Science Advances

Supplementary Materials for

Optogenetic modeling of human neuromuscular circuits in Duchenne muscular dystrophy with CRISPR and pharmacological corrections

Amaia Paredes-Redondo, Peter Harley, Eleni Maniati, David Ryan, Sandra Louzada, Jinhong Meng, Anna Kowala, Beiyuan Fu, Fengtang Yang, Pentao Liu, Silvia Marino, Olivier Pourquié, Francesco Muntoni, Jun Wang, Ivo Lieberam, Yung-Yao Lin*

*Corresponding author. Email: yy.lin@qmul.ac.uk

Published 10 September 2021, *Sci. Adv.* 7, eabi8787 (2021) DOI: 10.1126/sciadv.abi8787

The PDF file includes:

Figs. S1 to S6 Tables S1 to S5 Legends for movies S1 to S6 Legends for data files S1 and S2

Other Supplementary Material for this manuscript includes the following:

Movies S1 to S6 Data files S1 and S2

Fig. S1. Characterization of a pair of DMD patient-derived and isogenic control ePSCs.

(A) *DMD* c.10141C>T (p.R3381X) mutation confirmed by sequencing analysis in DMD patientderived fibroblasts. (B) Relative expression of *OCT4* and *NANOG* pluripotency markers in two independent DMD-R3381X ePSC clones. DMD fibroblasts did not express pluripotency genes. N=3, technical replicates, values are mean \pm SD. (C) Microsatellite analysis confirmed common parental origin of the two independent CORR-R3381X ePSCs generated clones. (D) Sequencing of the top 5 predicted potential off-target sites. (E) Positive immunocytochemistry of NANOG, OCT4, SOX2, SSEA4 and TRA-1-60 in CORR-R3381X ePSCs. Scale bars, 100 µm.

Fig. S2. Expression of myogenic markers in DMD- and CORR-R3381X MPCs and myotubes. (A) Representative images of immunocytochemistry of PAX7 in DMD and CORR-R3381X MPCs and at 24, 48 and 120h in secondary differentiation medium. Scale bars, 50 μ m. (B) Representative images of immunocytochemistry of MYOD1 in DMD and CORR-R3381X MPCs and at 24, 48 and 120h in secondary differentiation medium. Scale bars, 50 μ m. (C) Representative images of immunocytochemistry of MYH stained with MF20 antibody in DMD and CORR-R3381X MPCs and at 24, 48 and 120h in secondary differentiation medium. Scale bars, 50 μ m. (D) Log₂RPKM values of *PAX7* gene do not significantly differ in DMD and CORR-R3381X muscle cells at MPCs (0h) stage, after 24 and 120h in secondary differentiation medium. N=3, values are mean \pm SD. Two-way ANOVA, Sidak's multiple comparisons test. (E) Log₂RPKM values of *MYOD1* gene follow a similar trend in DMD and CORR-R3381X muscle cells at MPCs (0h) stage, after 24 and 120h in secondary differentiation medium. N=3, values of *MYOD1* gene follow a similar trend in DMD and CORR-R3381X muscle cells at MPCs (0h) stage, after 24 and 120h and CORR-R3381X muscle cells at MPCs (0h) stage, after 24 and 120h in secondary differentiation medium. N=3, values of *MYOD1* gene follow a similar trend in DMD and CORR-R3381X muscle cells at MPCs (0h) stage, after 24 and 120h in secondary differentiation medium. N=3, values of *MYOD1* gene follow a similar trend in DMD and CORR-R3381X muscle cells at MPCs (0h) stage, after 24 and 120h in secondary differentiation medium. N=3, values are mean \pm SD. Two-way ANOVA, Sidak's multiple comparisons test. (F) Log₂RPKM values are significantly lower in DMD-R3381X muscle cells at the three stages of secondary differentiation when compared with CORR-R3381X

cells. N=3, values are mean \pm SD. Two-way ANOVA, Sidak's multiple comparisons test, ****p < 0.0001.

Fig. S3. Heatmaps of core enrichment genes in GO MUSCLE CELL CELLULAR HOMEOSTASIS at 0, 24 and 120 hours. Both *DMD* and *CHRNA1* are down-regulated in DMD-R3381X compared with CORR-R3381X.

Fig. S4. SB-431542 treatment of DMD-R3381X muscle cells during secondary differentiation (A) Log₂RPKM values of *TGFB1* are significantly higher in DMD-R3381X MPCs during secondary differentiation. N=3, values are mean \pm SD. Two-way ANOVA, Sidak's multiple comparisons test, *p < 0.05. (B) Heatmaps of core enrichment genes in GO NEGATIVE REGULATION OF MYOBLAST DIFFERENTIATION include *TGFB1* and genes involved in TGFβ signaling, which are up-regulated in DMD-R3381X at 24 and 120 hours of secondary differentiation. (C) Representative images of immunocytochemistry for titin in 2D myogenic cultures of DMD-R3381X, DMD-R3381X treated with 10 µM SB-431542 and CORR-R3381X after 120h in secondary differentiation medium. Scale bars, 50 µm. (D) Quantification of mean velocity of DMD-R3381X, DMD-R3381X + SB-431542 and CORR-R3381X myofibers upon optogenetic stimulation at 120h. Blue shading indicates the time during optogenetic stimulation. N=12. Values are mean ± SEM, Two-way ANOVA, Sidak's multiple comparisons test between DMD-R3381X + SB-431542 and CORR-R3381X samples. *p<0.05, **p<0.01, ****p<0.0001. The data is the same as in Figure 4D and 4F.

Fig. S5. Gentamicin or PTC124 treatment of DMD-R3381X muscle cells during secondary differentiation

(A) Representative immunocytochemistry images of dystrophin staining in DMD-R3381X, DMD-R3381X treated with a range of Gentamicin concentrations (10 μ M, 100 μ M, 200 μ M and 600 μ M) and CORR-R3381X cells after 120h in secondary differentiation medium. Scale bars, 50 μ m. (B) Quantification of percentage of dystrophin-positive area, mean fluorescence intensity multiplied by pixel number and percentage of normalized dystrophin levels in gentamicin treated conditions. NT, Not treated. N=3. Values are mean \pm SD. One-way ANOVA, Tukey's multiple comparisons test, ***p < 0.001, ****p < 0.0001. (C) Representative immunocytochemistry images of dystrophin staining in DMD-R3381X, DMD-R3381X treated with a range of PTC124

concentrations (1 μ M, 5 μ M, 10 μ M, 17 μ M, 25 μ M and 35 μ M) and CORR-R3381X cells after 120h in secondary differentiation medium. Scale bars, 100 μ m.

Fig. S6. Heatmaps illustrating log₂RPKM gene expression (row z-scores) of core enrichment genes for KEGG AXON GUIDANCE at each individual time point, columns represent samples and rows represent genes.

Table S1. Summary of DMD-R3381X patient's mutation, symptoms and the reprogrammed ePSC line

	P1
Fibroblasts	FB763 (P4)
Mutation	c.10141C>T (p.R3381X)
Exon	70
Ensembl variant ID	rs104894790
Sex	Male
Age at biopsy	6 years old
Muscular symptoms	Frequent falls
Microscopic description	Abnormal round fiber size, necrosis, increased internal nuclei, increase in fat/connective tissue,
Dystrophin immunocytochemistry	Absent
CK Normal range<200 IU/L	10,000 IU/L
Brain symptoms	Severe learning difficulties
Cardiac symptoms	N/A
PSC type	ePSCs
PSC growth medium	EPSCM
PSC line	DMD-R3381X

Table S2. Primary antibodies

Antibodies	Species	Туре	Isotype	Supplier	Cat	Working
					Number	Dilution
0074	Mouse	Monoclonal	lgG2b	Santa	sc-5279	1:100
0014				Cruz		
NANOG	Rabbit	Polyclonal	lgG	Abcam	AB80892	1:100
SOX2	Mouse	Monoclonal	lgG2a	R&D	MAB2018	1:100
TRA-1-60	Mouse	Monoclonal	lgM	Santa	sc-21705	1:100
				Cruz		
SSE44	Mouse	Monoclonal	lgG3	BD	560796	1:50
002/11				Bioscience		
α -Smooth Muscle Actin	Mouse	Monoclonal	lgG2a	R&D	MAB1420	1:75
β-III tubulin (TUBB3)	Mouse	Monoclonal	lgG2a	R&D	MAB1195	1:100
α -Fetoprotein	Mouse	Monoclonal	lgG1	R&D	MAB1368	1:100
PAX7	Mouse	Monoclonal	lgG1	DSHB	N/A	1:100
MYOD1	Mouse	Monoclonal	lgG1	Dako	M3512	1:100
MYH (MF20)	Mouse	Monoclonal	lgG2b	DSHB	N/A	1:100
Titin	Mouse	Monoclonal	lgM	DSHB	N/A	1:100
Dystrophin (Immunocytochemistry)	Mouse	Monoclonal	lgG2a	Millipore	MABT827	1:50
Dystraphia (Immunablatting)	Rabbit	Polyclonal	lgG	Fisher	PA5-	1:750
				Scientific	32388	
β-Actin	Mouse	Monoclonal	lgG2a	Sigma	A5316	1:5,000
Vinculin	Mouse	Monoclonal	lgG1	Sigma	MAB3574	1:1000
Acetylcholine receptor, nicotinic, muscle	Rat	Monoclonal	lgG1	DSHB	mAb 35	1:200
Synaptic vesicle glycoprotein 2A	Mouse	Monoclonal	lgG1	DSHB	SV2	1:500

Table S3. Secondary antibodies

Antibodios	Species	Supplier	Cat	Working
Antibodies			Number	Dilution
Anti-mouse IgG1 488	Goat	Invitrogen	A-21121	1:1,000
Anti-mouse IgG 488	Goat	Invitrogen	A-28175	1:1,000
Anti-rabbit IgG 488	Goat	Invitrogen	A-11034	1:1,000
Anti-mouse IgG2a 488	Goat	Invitrogen	A-21131	1:1,000
Anti-mouse IgG2b 546	Goat	Invitrogen	A-21143	1:1,000
Anti-rat IgG 555	Goat	Invitrogen	A-21434	1:1,000
Anti-mouse IgM 594	Goat	Invitrogen	A-21044	1:1,000
Anti-mouse IgG1 647	Goat	Invitrogen	A-21240	1:1,000
IRDve 680RD Anti-mouse IgG	Goat	LI-COR	926-68070	1:10,000
		Bioscience		
IRDve 800CW Anti- rabbit IgG	Donkey	LI-COR	926-32213	1:10,000
Anti-Tabbit igo		Bioscience		

Table S4. RT-qPCR primers list

Target Gene	Sequence (5'-3')
NANOG	F-AGAAAAACAACTGGCCGAAGAAT
	R-GTTGAATTGTTCCAGGTCTGGTT
OCT4	F-CACTGTACTCCTCGGTCCCTTTC
	R-CAACCAGTTGCCCCAAACTC
TGFB1	F- TCGCCAGAGTGGTTATCTT
	R- TAGTGAACCCGTTGATGTCC
MUSK	F- GCCTTCAGCGGAACTGAGAAA
	R- GGCTGGGGGTAGGATTCCA
SLIT2	F- GACGACTGCCAAGACAACAA
	R- TGATAGCCAGGCAAACACTG
SLIT3	F- AGCGCCTTGACCTGGACA
02110	R- TCGGCGTGCTCTGGAAAA
ROBO2	F- GGGTTACTACATCTGCCAGGCTT
NOBOL	R- AGGTGGAGGTCTATCTGTCAAAACAT
EFNB2	F- GCAAGTTCTGCTGGATCAAC
	R- AGGATGTTGTTCCCCGAATG
FPHB4	F- GTCTGACTTTGGCCTTTCCC
	R- TGACATCACCTCCCACATCA
SEMA3D	F- TGGGACATCGAAGACAGCAT
	R- AAAGTGTGCTCCTGGGCTTT
SEMA5A	F- GTCTATACTTACTGCCAGCG
	R- GTTAAATGCCTTGATGGCCTC
ACTB	F- GCGAGAAGATGACCCAGATC
	R- CCAGTGGTACGGCCAGAGG

Table S5. Oligonucleotide primer sequences used to amplify the fragments for Gibson Assembly

Fragment	Sequence (5'-3')	Product	
Fragment	Sequence (J-S)	Length (bp)	
Left Arm	F-CGCGCCGGTACCTTAATTAAACTAAATGCTAGGCATTTAC	1 040	
Leit Ann	R-GACTATCTTTCTAGGGTTAAGGAGAGTGTTGTGGTTGTGA	1,040	
	F-TGATCTCACCATGATCTCCCTTTTAGACTACATCAGGAGAAG		
Right Arm (1)	ATGTTCGAGACTTTGCCAAGGTACTAAAAAACAAATTT <u>C</u> GAA		
	CCAAAAGGTATTTTGC	950	
	R-GGGGATCCACTAGTTCTAGAGCAGCACCCTTCAGCAAAAA		
	F-GATTATCTTTCTAGGGTTAATTACAAAACAAGTGTCATGGG		
Right Arm	GCAGAAGACTGGAGTGGTCATTAGTTTTGAAATCATCCTGT	1 040	
(2)	CCTAAATCTGATCTCACC	1,040	
	R-GGGGATCCACTAGTTCTAGAGCAGCACCCTTCAGCAAAAA	-	
Backbone	F-TTTTTGCTGAAGGGTGCTGCTCTAGAACTAGTGGATCCCC	3.013	
Vector	R-GTAAATGCCTAGCATTTAGTTTAATTAAGGTACCGGCGCG	0,010	
Selection	F-TCACAACCACAACACTCTCCTTAACCCTAGAAAGATAGTC	- 3 277	
Cassette	R-CCATGACACTTGTTTTGTAATTAACCCTAGAAAGATAATC	0,217	

Right arm (1) primer was used to introduce the corrected base (green underlined).

Other Supplementary Materials for this manuscript include the following:

Movie S1. DMD-R3381X contraction video_S1 for Fig 3

Movie S2. CORR-R3381X contraction video_S2 for Fig 3

Movie S3. DMD-R3381X contraction video_S3 for Fig 4

Movie S4. DMD-R3381X + SB-431542 contraction video_S4 for Fig 4

Movie S5. CORR-R3381X contraction video_S5 for Fig 4

Movie S6. CORR-R3381X + SB-431542 contraction video_S6 for Fig 4

Data S1. gsea_report_Mut_vs_Ctrl_cp

Data S2. gsea_report_Mut_vs_Ctrl_gobp