 1.52 [0.97; 1.39] 1.26 [0.94; 1.68] 1.24 [0.79; 1.95] 1.24 [0.79; 1.95] 1.24 [0.79; 1.73] 1.29 [1.18; 1.41] [0.97; 1.71] RR in CSs

Supplementary Figure 19: Forest plot of comparisons between bodies of evidence from randomized controlled trials vs. cohort studies for dichotomous outcomes as pooled ratio of risk ratios (RRR) including only CSs with a RR <1 stratified by intervention/exposure similarity degree.

Reference pair	Intervention in RCTs	Type of intake in RCTs	Exposure in CSs	Type of exposure in CSs	Outcome in RCTs	Outcome in CSs	Ratio of Risk Ratios	RRR 95%-CI
Fatty acids Abdelhamid 2018a+Chowdhury 2014a Abdelhamid 2018a+Chowdhury 2014a Abdelhamid 2018a+Wan 2017 Abdelhamid 2018a+Wan 2017 Abdelhamid 2018a+Wei 2018 Abdelhamid 2018a+Wei 2018 Abdelhamid 2018b+Lio 2014 Abdelhamid 2018b+Lio 2014 Abdelhamid 2018b+Lio 200 Abdelhamid 2018b+Lio 200 Hooper 2018+Chowdhury 2014a Hooper 2018+Lio 200 Random effects model Prediction interval Heterogeneity. J^2 = 20%, z^2 = 0.0019, p = 0.0019, p	Omega-3 Omega-3 ar-Linolenic acid Omega-3 ar-Linolenic acid ar-Linolenic acid Polyunsaturated fat Polyunsaturated fat Polyunsaturated fat Omega-6 Omega-6	Intake + Supplements Intake + Supplements Intake Intake + Supplements Intake + Supplements Intake + Supplements Intake + Supplements Intake + Supplements Intake + Supplements Intake + Supplements	Omega-3 Omega-3 a-Linolenic acid Omega-3 a-Linolenic acid Omega-6 Linoleic acid Polyunsaturated fat Omega-6 Linoleic acid Linoleic acid	Intake Intake Intake Intake Intake Intake Intake Intake Intake Intake Intake Intake Intake	Cardiovascular mortality Cardiovascular disease Cardiovascular disease All-cause mortality Cardiovascular mortality Coronary heart disease Coronary heart disease All-cause mortality Major cardiovascular events Combined cardiovascular events Combined cardiovascular events All-cause mortality Cardiovascular mortality	Coronary heart disease mor Coronary heart disease Cardiovascular disease All-cause mortality Coronary heart disease mor Coronary heart disease Coronary heart disease All-cause mortality Cardiovascular disease Coronary heart disease Coronary heart disease Coronary heart disease All-cause mortality Cardiovascular mortality	+++++++++++++++++++++++++++++++++++++++	$\begin{array}{c} 1.06 & [0.82; 1.37] \\ 1.14 & [1.01; 1.28] \\ 1.02 & [0.87; 1.20] \\ 1.14 & [1.04; 1.25] \\ 1.13 & [0.05; 1.51] \\ 1.10 & [0.98; 1.35] \\ 0.98 & [0.72; 1.10] \\ 1.13 & [1.00; 1.27] \\ 0.88 & [0.74; 1.06] \\ 0.99 & [0.82; 1.20] \\ 0.88 & [0.74; 1.06] \\ 0.99 & [0.82; 1.20] \\ 1.15 & [1.00; 1.32] \\ 1.25 & [0.87; 1.80] \\ 1.07 & [1.62; 1.13] \\ [0.96; 1.20] \end{array}$
Micronutrients Adier 2014+Aburto 2013 Adier 2014+Aburto 2013 Adier 2014+Aburto 2013 Al-Khudairy 2017-Aune 2018 Al-Khudairy 2017-Aune 2018 Al-Khudairy 2017-Aune 2018 Bielakovic 2012+Aune 2018 Bjelakovic 2012+Aune 2018 Bjelakovic 2012+Aune 2018 Bjelakovic 2012+Aune 2018 Bjelakovic 2012+Aune 2018 Bjelakovic 2012+Aune 2018 Bjelakovic 2014+Chowdhury 2014b Bjelakovic 2014a+Chowdhury 2014b Bjelakovic 2014a+Chowdhury 2019 Bjelakovic 2014a+Chowdhury 2019 Bjelakovic 2014a+Chowdhury 2019 Bjelakovic 2014a+Chowdhury 2019 Bjelakovic 2014b+Chossin 2019 Da-Regil 2015+Feng 2015 Hofmeyr 2018+Newtorry 2014 Keats 2019+Wolf 2017 Keats 2019+Wolf 2017 Kathew 2012+Jang 2019 Mathew 2012+Jang 2019 Mathew 2012+Jang 2019 Kathew 2014+Kath	Low-sodium Low-sodium Vitamin C Vitamin C Vitamin C Vitamin D Mitamin D Vitamin D Vitamin A Vitamin A Vitamin A Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin C Vitamin C Vitamin D Vitamin C Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Selenium Selenium Selenium Selenium Selenium	Intake Intake Intake Supplements	Low-sodium Low-sodium Low-sodium Vitamin C Vitamin C Vitamin D Secarotene Vitamin D Secarotene Vitamin D Vitamin C Selenium Selenium Selenium Selenium Selenium	Intake Status Status Status Supplements Intake Supplements Supplements Intake Intake Intake Status S	All-cause mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality All-cause mortality Hip fracture Any fracture Any fracture All-cause mortality All-cause mortality All-cause mortality Cancer mortality Cancer mortality Cancer mortality Cancer mortality Cancer and the defect Congenita Lardiovascular anomalies Pre-eclampsia Preterm bith Low birth weight Small gestational age Cataract Catar	All-cause mortality Carcliovascular mortality Carcliovascular mortality Carcliovascular disease Carcliovascular disease Carcliovascular mortality All-cause mortality All-cause mortality All-cause mortality All-cause mortality All-cause mortality Cancer mortality Cancer mortality Cancer mortality Cancer mortality Cancer mortality Cancer mortality Cancer mortality Cancer mortality Cancer Mey Carcline Presen Dirth Low birth weight Small gestational age Cataract	┤┤┤ [┿] ┿	$\begin{array}{c} 1.01 & [0.73; 1.40] \\ 0.77 & [0.46; 1.28] \\ 0.87 & [0.57; 1.33] \\ 1.18 & [1.03; 1.35] \\ 1.28 & [1.10; 1.38] \\ 1.23 & [1.10; 1.38] \\ 1.23 & [1.10; 1.38] \\ 1.23 & [1.10; 1.38] \\ 1.24 & [1.16; 1.33] \\ 1.24 & [1.16; 1.33] \\ 1.27 & [1.15; 1.40] \\ 1.44 & [1.19; 1.54] \\ 1.40 & [1.20; 1.23] \\ 1.40 & [1.20; 1.24] \\ 1.40 & [1.20; 1.24] \\ 1.40 & [1.20; 1.24] \\ 1.52 & [1.07; 1$
Heterogeneity: $J^2 = 65%$, $c^2 = 0.0207$, $p < 0.1$ Dietary approach Hemmingsen 2017-Schwingshackl 2018 Hooper 2012-Noto 2013 Hooper 2012-Noto 2019 Rees 2019-Rosato 2019 Rees 2019-Rosato 2019 Rees 2019-Rosato 2019 Tieu 2017-Chia 2019 Tieu 2017	Healthy diet Low-fat/modified fat Low-fat/modified fat Low-fat/modified fat Mediterranean diet Mediterranean diet Healthy diet Healthy diet Healthy diet	Intake Intake + Supplements Intake + Supplements Intake Intake Intake Intake Intake Intake	Diet quality Diet quality High-carbohydrate High-carbohydrate Mediterranean diet Mediterranean diet Heathy diet Heathy diet Mediterranean diet	Intake Intake Intake Intake Intake Intake	Type 2 diabetes All-cause mortality Cardiovascular mortality All-cause mortality Combined cardiovascular mortality Combined cardiovascular events All-cause mortality Preterm birth Small gestational age Gestational diabetes	Type 2 diabetes All-cause mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular orbatity Cardiovascular disease All-cause mortality Preterm birth Small gestational age Gestational diabetes	+ + + + + + + + + + + + + + + + + + +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Other Yao 2017+Aune 2011 Yao 2017+Ben 2014 Random effects model Prediction interval Heterogeneity: $I^2 = 76\%$, $r^2 = 0.3803$, $p = 0.0$	Fibre Fibre	Intake Intake	Fibre Fibre	Intake Intake	Colorectal cancer Colorectal adenoma	Colorectal adenoma	0.2 0.5 1 2 5 in RCTs < RR in CSs RR in RCTs >	- 3.07 [1.21; 7.78] 1.13 [0.92; 1.39] 1.67 [0.64; 4.35] RR in CSs

Supplementary Figure 20: Forest plot of comparisons between bodies of evidence from randomized controlled trials vs. cohort studies for dichotomous outcomes as pooled ratio of risk ratios (RRR) including only CSs with a RR <1 stratified by type of dietary intervention/exposure.

Reference pair	Intervention in RCTs	Type of intake in RCTs	Exposure in CSs	Type of exposure in CSs	Outcome in RCTs	Outcome in CSs	Ratio of Risk Ratios	RRR 95%-CI
Abdelhamid 2018a+Wei 2018 Abdelhamid 2018b-2hu 2019 Adler 2014+Aburto 2013 Adler 2014+Aburto 2013 Adler 2014+Aburto 2013 Hemmingsen 2017+Schwingshackl 2018 Hemmingsen 2017+Schwingshackl 2018 Hopper 2015b+de Souza 2015 Jin 2012-Jin 2012	Healthy diet Low saturated fat Flavonois Mediterranean diet Mediterranean diet Mediterranean diet Healthy diet Healthy diet Healthy diet Fibre Fibre	Intake Intake	Mediterranean diet Mediterranean diet Healthy diet Healthy diet	Intake Intake Intake Intake Intake Intake Intake	Cardiovascular disease Cardiovascular mortality Coronary heart disease Major cardiovascular events All-cause mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality Combined cardiovascular events Colorectal adenoma Cardiovascular mortality Combined cardiovascular events All-cause mortality Combined cardiovascular events All-cause mortality Combined cardiovascular events All-cause mortality Preferm birth Smail gestational diabetes Colorectal adenoma	Cardiovascular disease Coronary heart disease Cardiovascular disease Cardiovascular disease All-cause mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular disease Colorectal cancer Cardiovascular mortality Cardiovascular mortality Preterm birth Small gestational age Gestational diabetes Colorectal cancer Colorectal cancer Colorectal cancer Colorectal cancer Colorectal cancer Colorectal cancer Colorectal cancer Colorectal adenoma		$\begin{array}{c} 1.02 & [0.87; 1.20] \\ 1.13 & [0.85; 1.51] \\ 1.0 & [0.99; 1.35] \\ 0.87 & [0.61; 1.24] \\ 1.01 & [0.73; 1.40] \\ 0.87 & [0.67; 1.33] \\ 0.77 & [0.46; 1.28] \\ 0.77 & [0.46; 1.28] \\ 0.78 & [0.74; 1.06] \\ 0.99 & [0.80; 1.22] \\ 1.11 & [0.27; 6.37] \\ 1.27 & [0.81; 2.20] \\ 1.27 & [0.81; 2.$
Supplements vs. Supplements Bjelakovic 2014b+Hossain 2019 De-Regil 2015+Blencowe 2010 De-Regil 2015+Feng 2015 Keats 2019+Wolf 2017 Keats 2019+Wolf 2017 Vinceti 2018+Vinceti 2018 Random effects model Prediction interval Heterogeneity: $I^2 = 0$ %, $r^2 = 0$, $p = 0.89$	Vitamin D3 Folate Folate Micronutrients Micronutrients Micronutrients Selenium	Supplements Supplements Supplements Supplements Supplements Supplements Supplements	Vitamin D Folate Folate Multivitamins Multivitamins Multivitamins Selenium	Supplements Supplements Supplements Supplements Supplements Supplements Supplements	Breast cancer Neural tube defect Congenital cardiovascular anomalies Preterm birth Low birth weight Small gestational age Colorectal cancer	Breast cancer Neural tube defect Congenital heart defect Preterm birth Low birth weight Small gestational age Colorectal cancer		1.03 [0.89; 1.19] 0.84 [0.39; 1.81] 0.95 [0.36; 2.51] 1.13 [0.92; 1.39] 1.11 [0.63; 1.97] 1.19 [0.98; 1.46] 0.92 [0.50; 1.70] 1.08 [0.98; 1.20] [0.95; 1.23]
$\label{eq:constraints} $$ upplements vs. Intake $$ Supplements vs. Intake $$ Abdelhamid 2018 a+Chowdhury 2014a $$ Abdelhamid 2018 a+Chowdhury 2014a $$ Abdelhamid 2018 a+Van 2017 $$ Abdelhamid 2018 b+Li 2020 $$ Hooper 2012 +Nois 2013 $$$ Hooper 2012 +Nois 2013 $$$ Hooper 2018 +Li 2020 $$ Abdelhamid 2018 +U 2020 $$$ Andom effects model $$$$ Prediction interval $$$ Heterogeneity: $$ I^2 = 1\%, $$ x^2 = < 0.0001, $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$	Omega-3 Omega-3 Polyunsaturated fat Polyunsaturated fat Low-fat/modified fat Omega-6 Omega-6 Omega-6	Intake + Supplements Intake + Supplements	Omega-3 Omega-3 Omega-3 Omega-6 Linoleic acid High-carbohydrate High-carbohydrate Omega-6 Linoleic acid Linoleic acid	Intake Intake Intake Intake Intake Intake Intake Intake Intake Intake	Cardiovascular mortality Cardiovascular disease All-cause mortality Coronary heart disease All-cause mortality Cardiovascular mortality All-cause mortality Combined cardiovascular events All-cause mortality Cardiovascular mortality	Coronary heart disease mortality Coronary heart disease All-cause mortality Coronary heart disease All-cause mortality Cardiovascular mortality All-cause mortality Coronary heart disease All-cause mortality Cardiovascular mortality	****	$\begin{array}{c} 1.06 & [0.82; 1.37] \\ 1.14 & [1.04; 1.28] \\ 0.69 & [0.72; 1.10] \\ 1.3 & [1.00; 1.27] \\ 1.3 & [0.69; 1.20] \\ 1.8 & [1.06; 1.32] \\ 0.99 & [0.82; 1.20] \\ 1.18 & [1.06; 1.32] \\ 1.25 & [0.87; 1.80] \\ 1.11 & [1.06; 1.16] \\ [1.05; 1.18] \end{array}$
Supplements vs. Intake AI-Khudairy 2017-Aune 2018 AI-Khudairy 2017-Aune 2018 Bi-Rkudziry 2017-Aune 2018 Bi-Biakovic 2012-Aune 2018 Bi-Biakovic 2012-Aune 2018 Bi-Biakovic 2012-Aune 2018 Bi-Biakovic 2012-Aune 2018 Bi-Biakovic 2014-D-Zhang 2015 Hofmeyr 2018-Nuewberry 2014 Mathew 2012-Jiang 2019 Mathew 2012-Jiang 2019 Math	Vitamin C Vitamin C Ac-arotene Vitamin E Vitamin C Vitamin A Vitamin A Vitamin D Calcium β -carotene Vitamin C Selenium B-vitamins Selenium	Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements	Vitamin C Vitamin C A-carotene Vitamin E Vitamin E Vitamin C β-carotene Vitamin D Calcium β-carotene Vitamin C Selenium Vitamin B12 Selenium	Intake Intake Intake Intake Intake Intake Intake Intake Intake Intake Intake Intake Intake Intake Intake Intake Intake Intake Intake	Major cardiovascular events Cardiovascular mortality All-cause mortality All-cause mortality All-cause mortality All-cause mortality All-cause mortality Lung cancer Pre-eclampsia Cataract Cataract Cataract Cataract All-cause mortality Dementia/MCL Cancer mortality	Cardiovascular disease Cardiovascular mortality All-cause mortality All-cause mortality All-cause mortality All-cause mortality All-cause mortality Lung cancer Pre-eclampsia Cataract Cataract Cataract Cataract All-cause mortality Dementia Cancer mortality	*****	$\begin{array}{c} 1.18 \ [1.03; 1.36] \\ 1.15 \ [0.96; 1.38] \\ 1.23 \ [1.10; 1.38] \\ 1.24 \ [1.16; 1.33] \\ 1.04 \ [0.98; 1.11] \\ 1.17 \ [1.08; 1.27] \\ 1.27 \ [1.15; 1.40] \\ 0.97 \ [0.73; 1.28] \\ 0.46 \ [0.30; 0.71] \\ 1.10 \ [0.95; 1.23] \\ 1.23 \ [1.06; 1.39] \\ 1.22 \ [1.06; 1.39] \\ 1.22 \ [1.06; 1.39] \\ 1.22 \ [1.06; 1.39] \\ 1.22 \ [1.06; 1.39] \\ 1.22 \ [1.06; 1.48] \\ 0.47 \ [0.52; 1.45] \\ 1.12 \ [0.77; 1.62] \end{array}$
Supplements vs. Status Avenell 2014-Feng 2017 Avenell 2014-Feng 2017 Bjelakovic 2014a-Chowdhury 2014b Bjelakovic 2014a-Chowdhury 2014b Bjelakovic 2014a-Han 2019 Palacios 2014b-Han 2019 Palacios 2014b-Han 2019 Palacios 2019+Tus 2020 Palacios 2018+Vinceti 2018 Rees 2013b-Xiang 2019 Rees 2013b-Xiang 2	Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Selenium Selenium Selenium	Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements Supplements	Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Vitamin D Selenium Selenium Selenium	Status Status Status Status Status Status Status Status Status Status Status Status Status Status Status	Hip fracture Any fracture All-cause mortality Cancier mortality Cancer mortality Cancer Gestational diabetes Preterm birth Pre-eclampsia Canciovascular mortality Combined cardiovascular events Dementia Cancer	Hip fracture Any fracture All-cause mortality Cancer mortality Cancer mortality Cancer Gestational diabetes Preterm birth Pre-eclampsia Cardiovascular mortality Cardiovascular mortality Cardiovasc		1.55 [1.35; 2.00] 1.30 [1.09; 1.56] 1.41 [1.30; 1.52] 1.40 [1.19; 1.64] 1.99 [0.91; 1.30] 0.62 [0.37; 1.04] 1.58 [1.12; 2.24] 1.52 [0.97; 2.38] 1.88 [1.02; 1.38] 1.26 [0.44; 1.68] 1.18 [1.02; 1.38] 1.24 [0.79; 1.95] 1.22 [1.01; 1.73] [0.94; 1.77] RR in CSs

Supplementary Figure 21: Forest plot of comparisons between bodies of evidence from randomized controlled trials vs. cohort studies for dichotomous outcomes as pooled ratio of risk ratios (RRR) including only CSs with a RR <1 stratified by type of intake/exposure.

Reference pair	Intervention in RCTs	Type of intake in RCTs	Exposure in CSs	Type of exposure in CSs	Outcome in RCTs	Outcome in CSs	Ratio of Risk Ratios	RRR 95%-CI
Cardiovascular disease Abdelhamid 2018a+Chowdhury 2014a Abdelhamid 2018a+Chowdhury 2014a Abdelhamid 2018a+Van 2012 Abdelhamid 2018a+Wei 2018 Abdelhamid 2018a+Wei 2018 Abdelhamid 2018b+Chowdhury 2014a Abdelhamid 2018b+Chowdhury 2014a Adder 2014+Aburto 2013 Adler 2014+Aburto 2013 Al-Khudairy 2017+Aune 2018 Al-Khudairy 2017+Aune 2018 Bjelakovic 2014a+Chowdhury 2014b Hooper 2015b+de Souza 2015 Hooper 2015b+de Souza 2015 Hooper 2018+Chowdhury 2014a Hooper 2018+Chowdhury 2014a Hooper 2018-Chowdhury 2014a Rees 2013b+Zhang 2016a Rees 2013b+Zhang 2016a Rees 2019+Rosato 2019 Random effects model Prediction interval Heterogenetity, I ² = 38%, I ² = 0.0061, p = 0.00	Omega-3 Omega-3 a-Linolenic acid a-Linolenic acid Polyunsaturated fat Polyunsaturated fat Low-sodium Vitamin C Vitamin C Vitamin D Low-fat/modified fat Low-fat/modified fat Low-fat/modified fat Selenium Selenium Mediterranean diet Mediterranean diet	Intake + Supplements Intake Intake Intake Intake Supplements Supplements Supplements Intake Supplements Intake Supplements Intake + Supplements Intake + Supplements Supplements Intake + Supplements Supplements Intake Intake Intake Intake Intake	Omega-3 Omega-3 a-Linolenic acid a-Linolenic acid Comega-6 Polyunsaturated fat Low-sodium Low-sodium Vitamin C Vitamin C Vitamin C Vitamin C Vitamin C Vitamin C Unoleic acid Selenium Mediterranean diet	Intake Intake Intake Status Intake Intake Intake Intake Status Status Status Intake	Cardiovascular mortality Cardiovascular disease Cardiovascular disease Cardiovascular mortality Coronary heart disease Major cardiovascular events Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality Cardiovascular mortality Combined cardiovascular events Cardiovascular mortality Combined cardiovascular events	Coronary heart disease moi Coronary heart disease Cardiovascular disease Coronary heart disease Coronary heart disease Coronary heart disease Cardiovascular mortality Cardiovascular disease	· +	$\begin{array}{c} 1.06 & [0.82; 1.37] \\ 1.14 & [1.01; 1.28] \\ 1.02 & [0.87; 1.20] \\ 1.13 & [0.85; 1.51] \\ 1.10 & [0.85; 1.51] \\ 1.00 & [0.72; 1.10] \\ 0.87 & [0.61; 1.24] \\ 0.87 & [0.61; 1.24] \\ 0.77 & [0.46; 1.28] \\ 0.77 & [0.46; 1.28] \\ 1.15 & [0.96; 1.38] \\ 1.40 & [1.19; 1.64] \\ 1.10 & [0.89; 1.20] \\ 0.88 & [0.74; 1.06] \\ 0.99 & [0.82; 1.20] \\ 1.26 & [0.94; 1.68] \\ 1.18 & [1.02; 1.38] \\ 1.26 & [0.84]; 1.68] \\ 1.18 & [1.02; 1.38] \\ 1.26 & [0.84]; 1.68] \\ 1.18 & [1.02; 1.38] \\ 1.27 & [0.81; 2.00] \\ 1.00 & [0.76; 1.28] \\ 1.00 & [1.02; 1.15] \\ \hline \end{array}$
Overall mortality Abdelhamid 2018a+Wan 2017 Abdelhamid 2018b+Li 2020 Adler 2014+Aburto 2013 Al-Khudairy 2017+Aune 2018 Bjelakovic 2012+Aune 2018 Bjelakovic 2012+Aune 2018 Bjelakovic 2012+Aune 2018 Bjelakovic 2012+Aune 2018 Bjelakovic 2014+Chowdhury 2014b Hemmingsen 2017+Schwingshackl 2018 Hooper 2018-Seidelmann 2018 Hooper 2018-Seidelmann 2018 Rees 2019h-Soltani 2019 Random effects model Prediction Interval Heterogeneity: / ² = 70%, r ² = 0.0035, p < 0.000000000000000000000000000000000	Low-fat/modified fat Omega-6 Selenium Mediterranean diet	Intake + Supplements Intake + Supplements Supplements Supplements Supplements Supplements Supplements Intake + Supplements Intake + Supplements Intake + Supplements Intake	Omega-3 Linoleic acid Low-sodium Vitamin C β -carotene Vitamin E Vitamin C β -carotene Vitamin D Diet quality High-carbohydrate Linoleic acid Selenium Mediterranean diet	Intake Intake	All-cause mortality All-cause mortality	All-cause mortality All-cause mortality	+ + + + + + + + + + + + + + + + + + + +	$\begin{array}{c} 1.14 & [1.04; 1.25] \\ 1.13 & [1.00; 1.27] \\ 1.01 & [1.70; 1.40] \\ 1.23 & [1.10; 1.38] \\ 1.24 & [1.16; 1.33] \\ 1.24 & [1.16; 1.33] \\ 1.24 & [1.16; 1.33] \\ 1.27 & [1.15; 1.40] \\ 1.27 & [1.15; 1.40] \\ 1.41 & [1.30; 1.52] \\ 1.31 & [1.06; 1.32] \\ 1.15 & [1.06; 1.32] \\ 1.11 & [0.89; 1.38] \\ 1.19 & [1.14; 1.24] \\ 1.04; 1.37] \end{array}$
Bone health Avenell 2014+Feng 2017 Avenell 2014+Feng 2017 Random effects model Prediction interval Heterogeneity: I ² = 67%, r ² = 0.0186, p = 0.0	Vitamin D Vitamin D	Supplements Supplements	Vitamin E Vitamin D) Status Status	Hip fracture Any fracture	Hip fracture Any fracture	* * \$	1.65 [1.35; 2.00] 1.30 [1.09; 1.56] 1.46 [1.16; 1.84]
Cancer Bjelakovic 2014b+Han 2019 Bjelakovic 2014b+Han 2019 Bjelakovic 2014b+Hossain 2019 Bjelakovic 2014b+Zhang 2015 Jin 2012+Jin 2012 Vincet 2018+Vinceti 2018 Vincet 2018+Vinceti 2018 Yao 2017+Aune 2011 Yao 2017+Ben 2014 Yao 2017+Ben 2014 Prediction Interval Prediction Interval Heterogenety: $j^2 = 13\%$, $t^2 = 0.0048$, $p = 0.3$	Vitamin D Vitamin D Vitamin D3 Vitamin D3 Flavonols Selenium Selenium Fibre Fibre	Supplements Supplements Supplements Supplements Supplements Supplements Supplements Intake Intake	Vitamin D Vitamin D Vitamin D Flavonols Selenium Selenium Selenium Fibre Fibre	Status Status Supplements Intake Status Intake Supplements Intake Intake	Cancer mortality Cancer Breast cancer Lung cancer Colorectal adenoma Cancer Cancer mortality Colorectal cancer Colorectal cancer Colorectal adenoma	Cancer mortality Cancer Breast cancer Lung cancer Colorectal cancer Cancer mortality Colorectal cancer Colorectal cancer Colorectal adenoma		$\begin{array}{c} 1.09 \hspace{0.1cm} [0.91; 1.30] \\ 1.16 \hspace{0.1cm} [0.97; 1.39] \\ 1.03 \hspace{0.1cm} [0.89; 1.19] \\ 0.97 \hspace{0.1cm} [0.73; 1.28] \\ 0.99 \hspace{0.1cm} [0.80; 1.22] \\ 1.32 \hspace{0.1cm} [1.01; 1.73] \\ 0.87 \hspace{0.1cm} [0.52; 1.45] \\ 0.92 \hspace{0.1cm} [0.50; 1.70] \\ -3.07 \hspace{0.1cm} [1.21; 7.78] \\ 1.30 \hspace{0.1cm} [0.92; 1.39] \\ 1.09 \hspace{0.1cm} [0.92; 1.19] \\ 0.90; 1.31 \hspace{0.1cm}] \end{array}$
Pregnancy outcomes De-Regil 2015+Blencowe 2010 De-Regil 2015+Feng 2015 Hofmeyr 2018+Newberry 2014 Keats 2019+Wolf 2017 Keats 2019+Wolf 2017 Palacios 2019+Hu 2018 Palacios 2019+Tuas 2020 Palacios 2019+Tuas 2019 Tieu 2017+Chia 2019 Tieu 2017+Chia 2019 Tieu 2017+Chia 2019 Tieu 2017+Chia 2019 Tieu 2017+Mijatovic-Vukas 2018 Random effects model Prediction interval Heterogeneity: $l^2 = 64\%$, $r^2 = 0.0806$, $p < 0.020$	Folate Folate Calcium Micronutrients Micronutrients Vitamin D Vitamin D Vitamin D Healthy diet Healthy diet	Supplements Supplements Supplements Supplements Supplements Supplements Supplements Intake Intake	Folate Folate Calcium Multivitamins Multivitamins Multivitamins Vitamin D Vitamin D Vitamin D Healthy diet Healthy diet Mediterranean diet	Supplements Supplements Supplements Supplements Status Status Status Status Intake Intake Intake	Neural tube defect Congenital cardiovascular anomalies Pre-eclampsia Preterm birth Small gestational age Gestational diabetes Preterm birth Pre-eclampsia Preterm birth Small gestational age Gestational diabetes	Neural tube defect Congenital heart defect Pre-ecalampsia Preterm birth Low birth weight Small gestational age Gestational diabetes Preterm birth Pre-ecalampsia Preterm birth Small gestational age Gestational diabetes		$\begin{array}{c} 0.84 & [0.39; 1.81] \\ 0.95 & [0.36; 2.51] \\ 0.46 & [0.30; 0.71] \\ 1.13 & [0.92; 1.39] \\ 1.11 & [0.63; 1.97] \\ 1.19 & [0.96; 1.46] \\ 0.62 & [0.37; 1.04] \\ 1.58 & [0.12; 2.24] \\ 1.52 & [0.97; 2.38] \\ 0.43 & [0.45; 1.66] \\ 0.44 & [0.44; 1.66] \\ 0.46 & [1.42] \\ 0.49 & [1.92] \end{array}$
Diabetes Hemmingsen 2017+Schwingshackl 2018 Random effects model Prediction interval Heterogeneity: not applicable	Healthy diet	Intake	Diet quality	Intake	Type 2 diabetes	Type 2 diabetes	+ ¢	0.79 [0.63; 0.99] 0.79 [0.63; 0.99]
Eye disease Mathew 2012+Jiang 2019 Mathew 2012+Jiang 2019 Mathew 2012+Jiang 2019 Random effects model Prediction interval Heterogeneity: $l^2 = 36\%$, $r^2 = 0.0031$, $p = 0.2$	β-carotene Vitamin E Vitamin C	Supplements Supplements Supplements	β-carotene Vitamin E Vitamin C	Intake Intake Intake	Cataract Cataract Cataract	Cataract Cataract Cataract	*	1.10 [0.97; 1.24] 1.08 [0.95; 1.23] 1.27 [1.10; 1.48] 1.14 [1.03; 1.26] [0.44; 2.96]
Neurodegenerative disease Rutjes 2018+DoedS 2013 Rutjes 2018+Goodwill 2017 Random effects model Prediction interval Heterogeneity: $I^2 = 0\%$, $r^2 = 0$, $p = 0.52$	B-vitamins Vitamin D3	Supplements Supplements	Vitamin B12 Vitamin D	Intake Status	Dementia/MCI Dementia	Dementia Dementia/MCI	0.2 0.5 1 2 5 in RCTs < RR in CSs RR in RCTs >	1.02 [0.70; 1.49] 1.24 [0.79; 1.95] 1.11 [0.83; 1.48]

Supplementary Figure 22: Forest plot of comparisons between bodies of evidence from randomized controlled trials vs. cohort studies for dichotomous outcomes as pooled ratio of risk ratios (RRR) including only CSs with a RR <1 stratified by outcome.

Reference pair	Intervention in RCTs	Type of intake in RCTs	Exposure in CSs	Type of exposure in CSs	Outcome in RCTs	Outcome in CSs	Ratio of Risk Ratios	RRR 95%-CI
Similar but not identical Hofmeyr 2018-Newberry 2014 Hooper 2012-Zhu 2019 Hooper 2015b-de Souza 2015 Random effects model Prediction interval Hoterogeneity: $I^2 = 63\%$, $\tau^2 = 0.0275$, $p = 0.0275$	Calcium Low-fat/modified fat Low saturated fat Low saturated fat	Supplements Intake + Supplements Intake Intake	Calcium Low-fat Low saturated fat Low saturated fat	Intake Intake Intake Intake	High blood pressure Combined cardiovascular events All-cause mortality Cardiovascular mortality	High blood pressure Cardiovascular disease All-cause mortality Cardiovascular mortality	***	0.58 [0.40; 0.84] 0.83 [0.74; 0.94] 0.96 [0.85; 1.08] 0.92 [0.74; 1.15] 0.84 [0.70; 1.02] [0.37; 1.93]
Broadly similar Abdelhamid 2018a+Schlesinger 2019 Jn 2012-Jin 2012 Jn 2012-Jin 2012 Random effects model Prediction Interval Hotorogeneity: $P^2 = 0\%$, $c^2 = 0$, $p = 0.41$	Omega-3 Total flavonoids Isoflavonoes	Intake + Supplements Intake Intake	Fish Total flavonoids Isoflavonoes	Intake Intake Intake	Body weight Colorectal adenoma Colorectal adenoma	Weight gain Colorectal cancer Colorectal cancer RR in RCT	0.5 1 2 s < RR in CSs RR in RCTs >	0.97 [0.70; 1.35] 1.09 [0.83; 1.43] 0.84 [0.65; 1.09] 0.96 [0.81; 1.12] [0.33; 2.74]

Supplementary Figure 23: Forest plot of comparisons between bodies of evidence from randomized controlled trials vs. cohort studies for dichotomous outcomes as pooled ratio of risk ratios (RRR) including only CSs with a RR \geq 1 stratified by PI/ECO similarity degree.

Reference pair	Intervention in RCT:	s Type of intake in RCTs	Exposure in CSs	Type of exposure in CSs	Outcome in RCTs	Outcome in CSs	Ratio of Risk Ratios	RRR 95%-CI
More or less identical Hooper 2015b+de Souza 2015 Hooper 2015b+de Souza 2015 Random effects model Prediction interval Heterogeneity: $J^2 = 0\%$, $\tau^2 = 0$, $p = 0.75$	Low saturated fat Low saturated fat	Intake Intake	Low saturated fat Low saturated fat			All-cause mortality Cardiovascular mortality	+++++++++++++++++++++++++++++++++++++++	0.96 [0.85; 1.08] 0.92 [0.74; 1.15] 0.95 [0.86; 1.06]
Similar but not identical Abdelhamid 2018a-Schlesinger 2019 Hofmeyr 2018-Newberry 2014 Hooper 2012+Zhu 2019 Jin 2012-Jin 2012 Jin 2012-Jin 2012 Random effects model Prediction interval Haterogeneity: $P^2 = 51\%$, $c^2 = 0.0273$, p	Calcium Low-fat/modified fat Total flavonoids Isoflavonoes	Intake + Supplements Supplements Intake + Supplements Intake Intake	Fish Calcium Low-fat Total flavonoids Isoflavonoes	Intake Intake Intake Intake Intake		Colorectal cancer Colorectal cancer		0.97 [0.70; 1.35] 0.58 [0.40; 0.84] 0.83 [0.74; 0.94] 1.09 [0.83; 1.43] 0.84 [0.65; 1.09] 0.86 [0.71; 1.03] [0.47; 1.57] RR in CSs

Supplementary Figure 24: Forest plot of comparisons between bodies of evidence from randomized controlled trials vs. cohort studies for dichotomous outcomes as pooled ratio of risk ratios (RRR) including only CSs with a RR \geq 1 stratified by intervention/exposure similarity degree.

Reference pair	Intervention in RCTs	Type of intake in RCTs	Exposure in CSs	Type of exposure in CSs	Outcome in RCTs	Outcome in CSs	Ratio of Risk Ratios	RRR 95%-CI
	Omega-3 Low saturated fat Low saturated fat	Intake + Supplements Intake Intake	Fish Low saturated fat Low saturated fat	Intake Intake Intake	Body weight All-cause mortality Cardiovascular mortality	Weight gain All-cause mortality Cardiovascular mortality	++	0.97 [0.70; 1.35] 0.96 [0.85; 1.08] 0.92 [0.74; 1.15] 0.95 [0.86; 1.05] [0.50; 1.82]
Micronutrients Hofmeyr 2018-Newberry 2014 Random effects model Prediction interval Heterogeneity: not applicable	Calcium	Supplements	Calcium	Intake	High blood pressure	High blood pressure		0.58 [0.40; 0.84] 0.58 [0.40; 0.84]
Dietary approach Hooper 2012+Zhu 2019 Random effects model Prediction interval Heterogeneity: not applicable	Low-fat/modified fat	Intake + Supplements	Low-fat	Intake	Combined cardiovascular events	Cardiovascular disease	*	0.83 [0.74; 0.94] 0.83 [0.74; 0.94]
	Total flavonoids Isoflavonoes 0.18	Intake Intake	Total flavonoids Isoflavonoes	Intake Intake	Colorectal adenoma Colorectal adenoma	Colorectal cancer Colorectal cancer	*	1.09 [0.83; 1.43] 0.84 [0.65; 1.09] 0.95 [0.74; 1.23]
							0.5 1 2	
						RR in RCT	s < RR in CSs RR in RCTs > I	RR in CSs

Supplementary Figure 25: Forest plot of comparisons between bodies of evidence from randomized controlled trials vs. cohort studies for dichotomous outcomes as pooled ratio of risk ratios (RRR) including only CSs with a RR \geq 1 stratified by type of dietary intervention/exposure.

Reference pair	Intervention in RCTs	Type of intake in RCTs	Exposure in CSs	Type of exposure in CSs	Outcome in RCTs	Outcome in CSs	Ratio of Risk Ratios	RRR	95%-CI
Intake vs. Intake Hooper 2015b-tde Souza 2015 Hooper 2015b-tde Souza 2015 Jin 2012+Jin 2012 Jin 2012+Jin 2012 Random effects model Prediction interval Heterogeneity: $J^2 = 0\%$, $\tau^2 = 0$, $p = 0.60$	Low saturated fat Low saturated fat Total flavonoids Isoflavonoes	Intake Intake Intake Intake		Intake Intake Intake Intake	All-cause mortality Cardiovascular mortality Colorectal adenoma Colorectal adenoma	All-cause mortality Cardiovascular mortality Colorectal cancer Colorectal cancer		0.92 1.09 0.84 0.95	[0.85; 1.08] [0.74; 1.15] [0.83; 1.43] [0.65; 1.09] [0.87; 1.04] [0.78; 1.16]
Intake + Supplements vs. Intake Abdelhamid 2018a+Schlesinger 2019 Hooper 2012+Zhu 2019 Random effects model Prediction interval Heterogeneity: $J^2 = 0\%$, $\tau^2 = 0$, $p = 0.39$	Omega-3 Low-fat/modified fat	Intake + Supplements Intake + Supplements	Fish Low-fat	Intake Intake	Body weight Combined cardiovascular events	Weight gain Cardiovascular disease		0.83	[0.70; 1.35] [0.74; 0.94] 0.76; 0.95]
Supplements vs. Intake Hofmeyr 2018+Newberry 2014 Random effects model Prediction interval Heterogeneity: not applicable	Calcium	Supplements	Calcium	Intake	High blood pressure	High blood pressure			[0.40; 0.84] 0.40; 0.84]
							RR in CSs RR in RCTs > F	≀R in C	Ss

Supplementary Figure 26: Forest plot of comparisons between bodies of evidence from randomized controlled trials vs. cohort studies for dichotomous outcomes as pooled ratio of risk ratios (RRR) including only CSs with a RR \geq 1 stratified by type of intake/exposure.

Reference pair	Intervention in RCTs	Type of intake in RCTs	Exposure in CSs	Type of exposure in CSs	Outcome in RCTs	Outcome in CSs	Ratio of Risk Ratios	RRR 95%-CI
Intermediate disease markers Abdelhamid 2018a+Schlesinger 2019 Random effects model Prediction interval Heterogeneity: not applicable	Omega-3	Intake + Supplements	Fish	Intake	Body weight	Weight gain		0.97 [0.70; 1.35] 0.97 [0.70; 1.35]
Pregnancy outcomes Hofmeyr 2018-Newberry 2014 Random effects model Prediction interval Heterogeneity: not applicable	Calcium	Supplements	Calcium	Intake	High blood pressure	High blood pressure		0.58 [0.40; 0.84] 0.58 [0.40; 0.84]
Cardiovascular disease Hooper 2012+Zhu 2019 Hooper 2015b+de Souza 2015 Random effects model Prediction interval Heterogeneity: $J^2 = 0\%$, $t^2 = 0$, $p = 0.44$	Low-fat/modified fat Low saturated fat	Intake + Supplements Intake	Low-fat Low saturated fat	Intake Intake	Combined cardiovascular events Cardiovascular mortality	Cardiovascular disease Cardiovascular mortality	**	0.83 [0.74; 0.94] 0.92 [0.74; 1.15] 0.85 [0.77; 0.95]
Overall mortality Hooper 2015b+de Souza 2015 Random effects model Prediction interval Heterogeneity: not applicable	Low saturated fat	Intake	Low saturated fat	Intake	All-cause mortality	All-cause mortality	*0	0.96 [0.85; 1.08] 0.96 [0.85; 1.08]
Cancer Jin 2012+Jin 2012 Jin 2012+Jin 2012 Random effects model Prediction interval Heterogeneity: $l^2 = 44\%$, $\tau^2 = 0.0142$, $p =$	Total flavonoids Isoflavonoes	Intake Intake	Total flavonoids Isoflavonoes	Intake Intake	Colorectal adenoma Colorectal adenoma	Colorectal cancer Colorectal cancer		1.09 [0.83; 1.43] 0.84 [0.65; 1.09] 0.95 [0.74; 1.23]
						RR in RCT	s < RR in CSs RR in RCTs > I	RR in CSs

Supplementary Figure 27: Forest plot of comparisons between bodies of evidence from randomized controlled trials vs. cohort studies for dichotomous outcomes as pooled ratio of risk ratios (RRR) including only CSs with a RR \geq 1 stratified by outcome.

Reference pair	Intervention in RCTs	Type of intake in RCTs	Exposure in CSs	Type of exposure in CSs	Outcome in RCTs	Outcome in CSs F	Ratio of Risk Ratios	RRR	95%-CI V	Veight
Jin 2012+Jin 2012 Jin 2012+Jin 2012 Jin 2012+Jin 2012 Vinceti 2018+Vinceti 2018 Vinceti 2018+Vinceti 2018 Vinceti 2018+Vinceti 2018 Random effects model Prediction interval Heterogeneity: $I^2 = 20\%$, r^2	s Selenium Selenium	Intake Intake Supplements Supplements Supplements	Total flavonoids Isoflavonoes Flavonols Selenium Selenium Selenium	Intake Intake Status Intake Supplements	Colorectal adenoma Colorectal adenoma Colorectal adenoma Cancer Cancer mortality Colorectal cancer	Colorectal cancer -	0.75 1 1.5	0.84 [0.6 0.99 [0.8 1.32 [1.0 0.87 [0.5 0.92 [0.5 1.02 [0.8	00; 1.73] 52; 1.45]	21.4% 29.1% 19.3% 6.5% 4.6%
						RR in RCTs < R	R in CSs RR in RCTs > F	RR in CSs		

Supplementary Figure 28: Forest plot of comparisons: Sensitivity analysis (including only Cochrane Reviews) for bodies of evidence from randomized controlled trials vs. cohort studies for dichotomous outcomes as pooled ratio of risk ratios (RRR).

Supplementary References

- Al-Khudairy L, Flowers N, Wheelhouse R, et al. Vitamin C supplementation for the primary prevention of cardiovascular disease. *Cochrane Database Syst Rev* 2017;3:Cd011114. doi: 10.1002/14651858.CD011114.pub2 [published Online First: 2017/03/17]
- Sesso HD, Buring JE, Christen WG, et al. Vitamins E and C in the prevention of cardiovascular disease in men: the Physicians' Health Study II randomized controlled trial. *JAMA* 2008;300(18):2123-33. doi: 10.1001/jama.2008.600 [published Online First: 2008/11/11]
- Rees K, Takeda A, Martin N, et al. Mediterranean-style diet for the primary and secondary prevention of cardiovascular disease. *Cochrane Database Syst Rev* 2019;3:Cd009825. doi: 10.1002/14651858.CD009825.pub3 [published Online First: 2019/03/14]
- 4. Estruch R, Ros E, Salas-Salvadó J, et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. *New England Journal of Medicine* 2018;378(25):e34. doi: 10.1056/NEJMoa1800389
- 5. Hu L, Zhang Y, Wang X, et al. Maternal Vitamin D Status and Risk of Gestational Diabetes: a Meta-Analysis. *Cell Physiol Biochem* 2018;45(1):291-300. doi: 10.1159/000486810 [published Online First: 2018/02/07]
- 6. Palacios C, Trak-Fellermeier MA, Martinez RX, et al. Regimens of vitamin D supplementation for women during pregnancy. *Cochrane Database Syst Rev* 2019;10:Cd013446. doi: 10.1002/14651858.Cd013446 [published Online First: 2019/10/04]
- 7. Tous M, Villalobos M, Iglesias L, et al. Vitamin D status during pregnancy and offspring outcomes: a systematic review and meta-analysis of observational studies. *Eur J Clin Nutr* 2020;74(1):36-53. doi: 10.1038/s41430-018-0373-x [published Online First: 2019/01/27]
- 8. Yuan Y, Tai W, Xu P, et al. Association of maternal serum 25-hydroxyvitamin D concentrations with risk of preeclampsia: a nested case-control study and meta-analysis. *J Matern Fetal Neonatal Med* 2019:1-10. doi: 10.1080/14767058.2019.1640675 [published Online First: 2019/07/10]
- Goodwill AM, Szoeke C. A Systematic Review and Meta-Analysis of The Effect of Low Vitamin D on Cognition. J Am Geriatr Soc 2017;65(10):2161-68. doi: 10.1111/jgs.15012 [published Online First: 2017/08/02]
- Rutjes AW, Denton DA, Di Nisio M, et al. Vitamin and mineral supplementation for maintaining cognitive function in cognitively healthy people in mid and late life. *Cochrane Database Syst Rev* 2018;12:Cd011906. doi: 10.1002/14651858.CD011906.pub2 [published Online First: 2018/12/18]
- Chia AR, Chen LW, Lai JS, et al. Maternal Dietary Patterns and Birth Outcomes: A Systematic Review and Meta-Analysis. *Adv Nutr* 2019;10(4):685-95. doi: 10.1093/advances/nmy123 [published Online First: 2019/05/02]

- Tieu J, Shepherd E, Middleton P, et al. Dietary advice interventions in pregnancy for preventing gestational diabetes mellitus. *Cochrane Database Syst Rev* 2017;1:Cd006674. doi: 10.1002/14651858.CD006674.pub3 [published Online First: 2017/01/04]
- Mijatovic-Vukas J, Capling L, Cheng S, et al. Associations of Diet and Physical Activity with Risk for Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis. *Nutrients* 2018;10(6) doi: 10.3390/nu10060698 [published Online First: 2018/06/01]
- Vinceti M, Filippini T, Del Giovane C, et al. Selenium for preventing cancer. *Cochrane Database* Syst Rev 2018;1:Cd005195. doi: 10.1002/14651858.CD005195.pub4 [published Online First: 2018/01/30]
- 15. Abdelhamid AS, Brown TJ, Brainard JS, et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. *Cochrane Database Syst Rev* 2018a;11:Cd003177. doi: 10.1002/14651858.CD003177.pub4 [published Online First: 2018/12/07]
- 16. Schlesinger S, Neuenschwander M, Schwedhelm C, et al. Food Groups and Risk of Overweight, Obesity, and Weight Gain: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Adv Nutr 2019;10(2):205-18. doi: 10.1093/advances/nmy092 [published Online First: 2019/02/26]
- Schulz M, Kroke A, Liese AD, et al. Food groups as predictors for short-term weight changes in men and women of the EPIC-Potsdam cohort. *J Nutr* 2002;132(6):1335-40. doi: 10.1093/jn/132.6.1335 [published Online First: 2002/06/04]
- Chowdhury R, Warnakula S, Kunutsor S, et al. Association of dietary, circulating, and supplement fatty acids with coronary risk: a systematic review and meta-analysis. *Ann Intern Med* 2014a;160(6):398-406. doi: 10.7326/m13-1788 [published Online First: 2014/04/12]
- Pan A, Chen M, Chowdhury R, et al. alpha-Linolenic acid and risk of cardiovascular disease: a systematic review and meta-analysis. *Am J Clin Nutr* 2012;96(6):1262-73. doi: 10.3945/ajcn.112.044040 [published Online First: 2012/10/19]
- 20. Wei J, Hou R, Xi Y, et al. The association and dose-response relationship between dietary intake of alpha-linolenic acid and risk of CHD: a systematic review and meta-analysis of cohort studies. *Br J Nutr* 2018;119(1):83-89. doi: 10.1017/s0007114517003294 [published Online First: 2018/01/23]
- 21. Abdelhamid AS, Martin N, Bridges C, et al. Polyunsaturated fatty acids for the primary and secondary prevention of cardiovascular disease. *Cochrane Database Syst Rev* 2018b;11:Cd012345. doi: 10.1002/14651858.CD012345.pub3 [published Online First: 2018/11/30]
- 22. Zhu Y, Bo Y, Liu Y. Dietary total fat, fatty acids intake, and risk of cardiovascular disease: a dose-response meta-analysis of cohort studies. *Lipids Health Dis* 2019;18(1):91. doi: 10.1186/s12944-019-1035-2 [published Online First: 2019/04/08]
- 23. Adler AJ, Taylor F, Martin N, et al. Reduced dietary salt for the prevention of cardiovascular disease. *Cochrane Database Syst Rev* 2014(12):Cd009217. doi: 10.1002/14651858.CD009217.pub3 [published Online First: 2014/12/19]

- 24. Aburto NJ, Ziolkovska A, Hooper L, et al. Effect of lower sodium intake on health: systematic review and meta-analyses. *Bmj* 2013;346:f1326. doi: 10.1136/bmj.f1326 [published Online First: 2013/04/06]
- 25. Leyvraz M, Chatelan A, da Costa BR, et al. Sodium intake and blood pressure in children and adolescents: a systematic review and meta-analysis of experimental and observational studies. *Int J Epidemiol* 2018;47(6):1796-810. doi: 10.1093/ije/dyy121 [published Online First: 2018/06/30]
- 26. Aune D, Keum N, Giovannucci E, et al. Dietary intake and blood concentrations of antioxidants and the risk of cardiovascular disease, total cancer, and all-cause mortality: a systematic review and dose-response meta-analysis of prospective studies. *Am J Clin Nutr* 2018;108(5):1069-91. doi: 10.1093/ajcn/nqy097 [published Online First: 2018/11/27]
- 27. Avenell A, Mak JC, O'Connell D. Vitamin D and vitamin D analogues for preventing fractures in post-menopausal women and older men. *Cochrane Database Syst Rev* 2014(4):Cd000227. doi: 10.1002/14651858.CD000227.pub4 [published Online First: 2014/04/15]
- 28. Feng Y, Cheng G, Wang H, et al. The associations between serum 25-hydroxyvitamin D level and the risk of total fracture and hip fracture. *Osteoporos Int* 2017;28(5):1641-52. doi: 10.1007/s00198-017-3955-x [published Online First: 2017/02/22]
- Bjelakovic G, Gluud LL, Nikolova D, et al. Vitamin D supplementation for prevention of cancer in adults. *Cochrane Database Syst Rev* 2014b(6):Cd007469. doi: 10.1002/14651858.CD007469.pub2 [published Online First: 2014/06/24]
- 30. Hossain S, Beydoun MA, Beydoun HA, et al. Vitamin D and breast cancer: A systematic review and meta-analysis of observational studies. *Clin Nutr ESPEN* 2019;30:170-84. doi: 10.1016/j.clnesp.2018.12.085 [published Online First: 2019/03/25]
- 31. Zhang L, Wang S, Che X, et al. Vitamin D and lung cancer risk: a comprehensive review and meta-analysis. *Cell Physiol Biochem* 2015;36(1):299-305. doi: 10.1159/000374072 [published Online First: 2015/05/15]
- 32. Hofmeyr GJ, Lawrie TA, Atallah AN, et al. Calcium supplementation during pregnancy for preventing hypertensive disorders and related problems. *Cochrane Database Syst Rev* 2018;10:Cd001059. doi: 10.1002/14651858.CD001059.pub5 [published Online First: 2018/10/03]
- 33. Newberry SJ, Chung M, Shekelle PG, et al. Vitamin D and Calcium: A Systematic Review of Health Outcomes (Update). *Evid Rep Technol Assess (Full Rep)* 2014(217):1-929. doi: 10.23970/ahrqepcerta217 [published Online First: 2014/09/01]
- 34. Hooper L, Summerbell CD, Thompson R, et al. Reduced or modified dietary fat for preventing cardiovascular disease. *Cochrane Database Syst Rev* 2012(5):Cd002137. doi: 10.1002/14651858.CD002137.pub3 [published Online First: 2012/05/18]
- 35. Hooper L, Martin N, Abdelhamid A, et al. Reduction in saturated fat intake for cardiovascular disease. *Cochrane Database Syst Rev* 2015b(6):Cd011737. doi: 10.1002/14651858.Cd011737 [published Online First: 2015/06/13]

- 36. de Souza RJ, Mente A, Maroleanu A, et al. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. *Bmj* 2015;351:h3978. doi: 10.1136/bmj.h3978 [published Online First: 2015/08/14]
- 37. Hooper L, Al-Khudairy L, Abdelhamid AS, et al. Omega-6 fats for the primary and secondary prevention of cardiovascular disease. *Cochrane Database Syst Rev* 2018;11:Cd011094. doi: 10.1002/14651858.CD011094.pub4 [published Online First: 2018/11/30]
- Keats EC, Haider BA, Tam E, et al. Multiple-micronutrient supplementation for women during pregnancy. *Cochrane Database Syst Rev* 2019;3:Cd004905. doi: 10.1002/14651858.CD004905.pub6 [published Online First: 2019/03/16]
- 39. Wolf HT, Hegaard HK, Huusom LD, et al. Multivitamin use and adverse birth outcomes in highincome countries: a systematic review and meta-analysis. *Am J Obstet Gynecol* 2017;217(4):404.e1-04.e30. doi: 10.1016/j.ajog.2017.03.029 [published Online First: 2017/04/06]
- 40. Rees K, Dyakova M, Wilson N, et al. Dietary advice for reducing cardiovascular risk. *Cochrane Database Syst Rev* 2013a(12):Cd002128. doi: 10.1002/14651858.CD002128.pub5 [published Online First: 2013/12/10]
- 41. Kastorini CM, Milionis HJ, Esposito K, et al. The effect of Mediterranean diet on metabolic syndrome and its components: a meta-analysis of 50 studies and 534,906 individuals. *J Am Coll Cardiol* 2011;57(11):1299-313. doi: 10.1016/j.jacc.2010.09.073 [published Online First: 2011/03/12]
- Rees K, Hartley L, Day C, et al. Selenium supplementation for the primary prevention of cardiovascular disease. *Cochrane Database Syst Rev* 2013b(1):Cd009671. doi: 10.1002/14651858.CD009671.pub2 [published Online First: 2013/02/27]
- 43. Zhang X, Liu C, Guo J, et al. Selenium status and cardiovascular diseases: meta-analysis of prospective observational studies and randomized controlled trials. *Eur J Clin Nutr* 2016a;70(2):162-9. doi: 10.1038/ejcn.2015.78 [published Online First: 2015/05/21]
- 44. Rosato V, Temple NJ, La Vecchia C, et al. Mediterranean diet and cardiovascular disease: a systematic review and meta-analysis of observational studies. *Eur J Nutr* 2019;58(1):173-91. doi: 10.1007/s00394-017-1582-0 [published Online First: 2017/11/28]
- 45. Yao Y, Suo T, Andersson R, et al. Dietary fibre for the prevention of recurrent colorectal adenomas and carcinomas. *Cochrane Database Syst Rev* 2017;1:Cd003430. doi: 10.1002/14651858.CD003430.pub2 [published Online First: 2017/01/09]
- 46. Ben Q, Sun Y, Chai R, et al. Dietary fiber intake reduces risk for colorectal adenoma: a metaanalysis. *Gastroenterology* 2014;146(3):689-99.e6. doi: 10.1053/j.gastro.2013.11.003 [published Online First: 2013/11/13]
- 47. Martí-Carvajal AJ, Solà I, Lathyris D, et al. Homocysteine-lowering interventions for preventing cardiovascular events. *Cochrane Database of Systematic Reviews* 2017(8) doi: 10.1002/14651858.CD006612.pub5

- 48. Balogun OO, da Silva Lopes K, Ota E, et al. Vitamin supplementation for preventing miscarriage. *Cochrane Database Syst Rev* 2016;2016(5):Cd004073. doi: 10.1002/14651858.CD004073.pub4 [published Online First: 2016/05/07]
- 49. Buppasiri P, Lumbiganon P, Thinkhamrop J, et al. Calcium supplementation (other than for preventing or treating hypertension) for improving pregnancy and infant outcomes. *Cochrane Database Syst Rev* 2015(2):Cd007079. doi: 10.1002/14651858.CD007079.pub3 [published Online First: 2015/04/30]
- 50. Harding KB, Peña-Rosas JP, Webster AC, et al. Iodine supplementation for women during the preconception, pregnancy and postpartum period. *Cochrane Database Syst Rev* 2017;3(3):Cd011761. doi: 10.1002/14651858.CD011761.pub2 [published Online First: 2017/03/06]
- 51. Hemilä H, Louhiala P. Vitamin C for preventing and treating pneumonia. *Cochrane Database Syst Rev* 2013(8):Cd005532. doi: 10.1002/14651858.CD005532.pub3 [published Online First: 2013/08/09]
- 52. Imdad A, Mayo-Wilson E, Herzer K, et al. Vitamin A supplementation for preventing morbidity and mortality in children from six months to five years of age. *Cochrane Database Syst Rev* 2017;3(3):Cd008524. doi: 10.1002/14651858.CD008524.pub3 [published Online First: 2017/03/11]
- 53. Imdad A, Ahmed Z, Bhutta ZA. Vitamin A supplementation for the prevention of morbidity and mortality in infants one to six months of age. *Cochrane Database Syst Rev* 2016;9(9):Cd007480. doi: 10.1002/14651858.CD007480.pub3 [published Online First: 2016/09/30]
- 54. Lassi ZS, Moin A, Bhutta ZA. Zinc supplementation for the prevention of pneumonia in children aged 2 months to 59 months. *Cochrane Database Syst Rev* 2016;12(12):Cd005978. doi: 10.1002/14651858.CD005978.pub3 [published Online First: 2016/12/05]
- 55. Mayo-Wilson E, Junior JA, Imdad A, et al. Zinc supplementation for preventing mortality, morbidity, and growth failure in children aged 6 months to 12 years of age. *Cochrane Database Syst Rev* 2014(5):Cd009384. doi: 10.1002/14651858.CD009384.pub2 [published Online First: 2014/05/16]
- 56. Oliveira JM, Allert R, East CE. Vitamin A supplementation for postpartum women. *Cochrane Database Syst Rev* 2016;3:Cd005944. doi: 10.1002/14651858.CD005944.pub3 [published Online First: 2016/03/26]
- 57. Salam RA, Zuberi NF, Bhutta ZA. Pyridoxine (vitamin B6) supplementation during pregnancy or labour for maternal and neonatal outcomes. *Cochrane Database Syst Rev* 2015(6):Cd000179. doi: 10.1002/14651858.CD000179.pub3 [published Online First: 2015/06/04]
- 58. Schwenger EM, Tejani AM, Loewen PS. Probiotics for preventing urinary tract infections in adults and children. *Cochrane Database Syst Rev* 2015(12):Cd008772. doi: 10.1002/14651858.CD008772.pub2 [published Online First: 2015/12/24]
- 59. Suchdev PS, Peña-Rosas JP, De-Regil LM. Multiple micronutrient powders for home (point-ofuse) fortification of foods in pregnant women. *Cochrane Database Syst Rev*

2015(6):Cd011158. doi: 10.1002/14651858.CD011158.pub2 [published Online First: 2015/06/21]

- 60. Evans JR, Lawrenson JG. Antioxidant vitamin and mineral supplements for slowing the progression of age-related macular degeneration. *Cochrane Database of Systematic Reviews* 2017(7) doi: 10.1002/14651858.CD000254.pub4
- Barrett HL, Dekker Nitert M, Conwell LS, et al. Probiotics for preventing gestational diabetes. *Cochrane Database Syst Rev* 2014;2014(2):Cd009951. doi: 10.1002/14651858.CD009951.pub2 [published Online First: 2014/02/28]
- 62. Chen N, Yang M, Zhou M, et al. L-carnitine for cognitive enhancement in people without cognitive impairment. *Cochrane Database Syst Rev* 2017;3(3):Cd009374. doi: 10.1002/14651858.CD009374.pub3 [published Online First: 2017/03/30]
- 63. Crawford TJ, Crowther CA, Alsweiler J, et al. Antenatal dietary supplementation with myoinositol in women during pregnancy for preventing gestational diabetes. *Cochrane Database Syst Rev* 2015;2015(12):Cd011507. doi: 10.1002/14651858.CD011507.pub2 [published Online First: 2015/12/19]
- 64. Evans JR, Lawrenson JG. Antioxidant vitamin and mineral supplements for preventing age-related macular degeneration. *Cochrane Database Syst Rev* 2017;7(7):Cd000253. doi: 10.1002/14651858.CD000253.pub4 [published Online First: 2017/08/02]
- 65. Graudal NA, Hubeck-Graudal T, Jurgens G. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. *Cochrane Database Syst Rev* 2017;4(4):Cd004022. doi: 10.1002/14651858.CD004022.pub4 [published Online First: 2017/04/10]
- 66. Hartley L, Clar C, Ghannam O, et al. Vitamin K for the primary prevention of cardiovascular disease. *Cochrane Database Syst Rev* 2015(9):Cd011148. doi: 10.1002/14651858.CD011148.pub2 [published Online First: 2015/09/22]
- 67. He FJ, Li J, Macgregor GA. Effect of longer-term modest salt reduction on blood pressure. *Cochrane Database Syst Rev* 2013(4):Cd004937. doi: 10.1002/14651858.CD004937.pub2 [published Online First: 2013/05/02]
- 68. Lawrenson JG, Evans JR. Omega 3 fatty acids for preventing or slowing the progression of agerelated macular degeneration. *Cochrane Database Syst Rev* 2015;2015(4):Cd010015. doi: 10.1002/14651858.CD010015.pub3 [published Online First: 2015/04/10]
- 69. Low MS, Speedy J, Styles CE, et al. Daily iron supplementation for improving anaemia, iron status and health in menstruating women. *Cochrane Database Syst Rev* 2016;4:Cd009747. doi: 10.1002/14651858.CD009747.pub2 [published Online First: 2016/04/19]
- 70. Makrides M, Crosby DD, Bain E, et al. Magnesium supplementation in pregnancy. *Cochrane Database Syst Rev* 2014;2014(4):Cd000937. doi: 10.1002/14651858.CD000937.pub2 [published Online First: 2014/04/04]

- 71. Martin N, Germanò R, Hartley L, et al. Nut consumption for the primary prevention of cardiovascular disease. *Cochrane Database Syst Rev* 2015(9):Cd011583. doi: 10.1002/14651858.CD011583.pub2 [published Online First: 2015/09/29]
- 72. Middleton P, Gomersall JC, Gould JF, et al. Omega-3 fatty acid addition during pregnancy. *Cochrane Database Syst Rev* 2018;11(11):Cd003402. doi: 10.1002/14651858.CD003402.pub3 [published Online First: 2018/11/28]
- 73. Ota E, Mori R, Middleton P, et al. Zinc supplementation for improving pregnancy and infant outcome. *Cochrane Database Syst Rev* 2015;2015(2):Cd000230. doi: 10.1002/14651858.CD000230.pub5 [published Online First: 2015/05/01]
- 74. Peña-Rosas JP, De-Regil LM, Garcia-Casal MN, et al. Daily oral iron supplementation during pregnancy. *Cochrane Database Syst Rev* 2015(7):Cd004736. doi: 10.1002/14651858.CD004736.pub5 [published Online First: 2015/07/23]
- 75. Ried K, Sullivan TR, Fakler P, et al. Effect of cocoa on blood pressure. *Cochrane Database Syst Rev* 2012(8):Cd008893. doi: 10.1002/14651858.CD008893.pub2 [published Online First: 2012/08/17]
- 76. Rumbold A, Ota E, Nagata C, et al. Vitamin C supplementation in pregnancy. *Cochrane Database Syst Rev* 2015(9):Cd004072. doi: 10.1002/14651858.CD004072.pub3 [published Online First: 2015/09/30]
- 77. Shepherd E, Gomersall JC, Tieu J, et al. Combined diet and exercise interventions for preventing gestational diabetes mellitus. *Cochrane Database Syst Rev* 2017;11(11):Cd010443. doi: 10.1002/14651858.CD010443.pub3 [published Online First: 2017/11/13]
- 78. Muktabhant B, Lawrie TA, Lumbiganon P, et al. Diet or exercise, or both, for preventing excessive weight gain in pregnancy. *Cochrane Database Syst Rev* 2015(6):Cd007145. doi: 10.1002/14651858.CD007145.pub3 [published Online First: 2015/06/13]
- 79. Novaković R, Geelen A, Ristić-Medić D, et al. Systematic Review of Observational Studies with Dose-Response Meta-Analysis between Folate Intake and Status Biomarkers in Adults and the Elderly. Ann Nutr Metab 2018;73(1):30-43. doi: 10.1159/000490003 [published Online First: 2018/06/08]
- 80. Pranger IG, Joustra ML, Corpeleijn E, et al. Fatty acids as biomarkers of total dairy and dairy fat intakes: a systematic review and meta-analysis. *Nutr Rev* 2019;77(1):46-63. doi: 10.1093/nutrit/nuy048 [published Online First: 2018/10/12]
- 81. Lin J, Zhang F, Lei Y. Dietary intake and urinary level of cadmium and breast cancer risk: A metaanalysis. *Cancer Epidemiol* 2016;42:101-7. doi: 10.1016/j.canep.2016.04.002 [published Online First: 2016/04/18]
- 82. Zgaga L, O'Sullivan F, Cantwell MM, et al. Markers of Vitamin D Exposure and Esophageal Cancer Risk: A Systematic Review and Meta-analysis. *Cancer Epidemiol Biomarkers Prev* 2016;25(6):877-86. doi: 10.1158/1055-9965.Epi-15-1162 [published Online First: 2016/04/01]

- 83. Zhou Y, Wang T, Zhai S, et al. Linoleic acid and breast cancer risk: a meta-analysis. *Public Health Nutr* 2016;19(8):1457-63. doi: 10.1017/s136898001500289x [published Online First: 2015/10/06]
- 84. Chuang SC, Rota M, Gunter MJ, et al. Quantifying the dose-response relationship between circulating folate concentrations and colorectal cancer in cohort studies: a meta-analysis based on a flexible meta-regression model. *Am J Epidemiol* 2013;178(7):1028-37. doi: 10.1093/aje/kwt083 [published Online First: 2013/07/19]
- 85. Farvid MS, Ding M, Pan A, et al. Dietary linoleic acid and risk of coronary heart disease: a systematic review and meta-analysis of prospective cohort studies. *Circulation* 2014;130(18):1568-78. doi: 10.1161/circulationaha.114.010236 [published Online First: 2014/08/28]
- 86. Hong Z, Tian C, Zhang X. Dietary calcium intake, vitamin D levels, and breast cancer risk: a doseresponse analysis of observational studies. *Breast Cancer Res Treat* 2012;136(1):309-12. doi: 10.1007/s10549-012-2172-8 [published Online First: 2012/08/09]
- 87. Jayedi A, Rashidy-Pour A, Parohan M, et al. Dietary and circulating vitamin C, vitamin E, βcarotene and risk of total cardiovascular mortality: a systematic review and dose-response meta-analysis of prospective observational studies. *Public Health Nutr* 2019;22(10):1872-87. doi: 10.1017/s1368980018003725 [published Online First: 2019/01/12]
- 88. Kim Y, Je Y. Vitamin D intake, blood 25(OH)D levels, and breast cancer risk or mortality: a metaanalysis. *Br J Cancer* 2014;110(11):2772-84. doi: 10.1038/bjc.2014.175 [published Online First: 2014/04/10]
- 89. Perez-Cornago A, Appleby PN, Boeing H, et al. Circulating isoflavone and lignan concentrations and prostate cancer risk: a meta-analysis of individual participant data from seven prospective studies including 2,828 cases and 5,593 controls. *Int J Cancer* 2018;143(11):2677-86. doi: 10.1002/ijc.31640 [published Online First: 2018/07/05]
- 90. Ben S, Du M, Ma G, et al. Vitamin B(2) intake reduces the risk for colorectal cancer: a dose-response analysis. *Eur J Nutr* 2019;58(4):1591-602. doi: 10.1007/s00394-018-1702-5 [published Online First: 2018/05/11]
- 91. Berger S, Raman G, Vishwanathan R, et al. Dietary cholesterol and cardiovascular disease: a systematic review and meta-analysis. *Am J Clin Nutr* 2015;102(2):276-94. doi: 10.3945/ajcn.114.100305 [published Online First: 2015/06/26]
- 92. Cao H, Wang C, Chai R, et al. Iron intake, serum iron indices and risk of colorectal adenomas: a meta-analysis of observational studies. *Eur J Cancer Care (Engl)* 2017;26(5) doi: 10.1111/ecc.12486 [published Online First: 2016/03/10]
- 93. Chang VC, Cotterchio M, Khoo E. Iron intake, body iron status, and risk of breast cancer: a systematic review and meta-analysis. *BMC Cancer* 2019;19(1):543. doi: 10.1186/s12885-019-5642-0 [published Online First: 2019/06/07]
- 94. Chen X, Zhou T, Chen M. Meta analysis of the association of cholesterol with pancreatic carcinoma risk. *J buon* 2015;20(1):109-13. [published Online First: 2015/03/18]

- 95. Chen P, Zhang W, Wang X, et al. Lycopene and Risk of Prostate Cancer: A Systematic Review and Meta-Analysis. *Medicine (Baltimore)* 2015;94(33):e1260. doi: 10.1097/md.00000000001260 [published Online First: 2015/08/20]
- 96. Chen HG, Sheng LT, Zhang YB, et al. Association of vitamin K with cardiovascular events and all-cause mortality: a systematic review and meta-analysis. *Eur J Nutr* 2019;58(6):2191-205. doi: 10.1007/s00394-019-01998-3 [published Online First: 2019/05/24]
- 97. Cheng HM, Koutsidis G, Lodge JK, et al. Lycopene and tomato and risk of cardiovascular diseases: A systematic review and meta-analysis of epidemiological evidence. *Crit Rev Food Sci Nutr* 2019;59(1):141-58. doi: 10.1080/10408398.2017.1362630 [published Online First: 2017/08/12]
- 98. Del Gobbo LC, Imamura F, Wu JH, et al. Circulating and dietary magnesium and risk of cardiovascular disease: a systematic review and meta-analysis of prospective studies. *Am J Clin Nutr* 2013;98(1):160-73. doi: 10.3945/ajcn.112.053132 [published Online First: 2013/05/31]
- 99. Fonseca-Nunes A, Jakszyn P, Agudo A. Iron and cancer risk--a systematic review and metaanalysis of the epidemiological evidence. *Cancer Epidemiol Biomarkers Prev* 2014;23(1):12-31. doi: 10.1158/1055-9965.Epi-13-0733 [published Online First: 2013/11/19]
- 100. Han H, Fang X, Wei X, et al. Dose-response relationship between dietary magnesium intake, serum magnesium concentration and risk of hypertension: a systematic review and metaanalysis of prospective cohort studies. *Nutr J* 2017;16(1):26. doi: 10.1186/s12937-017-0247-4 [published Online First: 2017/05/10]
- 101. Kunutsor SK, Apekey TA, Steur M. Vitamin D and risk of future hypertension: meta-analysis of 283,537 participants. *Eur J Epidemiol* 2013;28(3):205-21. doi: 10.1007/s10654-013-9790-2 [published Online First: 2013/03/05]
- 102. Leermakers ET, Darweesh SK, Baena CP, et al. The effects of lutein on cardiometabolic health across the life course: a systematic review and meta-analysis. *Am J Clin Nutr* 2016;103(2):481-94. doi: 10.3945/ajcn.115.120931 [published Online First: 2016/01/15]
- 103. Mocellin S, Briarava M, Pilati P. Vitamin B6 and Cancer Risk: A Field Synopsis and Meta-Analysis. J Natl Cancer Inst 2017;109(3):1-9. doi: 10.1093/jnci/djw230 [published Online First: 2017/04/05]
- 104. Kolahdouz Mohammadi R, Bagheri M, Kolahdouz Mohammadi M, et al. Ruminant trans-fatty acids and risk of breast cancer: a systematic review and meta-analysis of observational studies. *Minerva Endocrinol* 2017;42(4):385-96. doi: 10.23736/s0391-1977.16.02514-1 [published Online First: 2016/09/15]
- 105. Park HY, Hong YC, Lee K, et al. Vitamin D status and risk of non-Hodgkin lymphoma: An updated meta-analysis. *PLoS One* 2019;14(4):e0216284. doi: 10.1371/journal.pone.0216284 [published Online First: 2019/04/30]
- 106. Qu X, Jin F, Hao Y, et al. Magnesium and the risk of cardiovascular events: a meta-analysis of prospective cohort studies. *PLoS One* 2013;8(3):e57720. doi: 10.1371/journal.pone.0057720 [published Online First: 2013/03/23]

- 107. Rienks J, Barbaresko J, Oluwagbemigun K, et al. Polyphenol exposure and risk of type 2 diabetes: dose-response meta-analyses and systematic review of prospective cohort studies. *Am J Clin Nutr* 2018;108(1):49-61. doi: 10.1093/ajcn/nqy083 [published Online First: 2018/06/23]
- 108. Soltani S, Kolahdouz Mohammadi R, Shab-Bidar S, et al. Sodium status and the metabolic syndrome: A systematic review and meta-analysis of observational studies. *Crit Rev Food Sci Nutr* 2019;59(2):196-206. doi: 10.1080/10408398.2017.1363710 [published Online First: 2017/08/29]
- 109. Song B, Liu K, Gao Y, et al. Lycopene and risk of cardiovascular diseases: A meta-analysis of observational studies. *Mol Nutr Food Res* 2017;61(9) doi: 10.1002/mnfr.201601009 [published Online First: 2017/03/21]
- 110. Wang Y, Cui R, Xiao Y, et al. Effect of Carotene and Lycopene on the Risk of Prostate Cancer: A Systematic Review and Dose-Response Meta-Analysis of Observational Studies. *PLoS One* 2015;10(9):e0137427. doi: 10.1371/journal.pone.0137427 [published Online First: 2015/09/16]
- 111. Xu J, Song C, Song X, et al. Carotenoids and risk of fracture: a meta-analysis of observational studies. Oncotarget 2017;8(2):2391-99. doi: 10.18632/oncotarget.13678 [published Online First: 2016/12/03]
- 112. Yang B, Shi MQ, Li ZH, et al. Fish, Long-Chain n-3 PUFA and Incidence of Elevated Blood Pressure: A Meta-Analysis of Prospective Cohort Studies. *Nutrients* 2016;8(1) doi: 10.3390/nu8010058 [published Online First: 2016/01/26]
- 113. Zhang Z, Bergan R, Shannon J, et al. The Role of Cruciferous Vegetables and Isothiocyanates for Lung Cancer Prevention: Current Status, Challenges, and Future Research Directions. *Mol Nutr Food Res* 2018;62(18):e1700936. doi: 10.1002/mnfr.201700936 [published Online First: 2018/04/18]
- 114. Zhao Y, Chen C, Pan W, et al. Comparative efficacy of vitamin D status in reducing the risk of bladder cancer: A systematic review and network meta-analysis. *Nutrition* 2016;32(5):515-23. doi: 10.1016/j.nut.2015.10.023 [published Online First: 2016/01/30]
- 115. Wan Y, Zheng J, Wang F, et al. Fish, long chain omega-3 polyunsaturated fatty acids consumption, and risk of all-cause mortality: a systematic review and dose-response metaanalysis from 23 independent prospective cohort studies. *Asia Pac J Clin Nutr* 2017;26(5):939-56. doi: 10.6133/apjcn.072017.01 [published Online First: 2017/08/15]
- 116. Li J, Guasch-Ferre M, Li Y, et al. Dietary intake and biomarkers of linoleic acid and mortality: systematic review and meta-analysis of prospective cohort studies. Am J Clin Nutr 2020 doi: 10.1093/ajcn/nqz349 [published Online First: 2020/02/06]
- 117. Bjelakovic G, Nikolova D, Gluud LL, et al. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. *Cochrane Database Syst Rev* 2012(3):Cd007176. doi: 10.1002/14651858.CD007176.pub2 [published Online First: 2012/03/16]

- 118. Bjelakovic G, Gluud LL, Nikolova D, et al. Vitamin D supplementation for prevention of mortality in adults. *Cochrane Database Syst Rev* 2014a(1):Cd007470. doi: 10.1002/14651858.CD007470.pub3 [published Online First: 2014/01/15]
- 119. Chowdhury R, Kunutsor S, Vitezova A, et al. Vitamin D and risk of cause specific death: systematic review and meta-analysis of observational cohort and randomised intervention studies. *Bmj* 2014b;348:g1903. doi: 10.1136/bmj.g1903 [published Online First: 2014/04/03]
- 120. Han J, Guo X, Yu X, et al. 25-Hydroxyvitamin D and Total Cancer Incidence and Mortality: A Meta-Analysis of Prospective Cohort Studies. *Nutrients* 2019;11(10) doi: 10.3390/nu11102295 [published Online First: 2019/09/29]
- 121. Cormick G, Ciapponi A, Cafferata ML, et al. Calcium supplementation for prevention of primary hypertension. *Cochrane Database Syst Rev* 2015(6):Cd010037. doi: 10.1002/14651858.CD010037.pub2 [published Online First: 2015/07/01]
- 122. Jayedi A, Zargar MS. Dietary calcium intake and hypertension risk: a dose-response metaanalysis of prospective cohort studies. *Eur J Clin Nutr* 2019;73(7):969-78. doi: 10.1038/s41430-018-0275-y [published Online First: 2018/08/12]
- 123. De-Regil LM, Peña-Rosas JP, Fernández-Gaxiola AC, et al. Effects and safety of periconceptional oral folate supplementation for preventing birth defects. *Cochrane Database* of Systematic Reviews 2015(12) doi: 10.1002/14651858.CD007950.pub3
- 124. Blencowe H, Cousens S, Modell B, et al. Folic acid to reduce neonatal mortality from neural tube disorders. *Int J Epidemiol* 2010;39 Suppl 1:i110-21. doi: 10.1093/ije/dyq028 [published Online First: 2010/04/02]
- 125. Feng Y, Wang S, Chen R, et al. Maternal folic acid supplementation and the risk of congenital heart defects in offspring: a meta-analysis of epidemiological observational studies. *Sci Rep* 2015;5:8506. doi: 10.1038/srep08506 [published Online First: 2015/02/18]
- 126. El Dib R, Gameiro OL, Ogata MS, et al. Zinc supplementation for the prevention of type 2 diabetes mellitus in adults with insulin resistance. *Cochrane Database Syst Rev* 2015(5):Cd005525. doi: 10.1002/14651858.CD005525.pub3 [published Online First: 2015/05/29]
- 127. Fernandez-Cao JC, Warthon-Medina M, V HM, et al. Zinc Intake and Status and Risk of Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. *Nutrients* 2019;11(5) doi: 10.3390/nu11051027 [published Online First: 2019/05/11]
- 128. Hartley L, Igbinedion E, Holmes J, et al. Increased consumption of fruit and vegetables for the primary prevention of cardiovascular diseases. *Cochrane Database Syst Rev* 2013(6):Cd009874. doi: 10.1002/14651858.CD009874.pub2 [published Online First: 2013/06/06]
- 129. Schwingshackl L, Schwedhelm C, Hoffmann G, et al. Food Groups and Risk of Hypertension: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Adv Nutr 2017;8(6):793-803. doi: 10.3945/an.117.017178 [published Online First: 2017/11/17]

- 130. Hartley L, May MD, Loveman E, et al. Dietary fibre for the primary prevention of cardiovascular disease. *Cochrane Database Syst Rev* 2016(1):Cd011472. doi: 10.1002/14651858.CD011472.pub2 [published Online First: 2016/01/14]
- 131. Hemmingsen B, Gimenez-Perez G, Mauricio D, et al. Diet, physical activity or both for prevention or delay of type 2 diabetes mellitus and its associated complications in people at increased risk of developing type 2 diabetes mellitus. *Cochrane Database Syst Rev* 2017;12:Cd003054. doi: 10.1002/14651858.CD003054.pub4 [published Online First: 2017/12/06]
- 132. Schwingshackl L, Bogensberger B, Hoffmann G. Diet Quality as Assessed by the Healthy Eating Index, Alternate Healthy Eating Index, Dietary Approaches to Stop Hypertension Score, and Health Outcomes: An Updated Systematic Review and Meta-Analysis of Cohort Studies. J Acad Nutr Diet 2018;118(1):74-100.e11. doi: 10.1016/j.jand.2017.08.024 [published Online First: 2017/11/08]
- 133. Noto H, Goto A, Tsujimoto T, et al. Low-carbohydrate diets and all-cause mortality: a systematic review and meta-analysis of observational studies. *PLoS One* 2013;8(1):e55030. doi: 10.1371/journal.pone.0055030 [published Online First: 2013/02/02]
- 134. Seidelmann SB, Claggett B, Cheng S, et al. Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis. *Lancet Public Health* 2018;3(9):e419-e28. doi: 10.1016/s2468-2667(18)30135-x [published Online First: 2018/08/21]
- 135. Sartorius K, Sartorius B, Madiba TE, et al. Does high-carbohydrate intake lead to increased risk of obesity? A systematic review and meta-analysis. *BMJ Open* 2018;8(2):e018449. doi: 10.1136/bmjopen-2017-018449 [published Online First: 2018/02/14]
- 136. Hooper L, Abdelhamid A, Bunn D, et al. Effects of total fat intake on body weight. *Cochrane Database Syst Rev* 2015a(8):Cd011834. doi: 10.1002/14651858.Cd011834 [published Online First: 2015/08/08]
- 137. Jin H, Leng Q, Li C. Dietary flavonoid for preventing colorectal neoplasms. *Cochrane Database Syst Rev* 2012(8):Cd009350. doi: 10.1002/14651858.CD009350.pub2 [published Online First: 2012/08/17]
- 138. Kelly SA, Hartley L, Loveman E, et al. Whole grain cereals for the primary or secondary prevention of cardiovascular disease. *Cochrane Database Syst Rev* 2017;8:Cd005051. doi: 10.1002/14651858.CD005051.pub3 [published Online First: 2017/08/25]
- 139. Ye EQ, Chacko SA, Chou EL, et al. Greater whole-grain intake is associated with lower risk of type 2 diabetes, cardiovascular disease, and weight gain. J Nutr 2012;142(7):1304-13. doi: 10.3945/jn.111.155325 [published Online First: 2012/06/01]
- 140. Mathew MC, Ervin AM, Tao J, et al. Antioxidant vitamin supplementation for preventing and slowing the progression of age-related cataract. *Cochrane Database Syst Rev* 2012(6):Cd004567. doi: 10.1002/14651858.CD004567.pub2 [published Online First: 2012/06/15]

- 141. Jiang H, Yin Y, Wu CR, et al. Dietary vitamin and carotenoid intake and risk of age-related cataract. *Am J Clin Nutr* 2019;109(1):43-54. doi: 10.1093/ajcn/nqy270 [published Online First: 2019/01/10]
- 142. Jayedi A, Rashidy-Pour A, Parohan M, et al. Dietary Antioxidants, Circulating Antioxidant Concentrations, Total Antioxidant Capacity, and Risk of All-Cause Mortality: A Systematic Review and Dose-Response Meta-Analysis of Prospective Observational Studies. Adv Nutr 2018;9(6):701-16. doi: 10.1093/advances/nmy040 [published Online First: 2018/09/22]
- 143. Xiang S, Dai Z, Man C, et al. Circulating Selenium and Cardiovascular or All-Cause Mortality in the General Population: a Meta-Analysis. *Biol Trace Elem Res* 2019 doi: 10.1007/s12011-019-01847-8 [published Online First: 2019/08/02]
- 144. Soltani S, Jayedi A, Shab-Bidar S, et al. Adherence to the Mediterranean Diet in Relation to All-Cause Mortality: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. Adv Nutr 2019;10(6):1029-39. doi: 10.1093/advances/nmz041 [published Online First: 2019/05/22]
- 145. Doets EL, van Wijngaarden JP, Szczecinska A, et al. Vitamin B12 intake and status and cognitive function in elderly people. *Epidemiol Rev* 2013;35:2-21. doi: 10.1093/epirev/mxs003 [published Online First: 2012/12/12]
- 146. Sydenham E, Dangour AD, Lim WS. Omega 3 fatty acid for the prevention of cognitive decline and dementia. *Cochrane Database Syst Rev* 2012(6):Cd005379. doi: 10.1002/14651858.CD005379.pub3 [published Online First: 2012/06/15]
- 147. Zhang Y, Chen J, Qiu J, et al. Intakes of fish and polyunsaturated fatty acids and mild-to-severe cognitive impairment risks: a dose-response meta-analysis of 21 cohort studies. *Am J Clin Nutr* 2016b;103(2):330-40. doi: 10.3945/ajcn.115.124081 [published Online First: 2016/01/01]
- 148. Usinger L, Reimer C, Ibsen H. Fermented milk for hypertension. Cochrane Database Syst Rev 2012(4):Cd008118. doi: 10.1002/14651858.CD008118.pub2 [published Online First: 2012/04/20]
- 149. Soedamah-Muthu SS, Verberne LD, Ding EL, et al. Dairy consumption and incidence of hypertension: a dose-response meta-analysis of prospective cohort studies. *Hypertension* 2012;60(5):1131-7. doi: 10.1161/hypertensionaha.112.195206 [published Online First: 2012/09/19]
- 150. Aune D, Chan DS, Lau R, et al. Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. *Bmj* 2011;343:d6617. doi: 10.1136/bmj.d6617 [published Online First: 2011/11/15]