Supplementary Information

Fatal attraction of *Caenorhabditis elegans* to predatory fungi through 6-methylsalicylic acid

Xi Yu^{1, 4}, Xiaodi Hu¹, Maria Mirza¹, Nicole Wernet¹, Frank Kirschhöfer², Gerald Brenner-Weiß², Julia Keller³, Mirko Bunzel³ and Reinhard Fischer^{1*}

running head: Methyl salicylate as morphogen and quorum sensing molecule in *D. flagrans*

Address: ¹Karlsruhe Institute of Technology (KIT) - South Campus Institute of Applied Biosciences Dept. of Microbiology Fritz-Haber-Weg 4 D-76131 Karlsruhe, Germany Phone: +49-721-6084-4630 E-mail: reinhard.fischer@KIT.edu Homepage: www.iab.kit.edu ²Karlsruhe Institute of Technology (KIT) - North Campus Institute of Functional Interfaces **Bioengineering and Biosystems** Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein Leopoldshafen ³Karlsruhe Institute of Technology (KIT) - South Campus Institute of Applied Biosciences Dept. of Food Chemistry and Phytochemistry Adenauerring 20A D-76131 Karlsruhe ⁴ present address: Shanghai Engineering Research Centre of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University Huchenghuan Road 999 201306, Shanghai, China

* corresponding author

Suppl. Fig. S1: Characterization of the *artA*-gene cluster. (a) Bioinformatic analysis and comparison with the corresponding clusters in *Arthrospora oligospora* and the patulin gene cluster of *Aspergillus glaucus*. The *artA* gene (DFL_002601) is 5363 bp in length and encodes a 1760-amino acid long protein. It contains five typical catalytic domains, including a Keto Synthase (KS), an acyltransferase (AT), a dehydratase (DH), a β -ketoacylreductase domain (KR), and an acyl carrier protein (ACP) for the PKS. (b) Expression analysis of several genes indicated in (a). RNA was extracted after two, three, four and six days and analyzed by quantitative real time RT PCR. Data are presented as mean values +/- SD, n = 3 biological with 3 technical replicates. Source data are provided as a Source Data file.

Suppl. Fig. S2: (a) Scheme of the deletion strategy for *artA*. (b) (upper panels) PCR analysis of WT and five independent transformants. The left part (*artA-L*) was amplified with the Up-hyg and Hyg(as), and the right part (*artA-R*) with Hyg(s) and Down-hyg. (lower panels) Southern blot analysis of the WT and $\Delta artA$ -deletion strain (SXY05) and a re-complemented strain (SXD05). Genomic DNA was digested and hybridized as indicated in (a). (c) Overview of traps formed in colonies on agar plates (9 cm diameter) of the strains described in (b). Scale bar, 100 µm. Source data are provided as a Source Data file.

Suppl. Fig. S3: Schemes for the deletion of *artB-D* and results of the Southern hybridization using the *hph* gene as probe. Strains were SXY15 ($\Delta artB$), SXY14 ($\Delta artC$) and SXY16 ($\Delta artD$). Source data are provided as a Source Data file.

Suppl. Fig. S4: (a) LC-MS/MS characterization of arthrosporol A of the culture broths of wild type and the Δ *artA*-deletion strain. IDA TOF MS (100-1000) from 6.821 min, 409.223 +/-0.005 Da, noise filtered (noise multiplier=1.5), Gaussian smoothed (0.5 points). (b) Quantitative product ion; IDA TOF MSMS (70-1000) from 6.825 min. Precursor 409.2 Da, +1, noise filtered (noise multiplier=1.5), Gaussian smoothed (0.5 points). Quantitative and Qualitative ions m/z MS/MS of 409.223, 139.1, 155.0, 391.4. Source data are provided as a Source Data file.

Suppl. Fig. S5: (a) GC-MS/MS characterization of m-cresol of the cultural broths of the $\Delta artB$ -deletion strain. Retention time of m-cresol: 3.5 min. (b) MS spectrum of the cultural broth of $\Delta artB$ for m-cresol: Raw spectrum, 3.470 -> 3.542 (scan: 283 -> 326); base peak, m/z 108.05 (Inten: 2,106,625). Source data are provided as a Source Data file.

Suppl. Fig. S6: (a) Incubation of chlamydospores and conidia in the presence of 10 μ l (undiluted)(left, Scale bar, 20 μ m) and 10 μ l (diluted 1:10 with the solvent) (right, Scale bar, 100 μ m) extract. (b) Germination of spores was determined at different concentrations of 6-MSA. (c) Quantification of the number of traps a different 6-MSA concentrations. (d) Effect of *D. flagrans* extracts of cultural broth from WT and the Δ *artA* and Δ *artC* mutants on colony growth of *Alternaria alternata*. Source data are provided as a Source Data file.

Suppl. Fig. S7: Heterologous expression of artA in A. oryzae. (a) (left) PCR analysis of different transformants. Left lane: Two transformants artA-1 and artA-2 and WT were chosen for further analysis. Four fragments were amplified with primers pksA_Ao_transform_for and pksA_AO_tf_up_rev (1639 bp), PksA pksA AO tf up for and recomp mid rev (1623 bp), PksA pksA_AO_tf_down rev recomp mid for and (1343 bp), pksA AO tf down for and pksA Ao PCRconfirm rev (1719 bp). (right) Two colonies of WT and the artA-expressing strain (SXD01) after 11 days of growth on PDA medium. (b) Quantification of fungal growth by measuring the colony diameter. Source data are provided as a Source Data file.

Suppl. Fig. S8: Promoter activity of *artA* in *D. flagrans.* The promoter of *artA* was fused to *h2b* and *mCherry* (strain SXY17). (a) Fluorescence recovery after photobleaching (FRAP). The sample was bleached for 5 seconds and recovered for 14 minutes. (Scale bar, 10 μ m) (b) Quantification of CTCF intensity value of 5 different nuclei (left) after bleaching 5 s and recovery for 14 min. Scale bar, 20 μ m. Source data are provided as a Source Data file.

Suppl. Fig. S9: Expression analysis of *artA-C.* (a) Expression analysis of *artB* (strain SXY20). (b) Expression analysis of *artC* (strain SXY19). (c) Analysis of *artA-C* expression in old traps. Scale bar, 20 μm.

Strain	Genotype	Reference
D. flagrans	wild type (WT)	CBS-KNAW culture
CBS 349.94		collection
SXY05	WT transformed with PXY09, <i>∆artA::hyg</i>	This work
SXY14	WT transformed with PXY15, $\Delta artC$:hyg,	This work
SXY15	WT transformed with PXY16, <i>∆artB:</i> hyg	This work
SXY16	WT transformed with PXY17, <i>∆artD:</i> hyg	This work
SXY17	WT transformed with PXY18, hyg,	This work
	expression of <i>artA</i>	
SXY20	WT transformed with PXY21, hyg,	This work
	expression of <i>artB</i>	
SXY19	WT transformed with PXY20, hyg,	This work
	expression of artC	
SXD05	artA re-complementation; SXY05	This work
Re-artA	transformed with pXD6	
SXD53	Co-localization of ArtA-GFP and ArtB-	
	mCherry in locus, WT transformed with	
	pXD88 and pXD89	
<i>A. oryzae</i> Wild type	Wild type	Russel J. Cox,
		Leibniz University
SXD01	Heterologous expression of artA in	This work
A.o-artA	WT, with pXD1	

Suppl. Table S1: *D. flagrans* and *A. oryzae* strains used in this study.

••	-	
Name	Description	Reference
pJET1.2	ampR	Thermo Fisher
рХҮ09	artA(l)::trpC(p)::hph::trpC(t):: artA(r); ampR;	This work
	plasmid for the deletion of artA	
pXY15	artC(l)::trpC(p)::hph::trpC(t):: artC(r); ampR;	This work
	plasmid for the deletion of artC	
pXY16	artB(l)::trpC(p)::hph::trpC(t):: artB(r); ampR	This work
	plasmid for the deletion of artB	
pXY17	artD(l)::trpC(p)::hph::trpC(t):: artD(r); ampR	This work
	plasmid for the deletion of artD	
pXY18	artA(p)::h2b::mCherry::TubT;	This work
	expression of artA	
pXY21	artB(p)::h2b::mCherry::TubT	This work
	expression of artB	
pXY20	artC(p)::h2b::mCherry::TubT	This work
	expression of artC	
pXD6	pksA(p)::artA::artA(t);	This work
	artA re-complementation	
pXD1	amyB(p)::pksA::amyB(T);	This work
	Heterologous expression of artA in A. oryzae	
pNH30	gpdA(p)::mCherry::TubT	1
pXD88	artA::GFP::trpC(p)::hph::trpC(t)::artA(t)	This work
pXD89	artB::mCherry::trpC(p)::hph::trpC(t)::artB(t)	This work

Suppl. Table S2: Plasmids used in this study.

Name	Sequence (from 5' to 3')	Description
<i>artA</i> olup_fw	CCGGATGGCTCGAGTTTTTCAGCAAGA	artA-knockout-plasmid
	TACATCCAATCCCCCCTAAC	
<i>artA</i> olup_rev	TCCACTAGCATTACACTTGGATCCcgAT	artA-knockout-plasmid
	CCCACCCATCCCAATTC	
hygolup_fw	GGATCCAAGTGTAATGCTAGTGGA	artA-knockout-plasmid
hygolup_rev	CTGCAGTGGGGGGGGGGTTTAGGGAAA	artA-knockout-plasmid
<i>artA</i> oldown_fw	TTTCCCTAAACTCCCCCCACTGCAGaa	artA-knockout-plasmid
	GCCAAAGAAGTCAAGTCAAAAG	
<i>artA</i> oldown_rev	TATTGTAGGAGATCTTCTAGAAAGATAC	artA-knockout-plasmid
	ATAACCGAACACCAAACAG	
artBolup_fw	TGGCTCGAGTTTTTCAGCAAGATGTGG	artB-knockout-plasmid
	GCGAATAAGAATGAAAAG	
artBolup_rev	TCCACTAGCATTACACTTGGATCCcgGA	artB-knockout-plasmid
	GCAAAGCGGAAACATAAAAG	
artBoldown_fw	TTTCCCTAAACTCCCCCACTGCAGaaA	artB-knockout-plasmid
	AGGAATACACGGGGCAAG	
artBoldown_rev	TATTGTAGGAGATCTTCTAGAAAGATTA	artB-knockout-plasmid
	CACGAACAGCGATGGAC	
artColup_fw	TGGCTCGAGTTTTTCAGCAAGATCTCG	artC-knockout-plasmid
	AACCCAAGCGGTAGAG	
artColup_rev	CCTCCACTAGCATTACACTTCGGATTT	artC-knockout-plasmid
	GGGGCACAGTCTT	
artColdown_fw	TCTTTCCCTAAACTCCCCCATTCCGTT	artC-knockout-plasmid
	CCGATCGACTTCGT	
artColdown_rev	TATTGTAGGAGATCTTCTAGAAAGATTG	artC-knockout-plasmid
	ACTTTGCGGCTCTTCCA	
artDolup_fw	GATGGCTCGAGTTTTTCAGCAAGATTA	artD-knockout-plasmid

Suppl. Table S3: Oligonucleotides used in this study.

	CAAAGACAACGGCGGAG	
artDolup_rev	CTCCACTAGCATTACACTTGGATCCcgC	artD-knockout-plasmid
	CCCAAAGGTAACAAGAGAAG	
artDoldown_fw	TTTCCCTAAACTCCCCCCACTGCAGaa	artD-knockout-plasmid
	CGCCCCTTAGTCTATTTTT	
artDoldown_rev	GTAGGAGATCTTCTAGAAAGATTCTTG	artD-knockout-plasmid
	CTCTCCTTTTTCTGTC	
H2b-FW	GAAGAAGGCAGGAAAGAAGAC	House-keeping gene
H2b-Rev	TTTGGCAGACGAGGAAGAG	real-time PCR
2597-Fw	CTGTCATCAACACCCTGAACC	2597 real-time PCR
2597-Rev	TCGCTTCTCTCGCTCTATCC	2597 real-time PCR
2598-Fw	GACCCCGCTACATTGGAAAC	2598 real-time PCR
2598-Rev	ТАСССТТСАСТСССТССТСТАС	2598 real-time PCR
2599-Fw	CAACCATACCTCCTCCAACCTC	2599 real-time PCR
2599-Rev	ACTTCCATCGCTCTGACCTG	2599 real-time PCR
artA-fw	AACATCTCATCTCCCTCACC	artA real-time PCR
artA-Rev	AACTCCCATCAGTCAAGCC	artA real-time PCR
artB-FW	GACCCCAAGATTGAAAGAGCC	artB real-time PCR
artB-Rev	CTACCACCTTCCAACTGAACAC	artB real-time PCR
artC -fw	GTCGTTCTACTTCGATCTCG	artC real-time PCR
artC -fw	GTACTCTATACCCTTTGTCG	artC real-time PCR
artD-Fw	CGAAACTACTTGATGAGCCTCC	artD real-time PCR
artD-Rev	TCCGCTTTGCCACTTGTTTAC	artD real-time PCR
2605-Fw	GTTCTCCAGACCAAGTTCAGC	2605 real-time PCR
2605-Rev	TCCCCATCTATTTCCCACACC	2605 real-time PCR
artE-FW	CGATGATCCCGAAGCACAAG	artE real-time PCR
artE-REV	CGCAAGAAGGAAGATGGCAC	artE real-time PCR
pjetBB_rekom_rev	ATCTTGCTGAAAAACTCGAGC	artA re-complementation
trpcP_for	AAGTGTAATGCTAGTGGAGGT	artA re-complementation

PksA_LB_recomp_	GATGGCTCGAGTTTTTCAGCAAGATTC	artA re-complementation
for	TCATGACAAGGTTGCGCT	
PksA_recomp _rev	CGCTCTCGGAAAACTACACT	artA re-complementation
PksA_recomp_for	AGTGTAGTTTTCCGAGAGCG	artA re-complementation
PksA_RB_recomp_	GTTGACCTCCACTAGCATTACACTTAC	artA re-complementation
rev	ATAACCGAACACCAAACAG	
pksA_Ao_for	AAGAGTCAGTCAGTCTTAATATGACTTC	Heterologous expression
	TACGCCAGCGA	of <i>artA</i> in A.o
PksA_recomp_for	AGTGTAGTTTTCCGAGAGCG	Heterologous expression
		of <i>artA</i> in A.o
PksA_recomp _rev	CGCTCTCGGAAAACTACACT	Heterologous expression
		of <i>artA</i> in A.o
pksA_Ao_rev	AGATCGACTGACTGACTTTATCAGACC	Heterologous expression
	TTCTCTTCAAACCA	of <i>artA</i> in A.o
artA(p)-h2b-fw	CTCTTTCCCTAAACTCCCCCCACCTCA	fluorescent signal of artA
	ACGAACCGCTTACA	
artA(p)-h2b-rev	CGGCGGCTTTTGGTGGCATGGCAGGC	fluorescent signal of artA
	CAAAGAAGTCAAG	
artC(p)-h2b-fw	CTCTTTCCCTAAACTCCCCCCAAGGCA	fluorescent signal of artC
	AAAGTCGTAACCATATC	
artC(p)-h2b-rev	CGGCGGCGGCTTTTGGTGGCATTTTGT	fluorescent signal of artC
	GAATTGTTTAAAATTAA	
artB(p)-h2b-fw	CTCTTTCCCTAAACTCCCCCCAAAGGA	fluorescent signal of artB
	TGAGAGGAAAGCGG	
artB(p)-h2b-rev	GCGGCGGCTTTTGGTGGCATTTTTGC	fluorescent signal of artB
	GCATACAAAAGAGAG	
artB(p)-h2b-rev	GCGGCGGCTTTTGGTGGCATTTTTGC	fluorescent signal of artB
	GCATACAAAAGAGAG	

r	CAACGACGATTCAGCTATC	
ArtAend_gfp_ol_re	TACTTACCTCACCCTTGGAAACCATGA	ArtA-GFP tag in locus
v	CCTTCTCTTCAAACCATTTAA	
Gfp_ArtAend_ol_fo	GGTTAAATGGTTTGAAGAGAAGGTCAT	ArtA-GFP tag in locus
r	GGTTTCCAAGGGTGAGGT	
Gfp_H_ol_rev	GTTGACCTCCACTAGCATTACACTTCTA	ArtA-GFP tag in locus
	AGCGGCCGCTTTGTAAA	
H_Gfp_ol_for	TGAACTTTACAAAGCGGCCGCTTAGAA	ArtA-GFP tag in locus
	GTGTAATGCTAGTGGAGGT	
H-ArtARB-ol-rev	AGAAAAACCCATACCAACACTTCCCTG	ArtA-GFP tag in locus
	GGGGGAGTTTAGGGAAA	
ArtARB_hph_ol_fo	ATGCTCTTTCCCTAAACTCCCCCAGG	ArtA-GFP tag in locus
r	GAAGTGTTGGTATGGGTT	
ArtARB_pjet_ol_re	ATTGTAGGAGATCTTCTAGAAAGATCA	ArtA-GFP tag in locus
v	GTATCACCAATTCTCATCTG	
ArtBend_pJet_ol_f	GATGGCTCGAGTTTTTCAGCAAGATCG	ArtB-mCherry tag in locus
or	CGATATGGAGCGATTGTA	
ArtBend_mCherry_	tacttacCTCGCCCTTGCTTACCATTATCT	ArtB-mCherry tag in locus
ol_rev	TGGCCTCAACTTGCC	
mCherry_artBend_	CACGGGGCAAGTTGAGGCCAAGATAA	ArtB-mCherry tag in locus
ol_for	TGGTAAGCAAGGGCGAG	
mCherry_H_ol_rev	GTTGACCTCCACTAGCATTACACTTttaT	ArtB-mCherry tag in locus
	TTGTAGAGTTCATCCATTC	
H_mCherry_ol_for	TGGAATGGATGAACTCTACAAAtaaAAG	ArtB-mCherry tag in locus
	TGTAATGCTAGTGGAGGT	
H_artBRB_ol_rev	CAGTACAAGATATCGGCAAAACACATG	ArtB-mCherry tag in locus
	GGGGGAGTTTAGGGAAA	
ArtBRB_H_ol_for	ATGCTCTTTCCCTAAACTCCCCCATG	ArtB-mCherry tag in locus
	TGTTTTGCCGATATCTTGTA	

Reference

1 Youssar, L. *et al.* Intercellular communication is required for trap formation in the nematode-trapping fungus *Duddingtonia flagrans*. *PLoS Genet* **15**, e1008029 (2019).