In the format provided by the authors and unedited.

A midline thalamic circuit determines reactions to visual threat

Lindsey D. Salay¹, Nao Ishiko¹ & Andrew D. Huberman^{1,2,3,4}*

¹Department of Neurobiology, Stanford University School of Medicine, Palo Alto, CA, USA. ²Stanford Neurosciences Institute, Stanford University School of Medicine, Palo Alto, CA, USA. ³BioX, Stanford University School of Medicine, Palo Alto, CA, USA. ⁴Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA. ⁴Penalter and the stanford University School of Medicine, Palo Alto, CA, USA. ⁴Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA. ⁴Penalter and the stanford University School of Medicine, Palo Alto, CA, USA. ⁴Penalter and the stanford University School of Medicine, Palo Alto, CA, USA. ⁴Penalter and the stanford University School of Medicine, Palo Alto, CA, USA. ⁴Penalter and the stanford University School of Medicine, Palo Alto, CA, USA. ⁴Penalter and the stanford University School of Medicine, Palo Alto, CA, USA. ⁴Penalter and the stanford University School of Medicine, Palo Alto, CA, USA. ⁴Penalter and the stanford University School of Medicine, Palo Alto, CA, USA. ⁴Penalter and the stanford University School of Medicine, Palo Alto, CA, USA. ⁴Penalter and the stanford University School of Medicine, Palo Alto, CA, USA. ⁴Penalter and the stanford University School of Medicine, Palo Alto, CA, USA. ⁴Penalter and the stanford University School of Medicine, Palo Alto, CA, USA. ⁴Penalter and the stanford University School of Medicine, Palo Alto, CA, USA. ⁴Penalter and the stanford University School of Medicine, Palo Alto, CA, USA. ⁴Penalter and the stanford University School of Medicine, Palo Alto, CA, USA. ⁴Penalter and the stanford University School of Medicine, Palo Alto, CA, USA. ⁴Penalter and the stanford University School of Medicine, Palo Alto, CA, USA. ⁴Penalter and the stanford University School of Medicine, Palo Alto, CA, USA. ⁴Penalter and the stanford University School of Medicine, Palo Alto, CA, USA. ⁴Penalter and the stanford University School of Medicine, Palo Alto, CA, USA. ⁴Pe

Figure	Description	Sample size (figure order)	Normality test	Statistical test	Treatment effect	P value	Significance
Figure 1b	% of time	<i>n</i> = 15, 15, 5 mice					
	freezing		not passed	Kruskal-Wallis one-way ANOVA	Kruskal-Wallis statistic = 17.69	P = 0.0001	***
				Dunn's multiple comparisons test	Mean rank diff.		
	none vs. above				-11.67	P=0.0003	***
	below vs. above				-11.67	P=0.0162	*
	none vs. below				C)P>0.9999	ns
	hiding		not passed	Kruskal-Wallis one-way ANOVA	Kruskal-Wallis statistic = 6.533	<i>P</i> = 0.0381	*
				Dunn's multiple comparisons test	Mean rank diff.		
	none vs. above				-5.9	P=0.2810	ns
	below vs. above				6.033	P=0.6763	ns
	none vs. below				-11.93	8 P=0.05	ns
	ambulatory		not passed	Kruskal-Wallis one-way ANOVA	Kruskal-Wallis statistic = 28.181	P <0.0001	***
				Dunn's multiple comparisons test	Mean rank diff.		
	none vs. above				19.8375	P<0.0001	***
	below vs. above				11.4	P=0.1017	ns
	none vs. below				8.4375	P=0.3407	ns
	running		not passed	Kruskal-Wallis one-way ANOVA	Kruskal-Wallis statistic = 7.527	P=0.0232	*
				Dunn's multiple comparisons test	Mean rank diff.		
	none vs. above				-5.833	P=0.0308	*
	below vs. above				-5.833	P=0.2087	ns
	none vs. below				0)P>0.9999	ns
	tail rattling		not passed	Kruskal-Wallis one-way ANOVA	Kruskal-Wallis statistic = 5.825	P=0.0543	ns
				Dunn's multiple comparisons test	Mean rank diff.		
	none vs. above				-4.667	P=0.0719	ns
	below vs. above				-4.667	P=0.3312	ns
	none vs. below				0)P>0.9999	ns
	-	ł	-	•			•
Figure 1c	number of c- Fos+ cells in the vMT	<i>n</i> = 7,10, 5 mice	passed	one-way ANOVA	F _{2,19} =11.63	P=0.0005	***
	above vs. none			Tukey's multiple comparisons test		P=0.0005	***
	above vs. below			Tukey's multiple comparisons test		P=0.0061	**
	none vs. below			Tukey's multiple comparisons test		P=0.9239	ns
			1				
Figure 1d	number of c- Fos+ cells in the Xi	<i>n</i> = 7,10, 5 mice	passed	one-way ANOVA	F _{2,19} =19.75	P<0.0001	***
	above vs. none	1		Tukey's multiple comparisons test		P<0.0001	***
	above vs. below			Tukey's multiple comparisons test		P=0.0001	***
	none vs. below			Tukey's multiple comparisons test		P=0.7852	ns
Figure 2i	% of time	<i>n</i> = 24, 9, 15 mice					
	freezing		not passed	Kruskal-Wallis one-way ANOVA	Kruskal-Wallis statistic = 1.905	P = 0.3858	ns
				Dunn's multiple comparisons test	Mean rank diff.		
	controls vs. hM4D				-1.517	P>0.9999	ns
	controls vs. hM3D				5.367	P=0.7220	ns
	hM4D vs. hM3D				6.883	P=0.6750	ns
	hiding		not passed	Kruskal-Wallis one-way ANOVA	Kruskal-Wallis statistic = 1.574	<i>P</i> = 0.4552	ns
		1		Dunn's multiple comparisons test	Mean rank diff.		1

	controls vs. hM4D				2.554	P>0 9999	ns
	controls vs.				5 30	12 0.000	26
	hM3D				5.39	P=0.6356	115
	hM3D vs. hM4D				-2.836	P>0.9999	ns
	ambulatory		not passed	Kruskal-Wallis one-way ANOVA	Kruskal-Wallis statistic = 11.51	P=0.0032	**
				Dunn's multiple comparisons test	Mean rank diff.		
	controls vs. hM4D				-1.113	P>0.9999	ns
	controls vs. hM3D				-14.98	P=0.0033	**
	hM3D vs. hM4D				13.87	P=0.0449	*
	running		not passed	Kruskal-Wallis one-way ANOVA	Kruskal-Wallis statistic = 1.639	P=0.4407	ns
				Dunn's multiple comparisons test	Mean rank diff.		
	controls vs.			î î	2 942		ne
	hM4D				2.912	P>0.9999	115
	controls vs. hM3D				-3.458	P>0.9999	ns
	hM4D vs. hM3D				-6.4	P=0.6283	ns
	tail rattling		not passed	Kruskal-Wallis one-way ANOVA	Kruskal-Wallis statistic = 14.58	P = 0.0007	***
				Dunn's multiple comparisons test	Mean rank diff.		
	controls vs. hM4D				6.229	P=0.5169	ns
	controls vs. hM3D				-11.57	P=0.0112	*
	hM4D vs. hM3D				-17.8	P=0.0010	***
				•			•
Figure 2j	number of events	<i>n</i> = 24, 9, 15 mice					
	running		not passed	Poisson GLM	X ² _{2,46} =7.2	P=0.02851	*
				pairwise comparisions			
	controls vs. hM4D					P=0.51525	ns
	controls vs. hM3D					P=0.03103	*
-	hM4D vs. hM3D					P=0.0438	*
	tail rattling		not passed	Quasi-Poisson GLM	$F_{2,46}=16.075$	P=0.000005	***
				pairwise comparisions			
	controls vs. hM4D					P=0.164	ns
	controls vs. hM3D					P=0.0003	***
	hM4D vs. hM3D					P=0.000000	***
	I	1		I		7	
Figure 2k	% of mice	<i>n</i> = 24, 9, 15 mice					
	controls vs.			Fisher's exact test		P=0.1747	ns
	controls vs.			Fisher's exact test		P=0.0079	**
	hM3D			P1 1	ļ	D-0.0020	44
	nM4D vs. hM3D			Fisher's exact test		P=0.0020	Φ .Ψ.
	% of rattling						
Figure 21	events in the	<i>n</i> = 14, 0, 53 rattles					
	controls vs. hM3D			Fisher's exact test		P<0.0001	***

Figure 2m	% of running in the open	<i>n</i> =11, 3, 16 runs			
	controls vs. hM4D		Fisher's exact test	P>0.9999	ns
	controls vs. hM3D		Fisher's exact test	P=0.0003	***
	hM4D vs. hM3D		Fisher's exact test	P=0.0206	*

Figure 2n	% time motile	<i>n</i> = 24, 9, 15 mice					
			not passed	Kruskal-Wallis one-way ANOVA	Kruskal-Wallis statistic = 15.58	P =0.0004	***
				Dunn's multiple comparisons test	Mean rank diff.		
	controls vs. hM4D				-0.3042	P>0.9999	ns
	controls vs. hM3D				-17.29	P=0.0006	***
	hM3D vs. hM4D				16.98	P=0.0093	**

Figure 3q	% of time	<i>n</i> = 14, 8,8, 5 mice					
	freezing		not passed	Kruskal-Wallis one-way ANOVA	Kruskal-Wallis statistic = 7.012	P = 0.0715	ns
				Dunn's multiple comparisons test	Mean rank diff.		
	controls vs. vMT- BLA				-7.598	P=0.2503	ns
	controls vs. vMT- PFC				-3.286	P>0.9999	ns
	controls vs. vMT- PFC terminals				6.664	P=0.5895	ns
	hiding		not passed	Kruskal-Wallis one-way ANOVA	Kruskal-Wallis statistic = 3.153	<i>P</i> = 0.3686	ns
				Dunn's multiple comparisons test	Mean rank diff.		
	controls vs. vMT- BLA				6.045	P=0.3174	ns
	controls vs. vMT- PFC				0.607	P>0.9999	ns
	controls vs. vMT- PFC terminals				4.107	P>0.9999	ns
	ambulatory		not passed	Kruskal-Wallis one-way ANOVA	Kruskal-Wallis statistic = 6.577	P =0.0867	ns
				Dunn's multiple comparisons test	Mean rank diff.		
	controls vs. vMT- BLA				4.786	P=0.7688	ns
	controls vs. vMT- PFC				5.973	P=0.4695	ns
	controls vs. vMT- PFC terminals				-6.464	P=0.5762	ns
	running		not passed	Kruskal-Wallis one-way ANOVA	Kruskal-Wallis statistic = 8.423	P =0.0380	*
				Dunn's multiple comparisons test	Mean rank diff.		
	controls vs. vMT- BLA				3.83	P=0.9332	ns
	controls vs. vMT- PFC				1.768	P>0.9999	ns
	controls vs. vMT- PFC terminals				-9.707	P=0.0869	ns
	tail rattling		not passed	Kruskal-Wallis one-way ANOVA	Kruskal-Wallis statistic = 10.83	P =0.0127	*
				Dunn's multiple comparisons test	Mean rank diff.		
	controls vs. vMT- BLA				2.741	P>0.9999	ns
	controls vs. vMT- PFC				-3.759	P>0.9999	ns

	controls vs. vMT- PFC terminals				-12.87	P=0.0160	*
Figure 3r	number of events	<i>n</i> = 14, 8,8, 5 mice					
	running		not passed	Poisson GLM	$X_{3,31}^2 = 7.8$	P=0.04935	*
			, î	pairwise comparisions			
	controls vs. vMT-					D=0.3378	26
	BLA					1=0.5570	115
	controls vs. vMT- PFC					P=0.6699	ns
	controls vs. vMT- PFC terminals					P=0.0453	*
	tail rattling		not passed	Quasi-Poisson GLM	$F_{3,31}=5.2864$	P=0.004626	**
				pairwise comparisions			
	controls vs. vMT- BLA					P=0.4183	ns
	controls vs. vMT- PFC					P=0.0275	*
	controls vs. vMT- PFC terminals					P=0.0133	*
	•			•			
Figure 4e	% of time	<i>n</i> = 36, 17, 15 mice					
	freezing		not passed	Kruskal-Wallis one-way ANOVA	Kruskal-Wallis statistic = 5.587	P = 0.0612	ns
				Dunn's multiple comparisons test	Mean rank diff.		
	controls vs. co- activate				13.13	P=0.0363	*
	controls vs. pre- activate				3.825	P>0.9999	ns
	pre-activate vs. co-				-9.3	P=0.4929	ns
	activate						
	hiding		not passed	Kruskal-Wallis one-way ANOVA	Kruskal-Wallis statistic = 1 201	P=0.5486	ns
				Dunn's multiple comparisons test	Mean rank diff.		
	controls vs. co-				-6.119	D=0.9105	ns
	controls vs. pre-					r=0.0195	
	activate				-2.006	P>0.9999	ns
	pre-activate vs. co-				4.114	P>0.9999	ns
	activate						
					Kruckal Wallia		
	ambulatory		not passed	Kruskal-Wallis one-way ANOVA	statistic = 3.257	P =0.1962	ns
	. 1			Dunn's multiple comparisons test	Mean rank diff.		
	controls vs. co- activate				-10.42	P=0.2134	ns
	controls vs. pre- activate				-3.172	P>0.9999	ns
	co-activate vs. pre- activate				7.251	P=0.8911	ns
						- 0.0711	
	running		not passed	Kruskal-Wallis one-way ANOVA	Kruskal-Wallis statistic = 10.48	P=0.0053	**
				Dunn's multiple comparisons test	Mean rank diff		
	controls vs. co-	1					skok
	activate				-16.84	P=0.0041	**
	activate				-7.797	P=0.4663	ns
	co-activate vs. pre- activate				9.045	P=0.4585	ns

tail rattling	not passed	Kruskal-Wallis one-way ANOVA	Kruskal-Wallis statistic = 7.781	P=0.0204	*
		Dunn's multiple comparisons test	Mean rank diff.		
controls vs. co- activate			-14.86	P=0.0236	*
controls vs. pre- activate			-9.472	P=0.3145	ns
co-activate vs. pre- activate			5.392	P>0.9999	ns

Figure 4f	number of events	<i>n</i> = 36, 17, 15 mice					
	tail rattling		not passed	Quasi-Poisson GLM	$F_{2,65} = 5.1249$	P=0.008576	**
				pairwise comparisions			
	controls vs. co- activate					P=0.00342	**
	controls vs. pre- activate					P=0.04222	*
	pre-activate vs. co- activate					P=0.45556	ns
	running		not passed	Poisson GLM	$X_{2,65}^2 = 11.7$	P=0.002832	**
				pairwise comparisions			
	controls vs. co- activate					P=0.000999	***
	controls vs. pre- activate					P=0.034170	*
	pre-activate vs. co- activate					P=0.362390	ns

Figure 4g	% of time	<i>n</i> = 36, 17, 15 mice					
	motile		not passed	Kruskal-Wallis one-way ANOVA	Kruskal-Wallis	P=0.0122	*
				Dunn's multiple companies no tost	Moon work diff		
				Dunit's multiple comparisons test	Mean fank dill.		
	controls vs. co-				16 71		**
	activate				-10.71	P=0.0099	
	controls vs. pre-				7 855		00
	activate				-7.655	P=0.5561	115
	pre-activate vs. co-				Q Q51	D=0.5748	00
	activate				0.031	r=0.3748	115

Figure 4k	% of time freezing in response to sweep	<i>n</i> = 15, 10 mice					
	controls vs. co- activate		not passed	Mann-Whitney test (two-tailed)	U=37.5	P =0.0306	*

Figure 5c	relative pupil size (constant light)	<i>n</i> = 12 mice ChR2 activate; <i>n</i> =8 mice controls (dashed line)	not passed	Friedman's test	Friedman's statistic = 12.5	P =0.0019	**
				Dunn's multiple comparisons test	Mean rank diff.		
	before vs. laser on (during vMT activation)				-15	<i>P</i> =0.0044	**
	before vs. laser off (after vMT activation)				-15	P=0.0044	**

		n = 11 mice each					
	relativo queil sir-	rested with and					
Figure 5e	relative pupil size	tested with and					
-	(light pulse)	without VM I					
		activation					
	0s, laser off vs on		,			D -0.0005	444
	(vMT activate)		passed	Paired <i>i</i> -test (two-tailed)	t-5.007 dt-10	P =0.0005	didid.
	F		J	Defined the et (trans to led)	+-2 102 16-10	D = 0.0000	**
	5s, off v on		passed	Paired 7-test (two-tailed)	t=3.192 dt=10	P = 0.0096	**
	10s, off v on		passed	Paired <i>t</i> -test (two-tailed)	t=0.8286 df=10	<i>P</i> =0.4267	ns
	15s, off v on		passed	Paired <i>t</i> -test (two-tailed)	t=0.4587 df=10	P = 0.6562	ns
	20s, off v on		passed	Paired <i>t</i> -test (two-tailed)	t=0.1668 df=10	P = 0.8708	ns
	25s, off v on		passed	Paired <i>t</i> -test (two-tailed)	t=0.2063 df=10	P = 0.8407	ns
	30s, off v on		passed	Paired t-test (two-tailed)	t=0.4083 df=10	P = 0.6917	ns
	35s, off v on		passed	Paired t-test (two-tailed)	t=0.1032 df=10	P =0.9199	ns
	40s, off v on		passed	Paired <i>t</i> -test (two-tailed)	t=1.764 df=10	P = 0.1083	ns
	45s, off v on		passed	Paired <i>t</i> -test (two-tailed)	t=2.737 df=10	P = 0.0210	*
	50s off v on		passed	Paired t-test (two-tailed)	t=3.419 df=10	P = 0.0066	**
	EEs off wor		passed	Daired t test (two tailed)	t 3.115 df 10	D = 0.0000	**
	558, 011 V 011		passed	Parred <i>i</i> -test (two-tailed)	1-3.655 d1-10	P = 0.0032	44
	60s, off v on		passed	Paired 7-test (two-tailed)	t=4.044 df=10	P =0.0025	**
Figure 5f	relative pupil size						
	constant light						
	vMT-to-PFC with	10.100			0.004 16 44	D. O. O. L. C.	
	v without CNO	n= 12 vMT-to-PFC	passed	Paired <i>t</i> -test (two-tailed)	t=2.821 dt=11	P = 0.0166	*
	vMT-to-BLA with	O MEL DIA	,		0.01006.16.0	D 0.0007	
	v without CNO	n = 9 vM I-to-BLA	passed	Paired <i>i</i> -test (two-tailed)	t=0.01326 dt=8	P = 0.9897	ns
	1		1	I	I	1	I
T: -1	1	n = 8 mice ChR2					
Figure 5h	relative heart rate	activate; $n=13$ mice					
		XFP controls					
	20s, ChR2 v XFP		passed	Unpaired t-test (two-tailed)	t=3.244 df=19	P = 0.0043	**
			^	* · · ·			
	30s, ChR2 v XFP		passed	Unpaired t-test (two-tailed)	t=2.923 df=19	P = 0.0087	**
			-				
	40s, ChR2 v XFP		passed	Unpaired t-test (two-tailed)	t=3.862 df=19	P = 0.0010	**
			-				
	50s, ChR2 v XFP		passed	Unpaired t-test (two-tailed)	t=3.653 df=19	P = 0.0017	**
			-				
	60s, ChR2 v XFP		passed	Unpaired t-test (two-tailed)	t=3.859 df=19	P = 0.0011	**
	70s, ChR2 v XFP		passed	Unpaired t-test (two-tailed)	t=2.977 df=19	P = 0.0078	**
	80s, ChR2 v XFP		passed	Unpaired t-test (two-tailed)	t=1.651 df=19	P = 0.1153	ns
	90s, ChR2 v XFP		passed	Unpaired t-test (two-tailed)	t=0.6433 df=19	P = 0.5277	ns
	100s ChR2 v						
	XFP		passed	Unpaired <i>t</i> -test (two-tailed)	t=0.3988 df=19	P = 0.6945	ns
	110s ChR2v						
	XFP		passed	Unpaired <i>t</i> -test (two-tailed)	t=0.3878 df=19	P = 0.7025	ns
	120s ChR2 v						
	XFP		passed	Unpaired <i>t</i> -test (two-tailed)	t=0.7396 df=19	P = 0.4686	ns
		1		l			1
		n=8 mice ChR2	1				
Figure 5i	relative breathing	n = 0 finde Chiez					
i iguit Ji	rate	XFP controls					
	ChR2 v YED		passed	Unpaired t-test (two tailed)	t=1 866 df-20	P = 0.0768	ne
	CHINE V ALT	1	Passeu	empaneti r-test (two-tallett)	1 1.000 ut=20	-0.0700	110
		- 14 min Cl D2		1			
Figure 51	PTDD	n = 14 mice CnK2					
rigure 51	KIPP	$x_{ED} = 1 / mice$					
	1	AFP CONTROLS	1			1	

	ChR2 v XFP		passed	Unpaired <i>t</i> -test (two-tailed)	t=2.92 df=29	P=0.0067	**
	-	-	-	-		-	
Figure 6c	relative firing rate	n=23 cells, mice = 4					
	pre loom v loom		not passed	Wilcoxon matched-pairs signed rank test (two-tailed)	W=276	P =0.04	*
	1				I		
Figure 6d	relative firing rate per behavior	rattle, $n = 47$ cells; ambulatory, $n = 73$ cells; run, $n = 56$ cells; freeze $n = 67$ cells; all relative to pre-loom, $n = 87$ total cells from 4 mice	not passed	Kruskal-Wallis one-way ANOVA	Kruskal-Wallis statistic = 22.92	P =0.0001	***
				Dunn's multiple comparisons test	Mean rank diff.		
	rattling vs pre loom				7.84	P >0.9999	ns
	ambulatory vs pre loom				47.21	P =0.0064	**
	run vs pre loom				-0.5	P >0.9999	ns
	freeze vs pre pre loom				-27.46	P =0.2969	ns
[1	1	Г	1	1
Figure 6e	relative firing rate	n = 0 / cells from 4 mice		1977			
	motile vs immotile		not passed	Wilcoxon matched-pairs signed rank test (two-tailed)	W=-1276	P <0.0001	***
	1		1	1	Kanalash Wallis	1	1
Figure 6g	relative firing rate	mice	not passed	Kruskal-Wallis one-way ANOVA	statistic = 7.842	P =0.0198	*
	1			Dunn's multiple comparisons test	Mean rank diff.	D = 0.2202	
	loom day 1 v 2				11.48	P = 0.3202 P = 0.0155	*
	loom day 2 v 3+				5.56	P >0.9999	ns
Ext Figure 1e	number of c- Fos+ cells in the vMT	<i>n</i> = 6 ,5, 8 mice	passed	one-way ANOVA	F _{2,16} =30.82	<i>P</i> <0.0001	***
	hM4D/CNO vs GFP/CNO			Tukey's multiple comparisons test		P=0.04	*
	hM3D/CNO vs GFP/CNO			Tukey's multiple comparisons test		P=0.0003	***
	hM3D/CNO vs hM4D/CNO			Tukey's multiple comparisons test		<i>P</i> <0.0001	***
r	1	- 15 0 0 17 5	1	1	l	1	1
Ext Figure 2a	number of events	<i>n</i> = 15, 9, 9, 17, 5 mice					
	tail rattling		not passed	Quasi-Poisson GLM pairwise comparisions	F _{4,50} =1.9375	P=0.1187	ns
	no treatment vs XFP/CNO					P=0.635	ns
	no treatment vs CAV/XFP/CNO					P=0.635	ns
	no treatment vs CAV/hM3D/wit hout CNO					P=0.139	ns
	no treatment vs XFP/optrode					P=0.103	ns
Ext Figure 2b	number of events	<i>n</i> = 15, 9, 9, 17, 5 mice					

running	not passed	Poisson GLM	$X_{4,50}^2 = 1.1$	P=0.8938	ns
		pairwise comparisions			
no treatment vs XFP/CNO				P=0.5875	ns
no treatment vs CAV/XFP/CNO				P=0.8703	ns
no treatment vs CAV/hM3D/wit hout CNO				P=0.5210	ns
no treatment vs XFP/optrode				P=0.9584	ns

Ext Figure 2c	% of time	<i>n</i> = 15, 9, 9, 17, 5 mice					
	freezing		not passed	Kruskal-Wallis one-way ANOVA	Kruskal-Wallis statistic = 5.802	<i>P</i> = 0.2144	ns
				Dunn's multiple comparisons test	Mean rank diff.		
	no treatment vs XFP/CNO				2.356	P>0.9999	ns
	no treatment vs CAV/XFP/CNO				3.3	P>0.9999	ns
	no treatment vs CAV/hM3D/wit hout CNO				-12.2	P=0.5208	ns
	no treatment vs XFP/optrode				6.418	P=0.9835	ns

Ext Figure 2d	% of time	n=15, 9, 9, 17, 5					
	hiding	inice	not passed	Kruskal-Wallis one-way ANOVA	Kruskal-Wallis statistic = 3.249	P=0.5170	ns
				Dunn's multiple comparisons test	Mean rank diff.		
	no treatment vs XFP/CNO				0.2778	P>0.9999	ns
	no treatment vs CAV/XFP/CNO				2.333	P>0.9999	ns
	no treatment vs CAV/hM3D/wit hout CNO				11.33	P=0.5649	ns
	no treatment vs XFP/optrode				-2.02	P>0.9999	ns

Ext Figure 2i	% of time M v F controls +CNO	<i>n</i> = 10, 9 mice					
	freezing M v F		not passed	Mann-Whitney test (two-tailed)	U=44.5	P = 0.9781	ns
	hiding M v F		not passed	Mann-Whitney test (two-tailed)	U=39	P=0.6254	ns
	ambulatory M v F		not passed	Mann-Whitney test (two-tailed)	U=38.5	P=0.6132	ns
	running M v F		not passed	Mann-Whitney test (two-tailed)	U=45	P >0.9999	ns
	rattling M v F		not passed	Mann-Whitney test (two-tailed)	U=45	$P \ge 0.9999$	ns

Ext Figure 2j	% of time M v F hM3D +CNO	<i>n</i> = 5, 10 mice					
	freezing M v F		not passed	Mann-Whitney test (two-tailed)	U=14	P=0.2065	ns
	hiding M v F		not passed	Mann-Whitney test (two-tailed)	U=16.5	P = 0.2674	ns
	ambulatory M v F		not passed	Mann-Whitney test (two-tailed)	U=16.5	P=0.3243	ns
	running M v F		not passed	Mann-Whitney test (two-tailed)	U=22.5	P = 0.7855	ns
	rattling M v F		not passed	Mann-Whitney test (two-tailed)	U=19	P=0.4922	ns

Ext Figure 2k	% of time M v F controls+ sham	<i>n</i> = 8, 9 mice					
	freezing M v F		not passed	Mann-Whitney test (two-tailed)	U=33	P = 0.8002	ns
	hiding M v F		not passed	Mann-Whitney test (two-tailed)	U=31.5	P=0.6522	ns
	ambulatory M v F		not passed	Mann-Whitney test (two-tailed)	U=33	P=0.7957	ns
	running M v F		not passed	Mann-Whitney test (two-tailed)	U=33.5	P >0.9999	ns
	rattling M v F		not passed	Mann-Whitney test (two-tailed)	U=32.5	P = 0.7501	ns
	-		-	-	•	-	_
Ext Figure 2j	% of time M v F controls+ sham stim	<i>n</i> = 8, 9 mice					
	freezing M v F		not passed	Mann-Whitney test (two-tailed)	U=25.5	P=0.2643	ns
	hiding M v F		not passed	Mann-Whitney test (two-tailed)	U=24.5	P =0.2788	ns
	ambulatory M v F		not passed	Mann-Whitney test (two-tailed)	U=26.5	P=0.3814	ns
	running M v F		not passed	Mann-Whitney test (two-tailed)	U=30.5	P =0.6857	ns
	rattling M v F		not passed	Mann-Whitney test (two-tailed)	U=30.5	P = 0.6072	
				•		•	
Ext Figure 3g	% of time vMT- to-NA	<i>n</i> = 14, 3 mice					
	freezing vMT-to- NA vs controls		not passed	Mann-Whitney test (two-tailed)	U=20	P =0.9324	ns
	hiding vMT-to- NA vs controls		not passed	Mann-Whitney test (two-tailed)	U=20	P =0.9471	ns
	ambulatory vMT- to-NA vs controls		not passed	Mann-Whitney test (two-tailed)	U=12.5	P=0.3118	ns
	running vMT-to- NA vs controls		not passed	Mann-Whitney test (two-tailed)	U=14.5	P =0.5368	ns
	rattling vMT-to- NA vs controls		not passed	Mann-Whitney test (two-tailed)	U=15	P =0.5412	ns
	•		-	•			
Ext Figure 4b	number of vMT cells	<i>n</i> = 4, 4 mice					
	PFC vs BLA		not passed	Mann-Whitney test (two-tailed)	U=7	P 0.8857	ns
				•			
Ext Figure 5a	% of mice rattling	<i>n</i> = 14, 8,8, 5 mice					
	controls vs. vMT- BLA			Fisher's exact test		P=0.6106	ns
	controls vs. vMT- PFC			Fisher's exact test		P>0.9999	ns
	controls vs. vMT- PFC terminals			Fisher's exact test		P=0.4028	ns
				•		-	
Ext Figure 5b	% of rattling events in the open	<i>n</i> = 14, 1,16, 13 rattles					
	controls vs. vMT- BLA			Fisher's exact test		P=0.1333	ns
	controls vs. vMT- PFC			Fisher's exact test		P=0.0860	ns
	controls vs. vMT- PFC terminals			Fisher's exact test		P<0.0001	***
I				!			
Ext Figure 5c	% of running in the open	<i>n</i> = 5, 1, 2, 6 runs					
	controls vs. vMT- PFC terminals			Fisher's exact test		P=0.0152	*

Ext Figure 5d	% of mice rattling	<i>n</i> = 17, 17, 15 mice					
	controls vs. co- activate			Fisher's exact test		P=0.2818	ns
	controls vs. pre-			Fisher's exact test		P=0.2907	ns
	pre-activate vs. co-			Fisher's exact test		P>0.9999	ns
	activate						
	0/ - f						
Ext Figure 5e	events in the	<i>n</i> = 21, 67, 46 rattles					
	controls vs. co- activate			Fisher's exact test		P>0.9999	ns
	controls vs. pre-			Fisher's exact test		P=0.0364	*
	pre-activate vs. co-			Fisher's exact test		P=0.0064	**
	activate						
	% of running in						
Ext Figure 5f	the open	<i>n</i> = 7, 23,15 runs					
	activate			Fisher's exact test		P=0.0242	*
	controls vs. pre- activate			Fisher's exact test		P=0.0225	*
	pre-activate vs. co- activate			Fisher's exact test		P>0.9999	ns
Eut Eigung (h	% of time freezing (cat	u = 7.0 miss	not massed	Mann Whitney toot (true toiled)	11-10	D = 0.0212	*
Ext Figure 00	odor) controls v chR2 activate	<i>n</i> - <i>i</i> , <i>j</i> mice	not passed	wann-winnieg test (two-tailed)	0-10	1 -0.0212	
Ext Figure 6c	% of time avoiding (cat odor) controls v	<i>n</i> = 7, 9 mice	passed	Unpaired <i>t</i> -test (two-tailed)	t=2.82 df=14	P=0.0136	*
	chR2 activate						
					Kruskal-Wallis		
Ext Figure 6e	% shallow choice	<i>n</i> = 14, 15, 9 mice	not passed	Kruskal-Wallis one-way ANOVA	statistic = $2,248$	P =0.3250	ns
	controls ve			Durin's multiple comparisons test	Mean fank uni.		
	hM4D				4.786	P=0.4423	ns
	hM3D				3.786	P=0.9567	ns
	hM3D vs. hM4D				-1	P >0.9999	ns
	and a firm of the			1			I
Ext Figure 6g	controls v chR2 activate	<i>n</i> = 7, 7 mice	not passed	Mann-Whitney test (two-tailed)	U=11	P =0.0973	ns
Ext Figure 6i	average tail rattling events	n= 14, 7 mice; tested 2 times	not passed	Mann-Whitney test (two-tailed)	U=38	P=0.2800	ns
		I					
Ext Figure 6j	% mice attacking	<i>n</i> = 14, 7 mice		Fisher's exact test		P>0.9999	ns
Ext Figure 6k	latency to attack	<i>n</i> = 7, 3 mice	not passed	Mann-Whitney test (two-tailed)	U=10	P>0.9999	ns
T		•					
Ext Figure 61	% time in center						
	ChR2, laser on v off	n=10 mice Chr2	passed	Paired <i>t</i> -test (two-tailed)	t=0.624 df=9	P =0.5481	ns

	XFP, laser on v off	n=10 mice XFP	passed	Paired <i>t</i> -test (two-tailed)	t=0.1483 df=9	P =0.8854	ns
Ext Figure 6n	% time in center						
	ChR2, laser on v off	<i>n</i> = 10 mice Chr2, relative to XFP (dashed line)	passed	Paired <i>t</i> -test (two-tailed)	t=1.742 df=9	<i>P</i> =0.1154	ns
		(duoned inte)	1				
	relative pupil size	n = 14 mice each					
Ext Figure 7a	(light pulse)in controls	tested with and without CNO					
	0s, XFP CNO v no CNO		passed	Paired t-test (two-tailed)	t=0.6874 df=13	P =0.5039	ns
	5s, XFP CNO v no CNO		passed	Paired <i>t</i> -test (two-tailed)	t=1.066 df=13	P =0.3058	**
	10s, XFP CNO v no CNO		passed	Paired t-test (two-tailed)	t=1.859 df=13	P=0.0858	ns
	15s, XFP CNO v no CNO		passed	Paired t-test (two-tailed)	t=1.47 df=13	P=0.1652	ns
	20s, XFP CNO v no CNO		passed	Paired t-test (two-tailed)	t=1.574 df=13	P =0.1394	ns
	25s, XFP CNO v no CNO		passed	Paired t-test (two-tailed)	t=1.498 df=13	P=0.1580	ns
	30s, XFP CNO v no CNO		passed	Paired t-test (two-tailed)	t=1.773 df=13	P =0.0996	ns
	35s, XFP CNO v no CNO		passed	Paired t-test (two-tailed)	t=1.489 df=13	P=0.1603	ns
	40s, XFP CNO v no CNO		passed	Paired t-test (two-tailed)	t=1.401 df=13	P=0.1847	ns
	45s, XFP CNO v no CNO		passed	Paired t-test (two-tailed)	t=0.0605 df=13	P=0.9257	ns
	50s, XFP CNO v no CNO		passed	Paired t-test (two-tailed)	t=0.4354 df=13	P=0.6704	ns
	55s, XFP CNO v no CNO		passed	Paired t-test (two-tailed)	t=0.6405 df=13	P=0.5330	ns
	60s, XFP CNO v no CNO		passed	Paired t-test (two-tailed)	t=0.1749 df=13	P =0.8639	ns
	relative pupil size	n=15 mice, each					
Ext Figure 7b	(light pulse) in	tested with and					
_	hM3D mice	without CNO					
	0s, hM3D CNO v no CNO		passed	Paired <i>t</i> -test (two-tailed)	t=4.172 df=14	P =0.00094	***
	5s, hM3D CNO v no CNO		passed	Paired t-test (two-tailed)	t=3.865 df=14	P =0.00017	**
	10s, hM3D CNO v no CNO		passed	Paired t-test (two-tailed)	t=4.498 df=14	P =0.0005	***
	15s, hM3D CNO v no CNO		passed	Paired t-test (two-tailed)	t=4.696 df=14	<i>P</i> =0.00034	***
	20s, hM3D CNO v no CNO		passed	Paired t-test (two-tailed)	t=4.392 df=14	P =0.00061	***
	25s, hM3D CNO v no CNO		passed	Paired t-test (two-tailed)	t=4.341 df=14	P =0.00068	***
	30s, hM3D CNO v no CNO		passed	Paired t-test (two-tailed)	t=5.334 df=14	P =0.00011	***
	35s, hM3D CNO v no CNO		passed	Paired <i>t</i> -test (two-tailed)	t=4.782 df=14	P =0.00029	***
	40s, hM3D CNO v no CNO		passed	Paired t-test (two-tailed)	t=2.52 df=14	P=0.0244	*
	45s, hM3D CNO v no CNO		passed	Paired t-test (two-tailed)	t=3.087 df=14	P =0.0080	**
	50s, hM3D CNO v no CNO		passed	Paired <i>t</i> -test (two-tailed)	t=1.633 df=14	<i>P</i> =0.124	ns

	55s, hM3D CNO v no CNO		passed	Paired t-test (two-tailed)	t=0.9465 df=14	P =0.359	ns
	60s, hM3D CNO v no CNO		passed	Paired t-test (two-tailed)	t=0.5985 df=14	P =0.559	ns
	1 10 0110						
	relative pupil size	n=9 mice, each					
Ext Figure 7c	(light pulse) in	tested with and					
Line inguite / e	hM4D mice	without CNO					
	0e bM4D CNO v	without of to					
	no CNO		passed	Paired <i>t</i> -test (two-tailed)	t=0.3019 df=8	P =0.7705	ns
	5s, hM4D CNO v		nassed	Paired t-test (two-tailed)	t=0.6862 df=8	P = 0.5120	ns
	no CNO		passed	Taned t-test (two-taned)	1-0.0002 ui-0	1 -0.5120	115
	10s, hM4D CNO		1		0.0240.16.0	D 0 1000	
	v no CNO		passed	Paired 7-test (two-tailed)	t=0.8249 df=8	P = 0.4333	ns
	15s hM4D CNO						
	v no CNO		passed	Paired <i>t</i> -test (two-tailed)	t=1.118 df=8	P = 0.2960	ns
	20a hM4D CNO						
	20s, mil4D CNO		passed	Paired t-test (two-tailed)	t=0.9909 df=8	P = 0.3508	ns
	v no CNO		*				
	25s, hM4D CNO		passed	Paired t-test (two-tailed)	t=1 205 df=8	P = 0.2627	ns
	v no CNO		passee	Faired F test (two tailed)	t 1.205 di 0	1 0.2027	115
	30s, hM4D CNO		1		4 205 16 0	D 0.0504	
	v no CNO		passed	Paired <i>t</i> -test (two-tailed)	t=1.205 df=8	P = 0.2584	ns
	35s hM4D CNO						
	v no CNO		passed	Paired t-test (two-tailed)	t=1.596 df=8	P = 0.1491	ns
	40- LMAD CNO						
	40s, nM4D CNO		passed	Paired t-test (two-tailed)	t=1.088 df=8	P = 0.3084	ns
	v no CNO		1	, , , , , , , , , , , , , , , , , , ,			
	45s, hM4D CNO		passed	Paired t-test (two-tailed)	t=2.228 df=8	P = 0.0565	ns
	v no CNO		passed	Taned t-test (two-taned)	t-2.220 ti-0	1 -0.0505	115
	50s, hM4D CNO		1		2 407 16 0	D 0.0000	steate
	v no CNO		passed	Paired <i>t</i> -test (two-tailed)	t=3.48/dt=8	P = 0.0082	**
	55s hM4D CNO						
	une CNO		passed	Paired t-test (two-tailed)	t=3.885 df=8	P = 0.0046	**
	V HO CINO						
	60s, hM4D CNO		passed	Paired <i>t</i> -test (two-tailed)	t=1.037 df=8	P = 0.3300	ns
	v no CNO		1	,			
D.D	relative pupil size	<i>n</i> = 15 hM3D, 14			Kruskal-Wallis	D 0.0025	steate
Ext Figure 7e	constant light	XFP. 9 hM4D mice	not passed	Kruskal-Wallis one-way ANOVA	statistic $= 11.29$	P = 0.0035	**
	0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Dunn's multiple comparisons test	Mean rank diff		
	a set CNO 1 M2D			Dunit's multiple comparisons test	Mean fank ciff.		
	post CNO nM3D				7.545	P=0.0819	ns
	v XFP						
	post CNO hM3D				11 38	P=0.0046	**
	v hM4D				11.50	1 -0.0040	
	post CNO XFP				2.022	D 0.0005	
	v hM4D				5.855	P = 0.9895	ns
	rolativo pupil sizo	n= 15 hM3D 14					
Ext Figure 7f	relative pupil size	n = 15 mm 5D, 14	passed	one-way ANOVA	F _{2,35} =9.718	P=0.0004	***
	constant dark	AFP, 9 hM4D mice	^		<i></i>		
	post CNO hM3D			Tukey's multiple comparisons test		P=0.0008	***
	v XFP			- mailine companionis test		- 0.0000	
	post CNO hM3D			Tukovla multipla anno sino si		D=0.0040	**
1	v hM4D	1	1	rukey's multiple comparisons test		r -0.0000	1

Ext Data Fig 7g	relative pupil size (constant dark)	<i>n</i> = 11 mice ChR2 activate; <i>n</i> =12 mice XFP controls					
	ChR2 v XFP		passed	Unpaired t-test (two-tailed)	t=3.375 df=21	P=0.0029	**

Tukey's multiple comparisons test

v hM4D post CNO XFP

v hM4D

	number of c-						
Ext Figure 8b	Fos+ cells in the	<i>n</i> = 7,6, 10, 5 mice	passed	one-way ANOVA	F _{3,24} =10.36	P=0.0001	***
_	vMT						

P=0.9668

ns

above vs. none	Tukey's multiple comparisons test	P=0.0002	***
above vs. below	Tukey's multiple comparisons test	P=0.0031	**
above vs. habituate	Tukey's multiple comparisons test	P=0.002	**
none vs. below	Tukey's multiple comparisons test	P=0.9735	ns
none vs. habituate	Tukey's multiple comparisons test	P=0.9627	ns
below vs. habituate	Tukey's multiple comparisons test	P>0.9999	ns

Ext Figure 8c	number of c- Fos+ cells in the Xi	<i>n</i> = 7,10, 5 mice	passed	one-way ANOVA	F _{2,19} =19.75	<i>P</i> <0.0001	***
	above vs. none			Tukey's multiple comparisons test		P<0.0001	***
	above vs. below			Tukey's multiple comparisons test		P<0.0001	***
	above vs. habituate			Tukey's multiple comparisons test		P<0.0001	***
	none vs. below			Tukey's multiple comparisons test		P=0.8767	ns
	none vs. habituate			Tukey's multiple comparisons test		P=0.7388	ns
	below vs. habituate			Tukey's multiple comparisons test		P=0.9973	ns

Ext Figure 10a	arousal levels	<i>n</i> = 9, 7, 10 mice					
	tail rattling		not passed	Quasi-Poisson GLM	F _{2,23} =14.842	P=0.00007	***
				pairwise comparisions			
	rattling in mice with low v moderate arousal					P=0.02043	*
	rattling in mice with low v high arousal					P=0.00225	**
	rattling in mice with moderate v high arousal					P=0.05603	ns

Ext Figure 10b	arousal levels	<i>n</i> = 9, 7, 10 mice					
	running		not passed	Poisson GLM	$X_{3,31}^2 = 17.7$	P=0.000138	***
				pairwise comparisions			
	running in mice with low v moderate arousal					P=0.06065	ns
	running in mice with low v high arousal					P=0.00191	**
	running in mice with moderate v					P=0.069227	ns

Ext Figure 10c	arousal levels	<i>n</i> = 9, 7, 10 mice	not passed	Kruskal-Wallis one-way ANOVA	Kruskal-Wallis statistic = 0.915	P =0.6329	ns
	freezing			Dunn's multiple comparisons test	Mean rank diff.		
	freezing in mice with low v moderate arousal				3.079	P>0.9999	ns
	freezing in mice with low v high arousal				2.322	. <i>P</i> >0.9999	ns
	freezing in mice with moderate v high arousal				-0.7571	P>0.9999	ns

Ext Figure	arousal levels	<i>n</i> = 9, 7, 10 mice	not passed	Kruskal-Wallis one-way ANOVA	Kruskal-Wallis	P=0.3676	ns
100	hiding			Dupp's multiple comparisons test	Moon rank diff		
	hiding in mice			Dunit's multiple compansons test	Weall falls ulli.		
	with low v				-5 31	P=0.4770	115
	moderate arousal				0101	1 0.1170	110
	hiding in mice						
	with low v high				-1.917	P>0.9999	ns
	arousal						
	hiding in mice						
	with moderate v				3.393	P>0.9999	ns
	high arousal						
				1	1	T	
Ext Figure 10e	arousal levels	<i>n</i> = 9, 7, 10 mice					
	% of mice tail						
	rattling						
	low v moderate			Fisher's exact test		P=0.3147	ns
	low v high			Fisher's exact test		P=0.0031	**
	moderate v high			Fisher's exact test		P=0.1544	ns
	-	-	-		•		
Ext Figure 10f	arousal levels	<i>n</i> = 9, 7, 10 mice					
	% of mice						
	running						
	low v moderate			Fisher's exact test		P=0.0406	*
	low v high			Fisher's exact test		P=0.0007	***
	moderate v high			Fisher's exact test		P=0.4118	ns
Ext Figure 10g	arousal levels	<i>n</i> = 9, 7, 10 mice					
	% of mice						
	freezing						
	low v moderate			Fisher's exact test		P>0.9999	ns
	low v high			Fisher's exact test		P>0.9999	ns
	moderate v high			Fisher's exact test		P>0.9999	ns
Ext Figure 10h	arousal levels	<i>n</i> = 9, 7, 10 mice					
	% of mice hiding						
	low v moderate			Fisher's exact test		P=0.3077	ns
	low v high			Fisher's exact test	1	P>0.9999	ns
	moderate v high			Fisher's exact test		P=0.3382	ns