Science Advances

Supplementary Materials for

INTS11 regulates hematopoiesis by promoting PRC2 function

Peng Zhang*, Pinpin Sui, Shi Chen, Ying Guo, Ying Li, Guo Ge, Ganqian Zhu, Hui Yang, Cody M. Rogers, Patrick Sung, Stephen D. Nimer, Mingjiang Xu, Feng-Chun Yang*

*Corresponding author. Email: yangf1@uthscsa.edu (F.-C.Y.); zhangp1@uthscsa.edu (P.Z.)

Published 1 September 2021, *Sci. Adv.* 7, eabh1684 (2021) DOI: 10.1126/sciadv.abh1684

This PDF file includes:

Figs. S1 to S8 Tables S1 and S2

Е

в

		VavCre-	VavCre+;Ints11 ^{flox/+}	VavCre+;Ints11 ^{flox/flox}
	Expected	50%	25%	25%
E13.5	Observed (n = 44)	50.0% (n = 22)	22.7% (n = 10)	27.3% (n = 12)
E14.5	Observed (n = 40)	52.5% (n = 21)	25.0% (n = 10)	22.5% (n = 9)
E15.5	Observed (n = 34)	44.1% (n = 15)	32.4% (n = 11)	23.5% (n = 8)
E16.5	Observed (n = 35)	57.1% (n = 20)	14.3% (n = 5)	28.6% (n = 10)
E17.5	Observed (n = 37)	59.4% (n = 22)	18.9% (n = 7)	21.6% (n = 8)
E18.5	Observed (n = 22)	50.0% (n = 11)	40.9% (n = 9)	9.09% (n = 2)
E15.5 E16.5 E17.5 E18.5	Observed (n = 34) Observed (n = 35) Observed (n = 37) Observed (n = 22)	44.1% (n = 15) 57.1% (n = 20) 59.4% (n = 22) 50.0% (n = 11)	32.4% (n = 11) 14.3% (n = 5) 18.9% (n = 7) 40.9% (n = 9)	23.5% (n = 8) 28.6% (n = 10) 21.6% (n = 8) 9.09% (n = 2)

С

D

(E13.5)

0

LT-HSC ST-HSC

0.05

0.00

æ

ò 0

MPP

Fig. S1. INTS11 is required for fetal hematopoiesis. (A) Schematic of the targeted mouse Ints11 allele. Targeting vector contained exon 2 flanked by LoxP sites (blue) and a neomycin resistance gene flanked by FRT (orange). The locations of primers are shown. (B) Genotype analysis of embryos after mating of Vav1Cre⁺;Ints11^{flox/+} (female) x Vav1Cre⁻;Ints11^{flox/flox} (male) mice. (C) Genotyping of Vav1Cre⁺;Ints11^{flox/flox} embryos and controls. (D) mRNA levels of Ints11 in fetal liver CD45⁺ cells from $Vav1Cre^{-}$ (n = 6) and $Vav1Cre^{+}$; Ints 11^{flox/flox} (n = 4) embryos at E13.5. (E) Representative images of E13.5 embryos from Vav1Cre⁺:Ints11^{flox/flox} and control littermates. Photo Credit: Peng Zhang, University of Texas Health Science Center at San Antonio. (F and G) Quantification of the percentages of LT-HSC, ST-HSC, and MPP cell populations from control (n = 11) and $Vav1Cre^+$; Ints11^{flox/flox} (n = 7) fetal livers at E13.5. LT-HSC, Lin-Sca1⁺cKit⁺CD34⁻ CD135; ST-HSC, Lin Sca1⁺cKit⁺CD34⁺CD135; MPP, Lin Sca1⁺cKit⁺CD34⁺CD135⁺. (H) Representative images of colony formation for fetal liver cells from Vav1Cre⁺;Ints11^{flox/flox} and controls are shown. The images were taken on the 7th day of the assay. (I) Flow cytometric analysis of erythroid cells from control and Vav1Cre⁺;Ints11^{flox/flox} fetal livers at E13.5. (J) Quantification of the percentages of CD71⁺/TER119⁺ cells from control (n = 3) and $Vav1Cre^+$; Ints11^{flox/flox} (n = 3) 4) fetal livers at E13.5. Data are shown as the mean \pm SEM. Unpaired Student's *t*-test; **P < 0.01, ****P* < 0.001.

Fig. S2. INTS11 deletion leads to hematopoietic failure. (A) Genotyping of $Mx1Cre^+;Ints11^{flox/flox}$ ($Ints11^{\Delta/\Delta}$) and $Mx1Cre^+$ (WT) control mice. (B and C) Frequencies of T (CD4⁺, CD8⁺, and CD4⁺/CD8⁺, B) and B cells (B220⁺, C) in PB from WT and $Ints11^{\Delta/\Delta}$ mice (n = 8 per genotype) 12 days after poly(I:C) injection. (D) Flow cytometric analysis of erythroid cells in BM from WT and $Ints11^{\Delta/\Delta}$ mice 12 days after poly(I:C) injection. (E-G) Frequencies of erythroid (CD71⁺/TER119⁺, E), T (CD4⁺, CD8⁺, and CD4⁺/CD8⁺, F) and B cells (B220⁺, G) in BM from WT (n = 7) and $Ints11^{\Delta/\Delta}$ mice (n = 10) are shown. (H) Body weight of WT and $Ints11^{\Delta/\Delta}$ mice (n = 9 per genotype) 12 days after first poly(I:C) injection. (I) The gross appearance of spleen from WT and $Ints11^{\Delta/\Delta}$ mice. Photo Credit: Peng Zhang, University of Texas Health Science Center at San Antonio. (J-M) Frequencies of myeloid cells (Gr1⁺/Mac1⁺, J), erythroid cells (CD71⁺/TER119⁺, K), T cells (CD4⁺, CD8⁺, and CD4⁺/CD8⁺, L), and B cells (B220⁺, M) in the spleens from WT and $Ints11^{\Delta/\Delta}$ mice (n = 8 per genotype) 12 days after poly(I:C) injection. Data are shown as the mean \pm SEM. Unpaired Student's *t*-test; *P < 0.05, **P < 0.01, ***P < 0.001.

Fig. S3. Loss of *Ints11* results in HSPC defects and impairs hematopoietic reconstitution. (A) BM cellularity of WT (n = 7) and *Ints11*^{Δ/Δ} mice (n = 10) 72 hours after first poly(I:C) injection. (B-E) Absolute number of HSPC populations from WT (n = 7) and *Ints11*^{Δ/Δ} mice (n = 10) 72 hours after poly(I:C) injection are shown. (F) Flow cytometric analysis of lineage negative (Lin⁻) cells in BM from WT and *Ints11*^{Δ/Δ} mice 12 days after first poly(I:C) injection. (G) Quantification of the percentage of Lin⁻ cells in total BM cells from WT (n = 7) and *Ints11*^{Δ/Δ} mice (n = 10) 12 days after poly(I:C) injection. (H) The percentages of LT-HSC, ST-HSC, and MPP in total BM cells from WT (n = 4) and *Ints11*^{Δ/Δ} mice (n = 6) 12 days after poly(I:C) injection are shown. Data are shown as the mean ± SEM. Unpaired Student's *t*-test; *P < 0.05, **P < 0.01, ***P < 0.001. (I) Schematic for competitive repopulation assay. CD45.2⁺ BM cells from *Mx1Cre*⁺ or *Mx1Cre*⁺;*Ints11*^{flox/flox} mice were mixed with equal numbers of CD45.1⁺ competitor cells and transplanted into lethally irradiated CD45.1⁺ recipient mice. *Ints11* deletion was induced upon confirmation of comparable engraftment rates. (J and K) The percentages of *Ints11*^{Δ/Δ}-derived (CD45.2⁺) versus CD45.1⁺ cells in the populations of T cell (J) and B cell (K) from PB of recipient animals at indicated time points (n = 4).

Fig. S4. Loss of *Ints11* derepresses PRC2 target genes in HSPCs. (A) Volcano plot showing the significantly dysregulated genes in *Ints11*^{Δ/Δ} Lin⁻cKit⁺ (LK) cells compared with WT controls (FDR < 0.05 and |fold change| > 1.8). (B) Fragments per kilobase of transcript per million (FPKM) values of indicated members of the Integrator complex in RNA-seq are shown. (C) Relative mRNA levels of indicated members of the Integrator complex in LK cells are shown. (D-F) GSEA plots show that transcriptional signatures associated with cell-cycle transition (D), apoptosis (E), and PRC2 targets (F) are dysregulated in *Ints11*^{Δ/Δ} LK cells. The NES, *P*-value and FDR are shown. (G) FPKM values of genes associated with cell-cycle, apoptosis, and PRC2 targets in RNA-seq are shown. (H and I) Cell-cycle analysis of HSPCs from WT (*n* = 4) and *Ints11*^{Δ/Δ} (*n* = 5) mice 72 hours after poly(I:C) injection. (K) Apoptosis analysis of HSPCs from WT (*n* = 4) and *Ints11*^{Δ/Δ} (*n* = 5) mice 72 hours after poly(I:C) injection. (K) Apoptosis analysis of HSPCs from WT (*n* = 4) and *Ints11*^{Δ/Δ} (*n* = 5) mice 72 hours after poly(I:C) injection. (K) Apoptosis analysis of HSPCs from WT (*n* = 4) and *Ints11*^{Δ/Δ} (*n* = 5) mice 72 hours after poly(I:C) injection. (K) Apoptosis analysis of HSPCs from WT (*n* = 4) and *Ints11*^{Δ/Δ} (*n* = 5) mice 72 hours after poly(I:C) injection. (K) Apoptosis analysis of HSPCs from WT (*n* = 4) and *Ints11*^{Δ/Δ} (*n* = 5) mice 72 hours after poly(I:C) injection. (K) Apoptosis analysis of HSPCs from WT (*n* = 4) and *Ints11*^{Δ/Δ} (*n* = 5) mice 72 hours after poly(I:C) injection. (K) Apoptosis analysis of HSPCs from WT (*n* = 4) and *Ints11*^{Δ/Δ} (*n* = 5) mice 72 hours after poly(I:C) injection by Annexin V/7-AAD staining. Data are shown as the mean ± SEM. Unpaired Student's *t*-test; **P* < 0.05, ***P* < 0.01, ****P* < 0.001.

Fig. S5. Transcriptomic changes of HSPC populations in *Ints11*-deficient cKit⁺ cells. (A) UMAP visualization of LT-HSC, ST-HSC, MPP2, and MPP3 cells for WT and *Ints11*^{Δ/Δ}, respectively. Each dot represents one cell, and cluster identity is color-coded (Seurat). (B) Percentages of each hematopoietic cluster in WT and *Ints11*^{Δ/Δ} cKit⁺ cells are shown. (C-E) Violin plots of erythrocyte/megakaryocyte (C), apoptosis (D), and proliferation (E) transcription signatures in indicated populations are shown. The scores were calculated based on the expression values for genes in given gene sets. (F) Cell cycle phase distributions in different populations of WT and *Ints11*^{Δ/Δ} cells. (G and H) Violin plots showing the log-transformed normalized expression levels of *Gata2* (G) and *Cdkn1a* (H) in HSPC populations. Mann-Whitney U test; **P* < 0.05, ***P* < 0.01, ****P* < 0.001, ****P* < 0.001.

Fig. S6. INTS11 interacts with the PRC2 complex. (A) Genome-wide distribution of INTS11enriched regions in hematopoietic cells (GSE106359). Regions that overlap in the two biological replicates are preserved. (B) Representative ChIP-Seq tracks show INTS11 and SUZ12 co-occupy the gene promoters in hematopoietic cells. (C) Schematic representation of the lentiviral vectors expressing mouse *Ints11* gene (FLAG-INTS11) and the empty vector (EV) control. RRE, Rev Response Element. SFFV, spleen focus-forming virus. WPRE, woodchuck hepatitis virus posttranscriptional regulatory element. (D) Reciprocal EZH2 IP from nuclear extracts of 293T cells transfected with FLAG-tagged INTS11 or EV, and representative immunoblot analysis is shown. Arrowhead indicates the FLAG-fusion protein. (E) Coomassie blue-stained gel shows the GST-INTS11 fusion protein and GST control. (F) The GST-INTS11 fusion protein was immobilized on glutathione-agarose beads and incubated with SUZ12 or EED, respectively. Immobilized GST protein was used as controls.

Fig. S7. INTS11 deletion reduces the H3K27me3 enrichment by destabilizing the PRC2 complex. (A) The protein levels of CTCF and HDAC1 in LK cells from WT and *Ints11*^{Δ/Δ} mice 72 hours after first poly(I:C) injection are shown. (B) qPCR showing the mRNA expression levels of indicated members of PRC2 complex in LK cells. (C) Western blot analysis of H3K27me3 and indicated subunits of the PRC2 complex in fetal liver cells from *Vav1Cre⁻* and *Vav1Cre⁺*;*Ints11*^{flox/flox} embryos at E13.5. H3 and β -ACTIN were used as loading controls. (D) Heatmaps of normalized H3K27me3 ChIP-seq read densities centered on the midpoints of all H3K27me3 regions. Each row represents a single region. (E) Global levels of H3K4me3 at peaks and 5-kb regions surrounding the peak midpoint. The coverages were normalized by the sequencing depth and averaged in 2 biological replicates. (F) Normalized H3K27me3 signals on *Perp* and *Trib1* gene loci are shown. (G) ChIP-qPCR showing the enrichment of H3K4me3 at the promoters of the genes in Fig. 4F (*n* = 4 per genotype). Data are shown as the mean ± SEM.

Fig. S8. Re-expression of INTS11 increases the PRC2 activity and rescues the Ints11-deficient **phenotypes.** (A) qPCR showing the mRNA levels of *Ints11* in *Ints11*^{Δ/Δ} cells transduced with FLAG-INTS11. Each dot represents an individual mouse (n = 6 to 7 per group). (B) The enrichment of H3K27me3 at the promoters of the indicated genes in Ints11^{Δ/Δ} cells transduced with FLAG-INTS11 (n = 4 to 5 per group). (C) Schematic representation of *in vivo* rescue assay. BM mononuclear cells from 5-FU treated $Mx1Cre^+$; Ints11^{flox/flox} mice (CD45.2⁺) were transduced with a lentiviral vector (FLAG-INTS11 or EV control) and then transplanted into lethally irradiated CD45.1⁺ recipient mice. Ints11 deletion was induced after 4 weeks of transplantation. (D) Western blotting showing the expression of FLAG-INTS11 in cKit⁺ cells from recipient receiving Ints11^{Δ/Δ} cells transduced with FLAG-INTS11. (E) Flow cytometric analysis of HSPC populations from recipients receiving Ints $11^{\Delta/\Delta}$ cells transduced with FLAG-INTS11 after 8 weeks of poly(I:C) injection. The population of HSPCs (LSK and LKS⁻) was restored and confirmed the expression of GFP in the recipient mice. (F) Pie-charts showing the proportion of colony size in Ints11-deficient cKit⁺ cells transduced with PRC2 subunits (EZH2 and/or SUZ12). (G and H) qPCR showing the mRNA levels of *Ezh2* and *Suz12* (G) and PRC2 targets (H) in *Ints11*^{Δ/Δ} cells transduced with EZH2 and/or SUZ12. Each dot represents an individual mouse (n = 5 to 6 per group). (I) The levels of H3K27me3 at the promoters of indicated PRC2 target genes are shown (n = 4 per group). Data are shown as the mean \pm SEM. Unpaired Student's *t*-test, or one-way ANOVA with Tukey's multiple comparisons test; *P < 0.05, **P < 0.01, ***P < 0.001.

Name	Forward	Reverse
Genotyping P	PCR	·
Ints11-flox	ATGCCTACGTAAGGAAAGCAGACT	TGAGGTCTAGTGTTGAATGAAGCC
Ints11-Rec	GATGGCTCCTCAGCGTCATT	CTAGGCCACTGCCGGTTTAT
qPCR		•
Ints11	TCATGTTGGACTGTGGGATG	TGGGTGATGTAAGAAAAGTCAGG
Ints3	GAGTTACAGAAGGGAAAGGGGA	ACTGGTTGAAAGTAGCAGCCT
Ints4	CACCTGAAAAAGCGGGTGTAT	AATCGGAGCTTCTTGGTAGCA
Ints7	TCCGCTCTTATGGAACTGGAC	AGGGAACGGGTACTTCTGGAA
Ints9	CCCCAGGCTATCTAATCTTCCC	AATCCACAAATACATGACCGGAG
Ints10	ACACCATCGAACGGAATGCC	GCTGGTCCGGGAAATTCACAA
Ints13	GTTGTGGATCACTGCCCATAC	GGGAGCCAAAGGGATGATGC
Ezh2	ACTTCTGTGAGCTCATTGCG	CGACTGCATTCAGGGTCTTT
Suz12	CCAACGATAAGTCTACAGCTCC	GTAGTCAGCGTCTCCTTAACAG
Eed	TCCACTTTCCTGACTTTTCTACC	CCATTTTGCCAGGTTTCCAG
Rbbp4	GACGACGCAGTGGAAGAAC	CTGGGCAGTTAAGCTGGGC
Rbbp7	GAGCGTGTCATCAACGAAGAG	CCACTGAACGGTAAGACTGGG
Cdkn1a	CCTGGTGATGTCCGACCTG	CCATGAGCGCATCGCAATC
Cdkn2b	CCCTGCCACCCTTACCAGA	CAGATACCTCGCAATGTCACG
Gata2	ATACCCACCTATCCCTCCTATG	AGCCTTGCTTCTCTGCTTAG
Gpr68	TATCTTGCCCCATCGACCACA	AGTACCCGAAGTAGAGGGACA
Id2	ATGAAAGCCTTCAGTCCGGTG	AGCAGACTCATCGGGTCGT
Perp	ATGGAGTACGCATGGGGAC	GGCGAAGAACGAGAGAATGAAG
Plk2	AGCCAGAAGTCCGATACTACC	TCCCTAGCTTGAGATCCCTGT
Tribl	AGAACCCAGCTTAGACTGGAA	AAAAGCGTATAGAGCATCACCC
ChIP-qPCR		·
Cdknla	GCCCAAAGCGTGAGAATGAA	AAACAGGGCACTTGGTTCAC
Cdkn2b	GAAACATCCCTCGGCACTAG	GAGACATTGCTCCCAGATAGC
Gata2	GTCCACAATCCCTAGACTCATG	AGCCCAAATCCAACTGACTC
Gpr68	TCTCTACCTTCCTCCCAGCT	TCCTGACCTAGAGACTGGCT
Id2	GCCTTTTATCCTCTTTCTCCCC	CACAAGCACATTACCGAAACG
Perp	ACCAAAGCTACCCGGATTAAG	CGGATCTACCTTTGGACCTTG
Plk2	CTTGGGCTCTCACTATCTGATC	TCCAGTTTTCTCGTTTCCCC
Trib1	TGGGTTTGGCAGAGCAGATA	CCACAGGAAAGCACTCAACC

Table S1. Primers used in this study.

Reagent or Resource	Source	Identifier
Antibodies	<u>.</u>	
Mouse lineage antibody cocktail APC	BD Pharmingen	Cat# 558074; RRID: AB 1645213
Rat monoclonal anti-mouse CD117 (cKit) PerCP- Cv5.5	BD Pharmingen	Cat# 560557; RRID: AB 1645258
Rat monoclonal anti-mouse CD117 (cKit) PE	BD Pharmingen	Cat# 553869; RRID: AB 395103
Rat monoclonal anti-mouse CD117 (cKit) APC	BD Pharmingen	Cat# 553356; RRID: AB 398536
Rat monoclonal anti-mouse Ly-6A/E (Sca1) PE- Cy7	BD Pharmingen	Cat# 558162; RRID: AB 647253
Rat monoclonal anti-mouse CD34 FITC	BD Pharmingen	Cat# 553733; RRID: AB 395017
Rat monoclonal anti-mouse CD34 Alexa Fluor 700	BD Pharmingen	Cat# 560518; RRID: AB 1727471
Rat monoclonal anti-mouse CD135 BV421	BD Pharmingen	Cat# 562898; RRID: AB 2737876
Rat monoclonal anti-mouse CD16/32 APC-Cy7	BioLegend	Cat# 101327; RRID: AB 1967102
Hamster monoclonal anti-mouse CD48 FITC	BD Pharmingen	Cat# 557484; RRID: AB 396724
Monoclonal anti-mouse CD150 PE	Thermo Fisher Scientific	Cat# 12-1502-82; RRID: AB 1548765
Rat monoclonal anti-mouse CD71 FITC	BD Pharmingen	Cat# 553266; RRID: AB 394743
Rat monoclonal anti-mouse CD71 PE	BD Pharmingen	Cat# 553267; RRID: AB 394744
Rat anti-mouse TER-119 APC	BD Pharmingen	Cat# 557909; RRID: AB 398635
Rat monoclonal anti-mouse Ly-6G and Ly-6C (Gr1) PerCP-Cy5.5	BD Pharmingen	Cat# 552093; RRID: AB 394334
Rat monoclonal anti-mouse Ly-6G and Ly-6C (Gr1) PE-Cy7	BD Pharmingen	Cat# 565033; RRID: AB 2739049
Rat monoclonal anti-mouse CD11b (Mac1) PE	BD Pharmingen	Cat# 553311; RRID: AB 394775
Rat monoclonal anti-mouse CD4 PerCP-Cy5.5	BD Pharmingen	Cat# 550954; RRID:
Rat monoclonal anti-mouse CD4 PE-Cy7	BD Pharmingen	Cat# 552775; RRID: AB 394461
Rat monoclonal anti-mouse CD8a PE	BD Pharmingen	Cat# 553033; RRID:
Rat monoclonal anti-mouse CD45R/B220 APC	BD Pharmingen	Cat# 553092; RRID:
Mouse monoclonal anti-mouse CD45.2 PerCP-	BD Pharmingen	Cat# 552950; RRID: AB 394528
Mouse monoclonal anti-mouse CD45.1 FITC	BD Pharmingen	Cat# 553775; RRID: AB 395043
Mouse monoclonal anti-mouse CD45 PE-Cy7	BD Pharmingen	Cat# 552848; RRID: AB 394489

Table S2. Detailed list of reagents used in this study.

7-AAD	BD Pharmingen	Cat# 559925; RRID: AB 2869266
Rabbit polyclonal anti-INTS11	Bethyl Laboratories	Cat# A301-274A; RRID: AB 937779
Rabbit polyclonal anti-INTS1	Bethyl Laboratories	Cat# A300-361A; RRID: AB 2127258
Rabbit polyclonal anti-INTS3	Bethyl Laboratories	Cat# A302-050A; RRID: AB 1604272
Rabbit polyclonal anti-INTS4	Bethyl Laboratories	Cat# A301-296A; RRID: AB 937909
Mouse monoclonal anti-β-Actin	MilliporeSigma	Cat# A2228; RRID: AB 476697
Rabbit monoclonal anti-mouse p21	Abcam	Cat# ab188224; RRID: AB_2734729
Rabbit polyclonal anti-H3K27me2	Cell Signaling Technology	Cat# 9728; RRID:
Rabbit polyclonal anti-H3K27me3	MilliporeSigma	Cat# 07-449; RRID: AB 310624
Rabbit polyclonal anti-H3K4me3	Diagenode	Cat# C15410003; RRID: AB 2616052
Rabbit polyclonal anti-H3	Abcam	Cat# ab1791; RRID: AB_302613
Rabbit monoclonal anti-EZH2	Cell Signaling Technology	Cat# 5246; RRID: AB 10694683
Mouse monoclonal anti-EZH2	MilliporeSigma	Cat# 17-662; RRID: AB 1977568
Rabbit monoclonal anti-SUZ12	Cell Signaling Technology	Cat# 3737; RRID: AB 2196850
Rabbit monoclonal anti-EED	Cell Signaling Technology	Cat# 85322
Rabbit polyclonal anti-RBBP4/7	Cell Signaling Technology	Cat# 4633; RRID: AB 1904116
Rabbit polyclonal anti-CTCF	MilliporeSigma	Cat# 07-729; RRID: AB 441965
Rabbit polyclonal anti-HDAC1	Thermo Fisher Scientific	Cat# PA1-860; RRID: AB 2118091
Mouse monoclonal anti-FLAG M2	MilliporeSigma	Cat# F3165; RRID: AB 259529
Mouse monoclonal anti-HA	MilliporeSigma	Cat# H3663; RRID: AB 262051
Mouse IgG, HRP-linked whole Ab (from sheep)	GE Healthcare	Cat# NA931; RRID: AB 772210
Rabbit IgG, HRP-linked F(ab') ₂ fragment (from donkey)	GE Healthcare	Cat# NA9340; RRID: AB 772191
Bacterial and Virus Strains		<u> </u>
NEB 5-alpha Competent E. coli	NEB	Cat# C2987H
BL21 (DE3) Competent E. coli	NEB	Cat# C2527H
One Shot Stb13 Chemically Competent E. coli	Thermo Fisher Scientific	Cat# C737303
Chemicals, Peptides, and Recombinant Proteins		L
Polv(I:C)	InvivoGen	Cat# tlrl-pic-5
5-fluorouracil	Selleckchem	Cat# S1209
Methylcellulose medium MethoCult M3134	STEMCELL Technologies	Cat# 03134

Recombinant Murine Stem Cell Factor	Peprotech	Cat# 250-03
Recombinant Murine Interleukin 3	Peprotech	Cat# 213-13
Recombinant Murine Thrombopoietin	Peprotech	Cat# 315-14
Recombinant Murine Granulocyte-Macrophage	Peprotech	Cat# 315-03
Colony-Stimulating Factor		
Recombinant Human Erythropoietin	Peprotech	Cat# 100-64
Recombinant Human Interleukin-6	Peprotech	Cat# 200-06
Mouse CD45 MicroBeads	Miltenyi Biotec	Cat# 130-052-301
Mouse CD117 MicroBeads	Miltenyi Biotec	Cat# 130-091-224
Mouse Direct Lineage Cell Depletion Kit	Miltenyi Biotec	Cat# 130-110-470
Lipofectamine 3000 Transfection Reagent	Thermo Fisher Scientific	Cat# L3000075
TRIzol Reagent	Thermo Fisher Scientific	Cat# 15596026
Benzonase Nuclease	MilliporeSigma	Cat# E1014
Protease Inhibitor Cocktail Tablets	MilliporeSigma	Cat# S8830
Mouse monoclonal anti-FLAG M2 Affinity Gel	MilliporeSigma	Cat# A2220; RRID:
		AB 10063035
Mouse monoclonal anti-HA Magnetic Beads	Thermo Fisher Scientific	Cat# 88837; RRID:
		AB_2861399
Protein A/G PLUS-Agarose	Santa Cruz Biotechnology	Cat# sc-2003; RRID:
		AB_10201400
Dynabeads Protein G	Thermo Fisher Scientific	Cat# 10004D
Pierce Glutathione Agarose	Thermo Fisher Scientific	Cat# 16100
Recombinant EZH2 Protein Complex (human)	Active Motif	Cat# 31337
Recombinant human EZH2 protein	OriGene Technologies	Cat# TP302054
Recombinant human SUZ12 protein	OriGene Technologies	Cat# TP302362
Recombinant human EED protein	OriGene Technologies	Cat# TP319261
Prometheus ProSignal Pico ECL Reagent	Genesee Scientific	Cat# 20-300
Prometheus ProSignal Femto ECL Reagent	Genesee Scientific	Cat# 20-302
Critical Commercial Assays		
FITC BrdU Flow Kit	BD Pharmingen	Cat# 559619; RRID:
		AB_2617060
PE Annexin V Apoptosis Detection Kit I	BD Pharmingen	Cat# 559763; RRID:
OLA filter Discussid Marri Kit		AB_2869265
QIAIIter Plasmid Maxi Kit	Qiagen	Cat# 12203
Quantified Reverse Transcription Kit	Qiagen Thomas Eichen Soientifie	Cat# 205515
Fast SYBR Green Master Mix	Thermo Fisher Scientific	Cat# 4383017
Subcentular Protein Fractionation Kit		$C_{al\#} / 8840$
Character Single Call 2/ Dasa and Kit (a2)		Cat# 20020594
Chromium Single Cell 3' Reagent Kit ($\sqrt{3}$)		Cat# PN-10000/5
Mi Di L'i Di L'i Kit (V3)	10x Genomics	Cat# PN-1000154
MicroPlex Library Preparation Kit (V2)	Diagenode	Cat# C05010013
Deposited Data		
Bulk RNA-Seq data	This paper	GEO: GSE159403
Single-cell RNA-Seq data	This Paper	GEO: GSE159404
ChIP-Seq data	This Paper	GEO: GSE159402
INTS11 ChIP-Seq data	(16)	GEO: GSE106359
SUZ12 ChIP-Seq data	(29)	GEO: GSE59090
Experimental Models: Cell Lines		
Human: HEK 293TN cell	System Biosciences	Cat# LV900A-1

Human: K562 cell	ATCC	Cat# CCL-243
Experimental Models: Organisms/Strains		
Mouse: B6.Cg-Commd10Tg(Vav1-icre)A2Kio/J	The Jackson Laboratory	JAX: 008610; RRID:
(Vav1-Cre)		IMSR_JAX:008610
Mouse: B6.Cg-Tg(Mx1-cre)1Cgn/J (Mx1-Cre)	The Jackson Laboratory	JAX: 003556; RRID:
		IMSR_JAX:003556
Mouse: B6.SJL-Ptprca Pepcb/BoyJ (BoyJ)	The Jackson Laboratory	JAX: 002014; RRID:
		IMSR_JAX:002014
Mouse: Ints11 flox	This paper	
Recombinant DNA		
pSFFV-FLAG-E2A-GFP	This Paper	N/A
pSFFV-FLAG-INTS11-E2A-GFP (mouse)	This Paper	N/A
pLV-CMV-HA-EZH2-CMV-mCherry (mouse)	This Paper	N/A
pLV-CMV-HA-SUZ12-CMV-GFP (mouse)	This Paper	N/A
pET-GST-INTS11 (human)	This Paper	N/A
Other		
Superose 6 Increase 10/300 GL	Cytiva	Cat# 29091596