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1 DATA ANALYSIS

1.1 X-ray diffraction, magnetic properties and neutron scattering

The lattice parameter c = 20.681(75) Å for CrSiTe3 and c = 20.603(99) Å for CrGeTe3 at

room temperature extracted from XRD (in Fig.S1[(a),(b)]) is quite consistent with the previ-

ous results (52–54). From the temperature dependence of the magnetic susceptibility (shown

in Fig.S1[(c),(d)]), the ferromagnetic transitions can clearly be observed at Tc ≈ 33 K for

CrSiTe3 and Tc ≈ 63 K for CrGeTe3, respectively. In the insets of Fig.S1[(c),(d)], the isothermal

magnetization (M −H) curves show small magnetic anisotropies, and the magneto-crystalline

anisotropy is extracted as 0.09 meV for CrSiTe3 and 0.02 meV for CrGeTe3, respectively. In

Fig.S1[(e),(f)], the phase transition is also observed from the temperature dependence of the

(1,1,0) magnetic Bragg peak for both CrSiTe3 and CrGeTe3. The temperature dependence of

the order parameter were fitted with the power law equation I = I0 + A(1 − T
TN

)2β , the fitted

transition temperatures are about 33 K for CrSiTe3 and 63 K for CrGeTe3, which are in a good

agreement with our magnetization results. The critical exponents are extracted as β = 0.151(3)

for CrSiTe3 and β = 0.201(7) for CrGeTe3.

With polarized neutron diffraction, we can easily determine the directions of the ordered

magnetic moments, because the sign of polarized neutrons can only be flipped when there

exists a non-zero component of magnetic moments perpendicular to the polarization of the

neutron beam P and the scattering wave vector Q. Due to a favorable situation related to the



ferromagnetic domains in this sample, no neutron depolarization was noticed for the polarized

measurements in the ferromagnetic state. As shown in Fig.S2, 2D Q-maps in the (H,K,0) and

(H,H,L) planes of reciprocal space at three different polarization modes were measured at 4 K.

The diffraction patterns of x and y polarization for the respective spin-flip and non-spin-flip

channels (Fig.S2(a-d)) are basically the same in the (H,K,0) scattering plane, and all the nuclear

and magnetic diffraction peaks relocated on the same position in the center of Brillouin zone,

which indicates its ferromagnetic character and that the ferromagnetic moment has a non-zero

component along the z directions at least. For the z polarization, there are no diffraction peaks

observed in the spin-flip channel but the same diffraction pattern as in the previous xy polariza-

tions of the non-spin-flip channel, as shown in Fig.S2[(e),(f)], which confirms that the ordered

ferromagnetic moments are aligned exclusively along the c axis. The absence of the (0,0,3n)

magnetic reflections in the x spin-flip channel compared to the x non-spin-flip channel (shown

in Fig.S2(g)), also indicates the magnetic moments are aligned along the c axis.

For the measurements of spin-wave excitations, the full width at half maximum of CrSiTe3

is much smaller than that of CrGeTe3. For CrSiTe3 single crystals, due to the large size and

thickness, we used only 2 single crystals and the FWHM of the co-aligned sample turns out to

be only 1.4◦ in the rocking curve scan at IN8, as shown in Fig.S3(a). However, for CrGeTe3

single crystals, their usual dimension is about 2 mm × 2 mm × 0.5 mm, so we co-aligned

about 0.8 g samples on 5 horizontal aluminum plates and about 0.6 g samples on 3 vertical alu-

minum plates for the experiments with (H,K,0) and (H,H,L) as scattering planes, respectively.

The corresponding FWHM of the (H,K,0) orientated CrGeTe3 sample is about 3.52◦ (shown in

Fig.S3(b)).

1.2 Constant-energy mapping around the K points

To gain more information about the the magnon band dispersion in the vicinity of the K points,

we have also very carefully measured the constant-energy scan contour maps in the (H,K,0)



reciprocal plane with various energy transfers, as shown in Fig.S4(a-h). The energy transfers

were selected from 7.5 meV to 11 meV with a step of 0.5 meV to cover the whole range of the

gap opening at the K points. In Fig.S4(q), a 2D reciprocal space map with BZ boundaries and

high-symmetry points in (H,K,0) is shown, and the measured regions of the constant-energy

slices in Q space are indicated by the light blue hexagons. However, the spectral function (or

dynamic structure factor) is strongly dependent on the momentum transfer, causing intensity

enhancement or suppression in some specific parts of the contour maps. According to the

previously calculated spectral function for the honeycomb ferromagnet with DM interactions,

the magnon shows a shorter lifetime in the acoustic mode on one side of the K point and, in the

optical mode on the opposite side of K, which is consistent with the antisymmetric intensity

distribution that we observed in Fig.S4(a-h). From the constant-energy slices, the 2D projected

magnon “cone” is observed to become weaker and smaller towards the gap energy, and become

larger again by increasing energy transfers. In betweens, for example at E = 9.5 meV, only

discrete spots with weak intensity can be seen at the K points, as shown in Fig.S4(e).

Although the existence of a gap opening is almost clear by observing the intensity change

of the constant-energy contours, it is not rigorous and convincing enough, given that similar

constant-energy contours were also observed in the topological Dirac magnon material CoTiO3

where there exists no gap at the K points (17). To exclude the involvement of the Dirac magnon,

further detailed constant-Q energy scans at various K points are quite necessary. In Fig.S4(r),

the energy-scan line profiles were extracted at three K points [highlighted by green circles in

Fig.S4(q)] with different momentum transfers, and all of them show two peaks located at around

8.7 meV and 10.7 meV, which clearly indicate a 2 meV gap opening at around 9.5 meV. Due to

the limited energy resolution of ∼ 1.3 meV that is also comparable to the gap size, the in-gap

intensity is not exactly zero in our experimental configuration. By applying a convolution of

the instrument energy resolution, similar constant-energy patterns including the discrete spot-



shaped contours at E = 9.5 meV can be very well reproduced in our simulations, as shown in

Fig.S4(i-p).

1.3 Determination of the magnon gap at the Brillouin zone center

We tried to measure the spin wave gap at the Γ point by using one of the best cold neutron

triple-axis spectrometers, IN12, but we failed although the energy resolution and background

level were quite good. Unlike CrI3, the anisotropy in both CrSiTe3 and CrGeTe3 is very small

(32, 34, 35), it is really hard to resolve it directly from our low energy scan data. To give out

a reference value of the spin wave gap, we carefully measured the low energy magnon bands

along the high-symmetry directions at 2 K. In the color map of Fig.S5(a), the magnon bands

of CrGeTe3 below 15 meV were measured at IN12 with kf = 1.7 Å−1, and the magnon bands

above 15 meV were measured with kf = 2.8 Å−1. Fig.S5(b) shows the corresponding calculated

dispersion curves of the same Q path as in Fig.S5(a) by using the fitted exchange parameters

in the Heisenberg-DM model. In the vicinity of the Γ point at low energy, the magnon bands

dispersions along Γ − M and Γ − K can be both fitted by the parabolic equation under the

long-wave approximation. Here, for the quadratic fitting, the Gauss fitted peak postions of the

measured magnon bands below 5 meV were included, as shown in the red rectangular frame of

Fig.S5(c). The fitting results were shown in the form of the energy as a linear function of the

squared moment transfer Q, and the fitted gap size at the Γ point is about 0.0097 meV but with

a very large error of 0.183 meV, which indicates the gap of CrGeTe3 is rather small and really

hard to resolve by triple-axis spectroscopy.

For the same reason, the magnon band dispersions of CrSiTe3 and CrGeTe3 along the [0

0 L] direction were also fitted to gain a reference value of the spin wave gap at the Γ point,

as shown in Fig.S6. Given the magnetic structure is ferromagnetic in both the intralayers and

also the vdW interlayers, we can treat every three ABC-stacked ferromagnetic Cr3+ as a single

imaginary spin with S = 3/2× 3, so the spin wave dispersion along the c axis that is concerned



here can be approximately described by using a one-dimensional ferromagnetic model with an

effective nearest-neighborer ferromagnetic exchange interaction J̃ :

H =− J̃
∑

i

(Sx
i S

x
i+1 + Sy

i S
y
i+1 +∆Sz

i S
z
i+1)− Azz

∑

i

(Sz
i )

2, (S1)

where ∆ and Azz denote the exchange and single-ion anisotropy, respectively. In the case ∆ =

1, the exchange interaction reduces to the isotropic Heisenberg interaction. At low temperatures

(kBT % J̃), the perturbations of the ground state are very small, so we can ignore the high-

order terms and just keep the ground-state energy term and quadratic terms in bosonic operators.

Finally, the ferromagnetic magnon dispersion can be wrote as

εk =2J̃S(∆− cos(kc)) + 2AzzS, (S2)

where c is the lattice constant along the z direction. The gap at the Brillouin zone center Γ

point is expressed as 2J̃S(∆−1)+2AzzS. The band dispersions in Fig.S6 were fitted by using

Eq.S2, and the effective exchange interactions J̃ were determined as 0.11(1) and 0.16(2) meV

for CrSiTe3 and CrGeTe3 respectively. From the fitting results, we failed to get the anisotropy

gap size because of the extremely small magnetic anisotropy in CrXTe3. To give an idea of

how small the single-ion anisotropy is, we set ∆ = 1, namely Heisenberg interaction, and

the single-ion anisotropy is estimated as Azz < 0.0018 meV for CrSiTe3 and Azz < 0.020

meV for CrGeTe3. The small single-ion anisotropy can basically be neglected, compared to the

large in-plane exchange interactions Jab. However, for the overall magnon band fitting (e.g. in

Fig.S5(b)), we symbolically set the single-ion anisotropy A as 0.01 meV for the Hamiltonian in

Eq.S1.



2 SPIN HARMILTONIAN

2.1 Heisenberg-DM model

For the CrXTe3, although the DM interaction will cancel because of the space inversion between

the nearest-neighbor Cr atoms, the second nearest-neighbor interaction, the space inversion

symmetry is actually broken in a honeycomb lattice, leading to a non-zero DM interaction.

Although the Te atoms may appear to have the strongest SOC in CrXTe3, the magnitude of the

DM interaction is more likely determined by the competition of one Cr atom and two Si/Ge

atoms on two sides of the second nearest-neighbor Cr-Cr bond. Here we use LSWT to calculate

the magnon spectra of CrXTe3, starting from the generalized Heisenberg model (40),

H =
∑

i<j

S†
i ĴijSj, (S3)

where the interaction tensor between the lattice sites i and j

Ĵij =




Jx
ij Dz

ij −Dy
ij

−Dz
ij Jy

ij Dx
ij

Dy
ij −Dx

ij Jz
ij



 (S4)

includes the symmetric exchange Jij and the antisymmetric off-diagonal DM interaction terms

Dij , caused by the spin-orbit coupling. The DM interaction vector is defined as Dij = (Dx
ij, D

y
ij, D

z
ij).

Based on the symmetry and the Moriya’s rule, the direction of the DM interaction vector is de-

termined as out of plane. Similar to earlier works (27), we include five Heisenberg exchange

interactions in total, three in the intra-layers and two between the inter-layers, with their numer-

ical values listed in Table .

According to the LSWT, the Holstein-Primakoff transformation (55) is adopted for the quan-

tum spin operators. Followed by the Fourier transformation for the boson operators, the Hamil-

tonian matrix in momentum space is obtained. Then the eigenvalue and eigenvector, namely the

magnon band dispersion can be extracted through diagonalizing the matrix. As we expected,



the band opens a gap at the K point which is consistent with our experimental results.

2.2 Heisenberg-Kitaev model

The Kitaev interaction is introduced to understand the magnetic behaviors that are close to quan-

tum spin liquids in some S=1/2 honeycomb lattices with edge-sharing octahedra compounds,

e.g., Na2IrO3, α−RuCl3 (43,56). For the S=3/2 systems, like CrXTe3, the Kitaev-type exchange

interaction may also exist, and recent theoretical works (57) have proposed to realize the Ki-

taev quantum spin liquid state in CrGeTe3 by applying proper in-plane strain. As shown in the

schematic of Fig.S7(a), the nearest Cr-Cr pairs are proposed to have three bond-dependent Ising

exchange interactions in the local {αβγ} coordinate bases for the Kitaev model. For simplicity,

here we first discuss the Kitaev model in the perfect orthogonal {αβγ} coordinate bases. The

Heisenberg-Kitaev Hamiltonian can be expressed as:

H = −
∑

i<j

JijSi · Sj −
∑

〈i,j〉ν

KνSν
i S

ν
j − Azz

∑

i

(Sz
i )

2, (S5)

where the first term is the Heisenberg exchanges term and the second term represents the near-

est neighbour bond-dependent Kitaev interaction with Kα=Kβ=Kγ=K. To obtain the final

magnon dispersion, the Kitaev term in the Hamiltonian expressed by the local {αβγ} basis

can be converted into the global {xyz} coordinate in advance to apply the Holstein-Primakoff

transformation and Fourier transformation, and then the total Hamiltonian can be rewrote in

momentum space by bosonic operators. According to the linear-spin-wave theory, we can ig-

nore the high-order terms and just keep the ground-state energy term and the linear terms which

contain the magnon relation. By fitting the experimental results with the model, we can easily

obtain the exchange parameters. Comparing to the previous Heisenberg-DM model, the DM

term is just replaced by the Kitaev term, and also up to five isotropic Heisenberg interactions

are included for CrXTe3. To make the calculated magnon bands consistent with the measured



band dispersion, the optimized Kitaev interaction parameters are quite large comparing to their

nearest-neighbor Heisenberg interaction for both CrSiTe3 and CrGeTe3. The corresponding ex-

change parameters for CrXTe3 are listed in Table.S1. As shown in Fig.S8, the magnon band of

CrSiTe3 reproduced by the Heisenberg-Kitaev model is quite similar to the result of the pure

Heisenberg model but opens a gap in the vicinity of the K point like that of the Heisenberg-DM

model.

However, it is important to realize that the {αβγ} basis is not perfectly orthogonal in

CrXTe3, the interangle between the local {αβγ} basis vectors is about 93.6◦ and 100.1◦ for

CrSiTe3 and CrGeTe3 respectively. As shown in the schematic picture of Fig.S7(b), the local

{αβγ} basis vectors tilt from the z axis towards the xy plane by an angle θ, and only when

θ = θ0 ≈ 54.74◦, namely tan θ =
√
2, the {αβγ} basis becomes perfectly orthogonal (58).

Here in our paper, we take θ as 57.28◦ and 62.26◦ from the experimental refined atomic struc-

tures of CrSiTe3 and CrGeTe3 respectively. The imperfection of θ will yield non-zero off-

diagonal components when the exchange matrix is converted into the orthogonal {α′β′γ′} basis

and eventually induce an extra exchange anisotropy along the global z axis. Three general

Kitaev interaction matrices in a local {αβγ} basis can be expressed as:




Kα

0
0



 ,




0

Kβ

0



 ,




0

0
Kγ



 , (S6)

and in the orthogonal {α′β′γ′} basis, they can be rewritten as:




A2 AB AB
AB B2 B2

AB B2 B2



 · K
α

C2
,




B2 AB B2

AB A2 AB
B2 AB B2



 · K
β

C2
,




B2 B2 AB
B2 B2 AB
AB AB A2



 · K
γ

C2
, (S7)

where A = 2 sin θ cos θ0 + cos θ sin θ0, B = − sin(θ − θ0) and C = 3 sin θ0 cos θ0. Especially

when θ = θ0, then we have B = 0 and A = C, the Eq.S7 is immediately degenerated into the

simple form the same as the Eq.S6. However for CrSiTe3 and CrGeTe3 here, the off-diagonal



term is non-zero due to θ '= θ0, hence for example one of the Kitaev matrices will representa-

tively be




0.998 −0.032 −0.032
−0.032 0.001 0.001
−0.032 0.001 0.001



 ·Kα,




0.983 −0.092 −0.092
−0.092 0.009 0.009
−0.092 0.009 0.009



 ·Kα. (S8)

In the orthogonal {α′β′γ′} basis, the general Heisenberg-Kitaev Hamiltonian can be expressed

as:

H =−
∑

i<j

J̃ijSi · Sj −
∑

〈i,j〉ν

K̃νSν
i S

ν
j −

∑

〈i,j〉µν

Γ1

(
Sµ
i S

ν
j + Sν

i S
µ
j

)

−
∑

〈i,j〉λµν

Γ2

(
Sλ
i S

µ
j + Sµ

i S
λ
j + Sλ

i S
ν
j + Sν

i S
λ
j

)
− Azz

∑

i

(Sz
i )

2 ,
(S9)

where Γ1 =
B2

C2K, Γ2 =
AB
C2 K, K̃ν = (A2−B2)

C2 K and J̃ij = Jij +
B2

C2K for the nearest-neighbor

exchange interactions, J̃ij = Jij for others, and (λ, µ,ν ) is any permutation of orthogonal basis

vector’s indexes (α′, β′, γ′).

Although the non-zero off-diagonal terms in the matrix looks small, but here they will cre-

ate an quite large negative component (e.g. CrSiTe3: -0.7 meV, CrGeTe3: -5.7meV ) on the

magnon gap at the Brillouin center and make the energy eigenvalues become imaginary unless

an extra considerable anisotropy can be introduced to cancel it out. If so, either the anisotropy

of the exchange interaction or the single ion anisotropy should be very strong. However, as

we known from the magnetization and the critical behavior, the magnetic anisotropy in CrXTe3

is quite small actually. Even if the magnon dispersion can be reproduced very well when the

bond-dependent Kitaev interactions are assumed to be perfectly orthogonal, it is still difficult

to understand the huge difference of the strength of the Kitaev interaction between CrSiTe3

and CrGeTe3, since the Kitaev interaction mainly arise from the heavy ligands (namely, Te of

CrXTe3) (57, 59). We can not completely exclude the existence of the Kitaev interaction, but



comparing to the previous DM model, the Heisenberg-Kitaev model is unlikely a proper model

to describe the exchange interactions in this system at least.

3 Magnon band topology

3.1 Berry curvature and Chern number

Formulating semiclassical equations of motion for magnon wave packets (60), which include

the anomalous velocity leads to a non-zero Berry curvature. We generally define the Berry

curvature field associated with the nth magnon band as

Ωnk = i
∑

m &=n

〈Ψnk|∂kH(k)|Ψmk〉 × 〈Ψmk|∂kH(k)|Ψnk〉
(εnk − εmk)2

, (S10)

where ∂kH(k) denotes the gradient of the Hamiltonian in momentum space. εmk and εnk are

the magnonic eigenvalues.

Based on this Berry curvature, we can classify the topology of the nth magnon branch using

Chern number:

C(P ) =
1

2π

∫

P

Ω(k) · ñ dP, (S11)

where P is a two-dimensional slice of the BZ and ñ is its normal vector. In our calculation, the

ñ is selected perpendicular to the xy plane. As the lowest three branches cross with each other,

the lower three branches are sum together.

Jab1 Jab2 Jc1 Jc2 K

CrSiTe3 0.4 0.2 0.08 0.065 3

CrGeTe3 0.24 0.42 0.1 0.08 6.5

Table S1: The parameters of the Heisenberg exchange interactions and the Kitaev interactions
are listed together for CrSiTe3 and CrGeTe3. The local {αβγ} basis is assumed perfectly or-
thogonal and the single-ion anisotropy is fixed to 0.01 meV. The unit of the parameters is meV.



The Berry curvature distribution of bulk CrGeTe3 in the first BZ is shown in Fig.S9(a,b).

The Chern number of the lowest three branches is −3 and the Chern number of the highest

three branches is +3. If we ignore the interlayer interaction, we can easily use the monolayer

system to characterize the topological properties of the system, and the corresponding Berry

curvature is shown in Fig.S9(c,d) with the Chern number −1 for the lowest branches. From

the figure, almost the same Berry curvature distribution can be obtained. Compared to the

intralayer interaction, the interlayer interaction is weaker and the DM interaction only exist

among intralayer. In CrXTe3, each layer contributes one optical and acoustic branches. The

interlayer interaction splits the three degenerate bands but influence little on their topological

properties.

3.2 Edge states and thermal Hall conductivity

To simplify the calculation, the monolayer CrXTe3 is utilized to study the edge states. Here, the

color scale of the bands in the main text Fig.4 is calculated based on the following equation:

LW (k, j) =
∑

i

φi∗(k, j)φi(k, j)(Ri
z − 0.5), (S12)

where k is the reciprocal space vector, j denotes the band index, i numbers the magnetic atom,

and Ri
z represents the normalized position for atom i along the z-axis. φi(k, j) is the compo-

nents of the right eigenstates of j at the magnetic atom i.

Given the nontrivial topology, the topological magnon edge states can contribute to the

transverse thermal Hall voltage under an applied longitudinal temperature gradient (18, 24–26,

60), namely the topological thermal Hall effect.

The energy-dependent contribution to the ij’th Cartesian component of the thermal Hall

conductivity tensor κ̂ can be calculated as



κij(ε) =
k2

BT

(2π)3!
∑

n

∫

BZ
δ(εnk − ε)C2(f

B
n )Ω

ij
n (k) dk, (S13)

where n enumerates the magnon bands, fB
n is the Bose-Einstein distribution function, which

can be expressed as fB
n = (eεnk/kBT − 1)−1, and C2 is given by

C2(x) = (1 + x)

(
ln

1 + x

x

)2

− ln2 x− 2Li2(−x), (S14)

with Li2 denoting the dilogarithm function. In our calculation, only the result of transverse

thermal Hall conductivity κxy is shown, as the κxz and κyz is zero. The transverse thermal Hall

conductivity of the system is then defined as κxy = limµ→∞ κxy
µ , where κxy

µ =
∫ µ

0 κxy(ε) dε is

the cumulative thermal Hall conductivity.

From the experimental results, we know that the respective Curie temperature of CrSiTe3

and CrGeTe3 are around 30 K and 60 K. The calculated temperature-dependent and energy-

dependent thermal Hall conductivity are shown in Fig.S11. For both materials, κxy is sig-

nificant enhancement in the energy region close to the band gap, which can be attributed to

the distribution of the Berry curvature around the K point. In low temperature only these

"topologically-trivial" states are excited according to the Bose-Einstein distribution, leading to

the zero platform at very low temperature. Then conductivity increases as the temperature in-

creases. The effect of the DM interaction is shown in Fig.S11(e), from which we can observe

that the thermal Hall conductivity increases with the enhancement of the DM Interaction.

The predicted thermal Hall conductivity for CrGeTe3 reaches the order of 10−4 W/Km,

which is large enough to be observed in experiment. Furthermore, the DM interaction value is

determined by the strength of spin-orbit coupling. Compared to CrGeTe3 and CrSiTe3, CrSnTe3

and CrPbTe3 should have even stronger spin-orbit coupling and some recent theoretical studies

have demonstrated that the corresponding monolayer system could have a ferromagnetic state

with higher Curie temperatures (47, 48). These materials are thus more likely to have even



bigger thermal Hall conductivity than Lu2V2O7 (23, 24).



Figure S1: X-ray diffraction and magnetic properties of CrXTe3. (a,b) X-ray diffraction of
single-crystal CrSiTe3 and CrGeTe3 at 300 K. The insets are the sample pictures and the cor-
responding X-ray Laue pattern of the (H,K,0) reciprocal plane. (c,d) ZFC/FC magnetization
curves measured under applied magnetic fields along the c and a axes. Insets show the corre-
sponding magnetization as a function of field at 2 K for H ‖ c and H ‖ ab. (e,f) Temperature
dependence of the (1,1,0) magnetic Bragg peak intensity of CrSiTe3 and CrGeTe3 measured at
DNS, MLZ. The solid lines are the fittings of the experimental data in the vicinity of the ferro-
magnetic transition. Photo Credit: Fengfeng Zhu, Forschungszentrum Jülich.



Figure S2: Polarized elastic neutron scattering maps. (a-f) Q Maps in the (H,K,0) scattering
plane and (g,h) in the (H,H,L) scattering plane measured on CrGeTe3 at DNS. Red solid lines
are the Brillouin zone boundaries.

Figure S3: Mosaic width of the co-aligned CrXTe3 samples. (a),(b) Rocking curve scans
of the (1,1,0) nuclear reflection at about 80 K show the alignment quality of CrSiTe3 (with 2
pieces) and CrGeTe3 (with more than 100 pieces) respectively. The insets are the corresponding
pictures of the samples measured at IN8. Photo Credit: Fengfeng Zhu, Forschungszentrum
Jülich.



Figure S4: Spin-wave excitations of CrSiTe3 in the (H,K,0) scattering plane. (a-h) Constant-
energy mappings of the magnon spectra of CrSiTe3 in the (H,K,0) scattering plane measured
at the thermal neutron triple-axis spectrometer PUMA. The energies of the constant-energy
mappings are chosen to cover the whole energy scale of the opened gaps at the K points with
an energy step of 0.5 meV. The black solid lines denote the boundaries of the 2D BZs. The dark
gray dots represent the actually measured Q points. (i-p) Calculated constant-energy mappings
using the parameters of the 2nd-NN DM interaction model in this paper. The calculated spectra
are convolved with the estimated instrument energy resolution of 1.5 meV. Areas inside the
white dashed lines corresponds to the Q range for the experimental data. (q) Schematics of the
projected 2D BZs. The BZ center Γ points and 3 selected K points are denoted by the red dots
and green circles, respectively. The light blue hexagon is a schematic for the corresponding Q
positions for the experimental data in (a-h). (r) Constant-Q energy scans of the magnon spectra
at 3 different K points in (q). The solid lines are the multi-peak Gauss fitting. The dash lines
and grey shadow represent the averaged energy positions and error bars for the magnon bands
at the K points.



Figure S5: The low-energy magnon branches of CrGeTe3. (a) The magnon spectra of
CrGeTe3 measured at the cold neutron triple-axis spectrometer IN12 (with a fixed kf = 1.7
Å−1 and 2.8 Å−1). The solid lines are the calculated magnon dispersion curves. The isolated
crosses and stars are the fitted peak positions of various constant-Q and constant-E scans. (b)
The corresponding caculated magnon spectra by using the 2nd-NN DM interaction model. (c)
Enlarged plot of the low energy excitations in (a). (d) Quadratic fitting of the magnon band for
the low energy parts. Only the peak positions inside the red rectangle in (c) are included in the
fitting.



Figure S6: Fitting of the magnon dispersion along the [1,1,L] direction. (a),(b) Cosine-
function curve fittings of the respective magnon band dispersion of CrSiTe3 and CrGeTe3 along
the [1,1,L] direction. The green dashed lines in (a,b) are the fittings according to the data
collected from IN12 (kf = 1.7 Å−1). The red dashed line in (b) is a combined fittings with the
restriction in Fig.S5(d) according to all the data of CrGeTe3 collected from IN12 and FLEXX.
The light shading zones represent the confidence interval with a width of 2 standard errors.

Figure S7: The proposed Kitaev model for CrXTe3. (a) Schematic plot for the Kitaev model.
The red, blue and green rhombus planes marked with perpendicular arrows are almost orthog-
onal to each other, which are used to represent 3 different bonds of the Kitaev model. (b) The
configuration of the local {αβγ} coordinate in the global {xyz} coordinate.



Figure S8: Comparison of the calculated magnon spectra with different models. (a)
Magnon spectra calculated by using the Heisenberg with 2nd-NN DM interaction model. Dash
lines are the calculated magnon spectra at the BZ boundaries, and the intensity maps are the
convoluted results with energy resolution of 1 meV. (b) Magnon spectra calculated by using a
simple Heisenberg model. (c) Magnon spectra calculated by using the Heisenberg with a mod-
ified Kitaev interaction model. (d) Comparison of the magnon band dispersion near the Dirac
point between all the models in (a-c).

Figure S9: The calculated Berry curvature in the Kx − Ky plane. The Berry curvature for
the lowest three magnon branches of bulk CrSiTe3 (a) and CrGeTe3 (b). The Berry curvature
for the lowest branch of monolayer CrSiTe3 (c) and CrGeTe3 (d) in the first Brillouin zone. The
Chern number is -3 for (a,b) and -1 for (c,d).



Figure S10: Chern numbers of magnon bands. (a) The Chern number along the [0,0,L]
direction. The sum of the Chern numbers are -3 and 3 for the lowest and highest three bands
respectively. (b) The influence of the magnitude of the DM interaction on the Chern numbers
of the bands.

Figure S11: The calculated transverse thermal Hall conductivity (κxy) of CrGeTe3 and
CrSiTe3. The temperature dependence (a, b) and energy dependence (c, d) of the thermal Hall
conductivity of CrGeTe3 and CrSiTe3. The κxy with the function of Dz for CrGeTe3 at 60K is
shown in (e).
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