Science Advances

Supplementary Materials for

STAT1 maintains naïve CD8⁺ T cell quiescence by suppressing the type I IFN-STAT4-mTORC1 signaling axis

Yoon-Chul Kye, Gil-Woo Lee, Sung-Woo Lee, Young-Jun Ju, Hee-Ok Kim, Cheol-Heui Yun*, Jae-Ho Cho*

*Corresponding author. Email: cyun@snu.ac.kr (C.-H.Y.); jh_cho@chonnam.ac.kr (J.-H.C.)

Published 1 September 2021, *Sci. Adv.* 7, eabg8764 (2021) DOI: 10.1126/sciadv.abg8764

This PDF file includes:

Figs. S1 to S4

SUPPLEMENTARY FIGURES

Figure S1. Effect of Stat1 deficiency on thymic T cell development. (A) Flow cytometry for CD4 and CD8 expression on thymocytes from WT and $Stat1^{-/-}$ mice. Bar graphs show percentage and absolute cell number of CD4⁻CD8⁻ double-negative (DN), CD4⁺CD8⁺ double-positive (DP), CD4⁺CD8⁻ and CD4⁻CD8⁺ single-positive (SP) thymocytes. **(B)** CD44 expression in CD4⁻CD8⁺ SP thymocytes from WT and $Stat1^{-/-}$ mice. **(C)** Flow cytometry for

CD44^{lo} and CD44^{hi} CD8⁺ T cells and **(D)** relative level of CD44 expression in CD44^{lo} CD8⁺ T cells from WT, *Ifnar^{-/-}, Ifnar^{-/-}.Ifngr^{-/-}*, and *Stat1^{-/-}* mice. **(E)** Percentage of Ki67⁺ cells in CD44^{lo} and CD44^{hi} CD8⁺ T cells from WT and *Stat1^{-/-}* mice. **(F)** Level of CD44 and percentage of Ki67⁺ cells in P14 CD44^{lo} CD8⁺ T cells from WT and *Stat1^{-/-}* mice. **(G)** Flow cytometry for CD4 and CD8 expression on thymocytes derived from WT and *Stat1^{-/-}* BM cells as in Fig. 2 A. The results are presented as the mean \pm SEM. Data are representative of 3-4 independent experiments. *, *P* < 0.05; **, *P* < 0.01.

Figure S2. Effect of Stat1 deficiency on the responsiveness to T1IFN and IL-7. (A) *In vitro* proliferation and (B) phosphorylation of STAT5 of WT and *Stat1*^{-/-} naïve CD8⁺ T cells in culture with IL-7. (C) *In vitro* proliferation and (D) phosphorylation of ZAP70, PLC γ , and ERK of WT and *Stat1*^{-/-} naïve CD8⁺ T cells in culture with either plate-bound for (C) or soluble α CD3 for (D). (E) *In vitro* proliferation of WT and *Stat1*^{-/-} naïve CD8⁺ T cells in culture with IL-7 and soluble α CD3. (F) Experimental scheme for adoptive transfer and (G) *in vivo* proliferation of WT and *Stat1*^{-/-} CD8⁺ donor cells from irradiated (500 cGy) *Tap1*^{-/-} recipients.

(H) *In vitro* proliferation of WT and *Stat1*^{-/-} naïve CD8⁺ T cells in culture with the indicated cytokines. (I) Experimental scheme for adoptive transfer with retroviral transduced cells as in Fig. 4 A. (J) *In vivo* proliferation of *Stat1*^{-/-} CD8⁺ donor cells transduced with retroviral vectors encoding either full-length (fl) or truncated (t) construct of *Stat1* gene in poly I:C-treated B6 recipient mice. The results are presented as the mean \pm SEM. Data are representative of 3-4 independent experiments. **, *P* < 0.01; ****, *P* < 0.0001.

Figure S3. Effect of Stat1 deficiency on T1IFN and IL-7 signaling. (A) Phosphorylation of STAT2, STAT4, and STAT5, **(B, C)** S6, and **(D)** AKT, ERK, and p38 in WT and *Stat1^{-/-}* naïve CD8⁺ T cells after culture with various concentrations of IL-7 and IFN-β for the indicated time points. **(E)** Expression of c-Myc and **(F, G)** RagD in WT and *Stat1^{-/-}* naïve CD8⁺ T cells after culture with various indicated conditions. **(H)** ChIP assay for STAT4 and STAT5 binding to the indicated promoter regions of *rragd* gene analyzed in WT and *Stat1^{-/-}* CD8⁺ T cells after culture with IL-7 and IFN-β for 2 days. **(I)** Immunoblotting for the various indicated signaling proteins in WT and *Stat1^{-/-}* CD8⁺ T cells after culture with IL-7 and IFN-β for 2 days. **(I)** Immunoblotting for the various indicated signaling

proliferation of CD44^{hi} and CD44^{lo} B6 CD8⁺ T cells after 4 days culture with IL-7 and IL-12 in the absence or presence of rapamycin. (**K**, **L**) Immunoblotting for phosphorylated STAT4 and S6 and of RagD expression (**K**) in freshly isolated *ex vivo* CD44^{hi} and CD44^{lo} B6 CD8⁺ T cells, and (**L**) in WT and *Stat1^{-/-}* CD8⁺ T cells after culture with IL-7 and IFN- β in the absence and presence of the indicated inhibitors. (**M**) *In vitro* proliferation of *Stat1^{-/-}* naïve CD8⁺ T cells after culture with IL-7 and IFN- β in the presence of the indicated inhibitors. The results are presented as the mean ± SEM. Data are representative of 3-4 independent experiments. Statistical significance is calculated using unpaired t-test. **, *P* < 0.01; ****, *P* < 0.0001.

Figure S4. Pathologic nature of STAT1-deficient T cells in an IBD setting. (A) Absolute number of CD4⁺ T regulatory cells (Treg; CD25⁺Foxp3⁺), B cells (B220⁺), and NK cells (NK1.1⁺) from WT, *Stat1^{-/-}*, and *Stat1^{-/-}.Ifnar^{-/-}* mice as in Fig. 5 A-D. (B) Flow cytometry and (C) absolute cell number and (D) percentage for intracellular IL-17A and IFN- γ production from donor CD4⁺ (from WT) and CD8⁺ T cells (from WT, *Stat1^{-/-}*, or *Stat1^{-/-}.Ifnar^{-/-}* mice) adoptively transferred into *Rag1^{-/-}* recipient mice as in Fig. 5 E. The results are presented as

the mean \pm SD. Data are representative of 3-4 independent experiments. Statistical significance is calculated using unpaired t-test and two-way ANOVA multiple comparisons. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.