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A. Appendix
A.1. An Example of the Difficulty of Using Existing

Methods

For this example, we are going to consider Integrated Gradi-
ents (IG) (Sundararajan et al., 2017) which produces local
feature attribution explanations. Because IG is a supervised
method, we start by training a classifier on top of the learned
representation to get a multi-class classification model f that
predicts which group a point belongs to. Because our goal
is to explain the difference between Group A and Group
B with IG, we average IG’s explanation for each point in
Group B relative to each possible baseline value of a point
in Group A for f ’s Class B label. To be more precise:

δIG(A→ B) =
1

|XA| |XB |

∑
x∈XB

∑
a∈XA

IG(x, class = B, baseline = a)

(11)

We will refer to this as ‘group Integrated Gradients’ or gIG.

Challenge 1: Comparing Explanation Types. Because
IG produces feature attributions and TGT produces coun-
terfactuals, there is no reliable metric in the literature to
directly compare them. On the one hand, most feature at-
tributions are the ‘correct explanation’ for their specific
definitions for ‘attribution’ and the ‘baseline’ value; this has
made measuring their quality challenging (Tomsett et al.,
2019). On the other hand, we cannot treat a feature attribu-
tion as a transformation function/translation, so our metrics
and other metrics for counterfactual explanations cannot be
applied.

As a result, we compare TGT to gIG on the same synthetic
dataset we used earlier. We found that gIG identifies the
causal variables as being significant and ignores the noise
variable, but that it also identifies the correlated variable as
being significant. This indicates that it is likely to be unable
to find sparse explanations as well as TGT can.

Challenge 2: Consistency of Aggregated Local Explana-
tions. One of the reasons we chose IG as a baseline method
to aggregate is because its attributions are symmetrical and
transitive with respect to a fixed class. In other words, if all
we cared about was explaining the differences between all of
the groups of points with respect to a single reference group,
say Group C, then IG would produce consistent explana-
tions. However, explaining the features that separate Group
A from Group B relative to Group C is not the problem we
are trying to solve.

When we use Equation 11 to calculate δIG(i→ j) we found
that the resulting explanations were not consistent. This
does not violate the theory of IG because each δIG(i→ j)
is calculated with reference Group j and so the assumption
that we have a single reference group is not satisfied.

When we considered modifying Equation 11 to aggregate

over the reference ‘class/group’ and potentially gain con-
sistency that way, we either got uniform zero attributions
(if we averaged over all reference groups) or inconsistent
explanations (if we excluded any subset of {i, j} from the
averaging).

Conclusion. As suggested in Section 2, using existing ex-
planation methods to find GCEs is going to be challenging
because it is not what they are designed to do. We found
that IG, a method that theoretically looked promising, was
unable to be extended in a simple way to this setting.

A.2. Representation Function

Differentiability. TGT assumes that r is a differentiable
function. Hidden in this assumption is the assumption that
r is a function that we can evaluate on an arbitrary point.
Although most methods for learning a low-dimensional rep-
resentation satisfy this assumption, t-SNE does not. Fortu-
nately there are parametric variations of t-SNE such as the
one we used in our experiments (Ding et al., 2018). The
assumption that r is differentiable can be relaxed by using a
finite-difference optimization method, such as SPSA (Spall,
1998), at the expense of computational cost.

Learning Meaningful Structure. One assumption that ev-
ery analysis (whether that is manual inspection, statistical
testing, or interpretable ML) of the representation learned
by r is that this function learned meaningful structure from
the data. Because practitioners are already relying on these
representations and, in some situations, have verified that
they are meaningful, this concern is largely orthogonal to
our work.

However, from an interpretable ML perspective, our goal is
to explain r. So, if r identifies different structure when it is
retrained or when it is trained with a different algorithm or
structure, we expect TGT to produce different explanations
since the embedding itself has changed.

Our experimental results show that the representation
learned by (Ding et al., 2018) is stable to being retrained
and to modifications to the dataset and that TGT produces
stable explanations for these representations.

Identifying that Structure with Explanations. It is pos-
sible to have a model that learned the true structure of the
data and to have an explanation that is technically true (as
measured by some proxy metric for interpretability) about
the model but that also fails to capture meaningful patterns.
For example, adversarial examples (Szegedy et al., 2013)
are technically local counterfactual explanations but they
usually look like random noise and, as a result, do not tell
a person much about the patterns the model has learned.
TGT’s design, which calculates the explanation between
each pair of groups as if it were a compressed sensing prob-
lem but constrains those solutions to be symmetrical and
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transitive among all groups, was chosen as a prior to prevent
this type of behavior.

A.3. Learned Representations

The learned representations and the corresponding groups
of points for the datasets we studied are in Figures 10, 11,
12, 13, and 14.

Figure 10: The learned representation and grouping for the UCI
Iris dataset

Figure 11: The learned representation and grouping for the UCI
Boston Housing dataset

Figure 12: The learned representation and grouping for the UCI
Heart Disease dataset

Figure 13: The learned representation and grouping for the single-
cell RNA dataset

Figure 14: The learned representation and grouping for the syn-
thetic dataset.

A.4. Pairwise Correctness and Coverage Plots

TGT is much better than DBM for finding 250-sparse ex-
planations on the single-cell RNA dataset (Figures 15 and
16). On the synthetic dataset, TGT and DBM are equally
effective explanations of the model (Figures 17 and 18).
However, TGT only relied on the two causal variables while

DBM included the correlated variable as well.

Figure 15: The pairwise metrics for TGT on the single-cell RNA
dataset for 250-sparse explanations.

Figure 16: The pairwise metrics for DBM on the single-cell RNA
dataset for 250-sparse explanations.

Figure 17: The pairwise metrics for TGT on the synthetic dataset
with no sparsity constraint.

Figure 18: The pairwise metrics for DBM on the synthetic dataset
with no sparsity constraint.

A.5. Qualitative Analysis of the UCI Datasets using the
Labels

Although the representations we learned for these datasets
were trained in an unsupervised manner, the groups that
they find often have strong connections to the labels for the
datasets; see Table 2, Figure 21, and Table 3. By using the
connection between the groups and labels, we will be able
to qualitatively assess whether or not TGT is finding real
patterns in the data.

Iris Dataset. Looking at Table 2, we can see that the groups
in this representation match very closely with the class la-
bels. As a result, we would like to know whether or not the
explanations TGT finds are consistent with a model trained
directly to predict the labels. For this comparison, we used a
simple decision tree, which is shown in Figure 19. Looking
at TGT’s explanations (Figure 20), we can see that they
largely agree with the decision tree since both primarily use
Petal Width to separate the classes/groups.
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Table 2: The distribution of
the labels per group for the
UCI Iris dataset (classifica-
tion).

Group
Class

Iris Setosa Iris Versicolour Iris Virginica

0 0 5 38
1 0 44 12
2 48 0 0

Figure 19: A small decision
tree trained on this dataset.
Notice that it relies on the
Petal Width feature.

Figure 20: TGT’s 1-sparse explanation of the difference between
Group 0 and Group 1 (left) and Group 0 and Group 2 (right).
Similar to the decision tree, they rely on the Petal Width feature.

Boston Housing Dataset. Looking at Figure 21, we can
see that two comparisons between the groups stand out:
Group 0 to Group 2, which shows a significant increase in
the price, and Group 3 to Group 5, which has relatively little
effect on the price. As a result, we would like to determine
what the differences between these groups of houses are that
influence their price.

Figure 21: The distribution of the labels per group for the UCI
Boston Housing dataset (regression).
Looking at Figure 22, we see that TGT found that the key
differences between Group 0 and Group 2 appears to be
the difference between a house being in an urban area vs
being in a suburb: the proportion of land zoned for large

residential lots and B10 both increase while access to ra-
dial highways and tax rates both decrease. It also found
that the key differences between Group 3 and Group 5 are,
first, moving the house onto the Charles river and, second,
decreasing B.

Figure 22: TGT’s 5-sparse explanation for Group 0 to Group 2
(Left) and Group 3 to Group 5 (right).

Heart Disease Dataset. Looking at Figure 3, we see that
there are three large groups that stand out: Group 1, which
has a balanced risk of heart disease, Group 3, which has
a relatively low risk, and Group 6, which has a relatively
high risk. As a result, we would like to determine what
the differences between these groups of subjects are that
influence their risk of heart disease.

Table 3: The distribution of the labels per group for the UCI Heart
Disease dataset (classification).

Group
Class

No Heart Disease Heart Disease

0 6 15
1 46 62
2 10 1
3 52 14
4 4 1
5 10 7
6 8 59
7 2 5

Looking at Figure 23, TGT found that the key differences
between Group 1 and Group 3 are a moderate decrease in
chest pain along with having exercised induced angina; these
are subjects whose symptoms are explained by exercise
induced angina rather than heart disease. It also found that
the key difference between Group 1 and Group 6 is that
Group 1 is made up of men while Group 6 is made up of
women; this is consistent with the fact that heart disease is
the leading cause of mortality in women (Bello & Mosca,
2004).

10This is a unusually defined feature that is related to the racial
demographics of a town. Determining what it means to change
this feature depends on a measurement that is not in the dataset.
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Figure 23: TGT’s 3-sparse explanations for the difference between
Group 1 and Group 3 (Left) and Group 1 and Group 6 (right).

A.6. Quantitative Analysis of Modified Versions of the
UCI Datasets.

Because the UCI datasets are not synthetic datasets, we do
not know the underlying process that generated the data and,
as a result, it is difficult to quantitatively determine whether
or not an explanation is “correct” in the way that we could
with the synthetic dataset. Consequently, we performed a
series of experiments on modified versions of the original
datasets in order to answer two important questions:

• Does TGT correctly identify the modifications we
made to the original dataset?

• Do TGT’s explanations between the original groups
change when the modified group is added to the
dataset?

We found that TGT does identify the modifications we made
and that, in doing so, it does not significantly change the
explanations between the original groups. Importantly, this
result remains true even if we retrain the learned represen-
tation on the modified dataset. These results are a strong
indicator that TGT is finding real patterns in the data.

How do we modify the datasets? We create a modified
version of the original dataset by: picking one of the groups
of points in the original dataset, modifying that group of
points in some way, and adding that new modified group
of points to the original dataset. We will call the original
dataset D and the modified dataset D′, where D′ = D ∪G′
and G′ is the modified version of some group of points G.
The critical choice to make during this process is to deter-
mine what modification to apply to G to get G′. We chose
to add random noise to some of the features of the points
in G and used the following two criteria when defining this
modification for a particular dataset:

• G′ should be approximately within the
range/distribution of D.

• r(G′) should form it’s own (approximately) distinct
group. Intuitively, if r(G′) does not form its own group,
then r thinks G′ is similar to some other group in the
dataset and, as a result, we would not expect TGT to
be able to explain the differences between G′ and that
group of points.

The modifications we used are in Table 4.

Table 4: For each dataset, we chose a group of points to modify
and modified it by applying these perturbations to the specified
features.

Dataset Group Modified Feature Perturbation Applied

Iris 0 Sepal Width -0.4 + Uniform(-0.1, 0.1)
Housing 1 ZN 0.9 + Uniform(-0.1, 0.1)

TAX -0.5 + Uniform(-0.1, 0.1)
Heart 1 restecg -0.9 + Uniform(-0.1, 0.1)

exang 0.6 + Uniform(-0.1, 0.1)

Experimental Setup: We now have two versions of each
dataset: D and D′. We also have the original learned rep-
resentation r, which was trained on D, and a new learned
representation r′, which is trained on D′. As a result, we
have three sets of explanations:

• Original: These explain r when applied to D

• Modified: These explain r when applied to D′

• Retrained: These explain r′ when applied to D′

The visualization of the representation for the first setting
is in the Appendix A.3 and the later two these settings is in
Figures 24, 25, and 26. Note that applying r to D′ looks the
same as applying r to D except for the fact that there is an
additional group from adding G′ to D and that applying r′

to D′ often shows that r′ has learned to separate G′ from
the other groups better than r did.

Figure 24: The learned representation for: r applied to D′ (Left)
and r′ applied to D′ (Right) for the Iris dataset

Figure 25: The learned representation for: r applied to D′ (Left)
and r′ applied to D′ (Right) for the Boston Housing dataset
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Figure 26: The learned representation for: r applied to D′ (Left)
and r′ applied to D′ (Right) for the Heart Disease dataset

Does TGT correctly identify the modifications we made
to the original dataset? In Figure Figures 27, 28, and 29,
we can see the explanations TGT found for the difference
between G and G′ for each of the datasets. If we compare
the explanations to the modifications from Table 4, we can
see that they identified which features we changed and,
approximately, by how much. The error in the estimation of
“by how much” is due to the l1 regularization used to find a
simple explanation.

Figure 27: The Modified (Left) and Retrained (Right) explana-
tion’s explanation for the difference between G and G′ on the Iris
dataset.

Figure 28: The Modified (Left) and Retrained (Right) explana-
tion’s explanation for the difference between G and G′ on the
Boston Housing dataset.

Figure 29: The Modified (Left) and Retrained (Right) explana-
tion’s explanation for the difference between G and G′ on the
Heart Disease dataset.

Do TGT’s explanations between the original groups
change when the modified group is added to the
dataset? In Figures 30, 31, and 32, we can see a com-
parison of the explanations for the differences between the
original groups for the Original vs the Modified and the
Original vs the Retrained explanations. Adding G′ to D did
not cause TGT to find significantly different explanations
between the groups in D. Explaining r′ resulted in explana-
tions that were generally similar, but adding another layer
of variability (i.e., training r′) did add some noise.

Figure 30: The absolute difference between the Modified
(Left)/Retrained (Right) explanations and the Original explana-
tions scaled relative to the Original explanations on the Iris dataset.

Figure 31: The absolute difference between the Modified
(Left)/Retrained (Right) explanations and the Original explana-
tions scaled relative to the Original explanations on the Boston
Housing dataset.

Figure 32: The absolute difference between the Modified
(Left)/Retrained (Right) explanations and the Original explana-
tions scaled relative to the Original explanations on the Heart
Disease dataset.


