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Supplementary information
The classical SIR model with time dependent transmission rate
The classical SIR compartmental model1 uses a dynamics governed by mass-action laws. It assumes that individuals are
homogeneously mixed and that every individual is equally likely to interact with every other individual. It reads:

dS
dt

=−β IS
N

dI
dt

=
β IS
N
− γI

dR
dt

= γI

(1)

Single location growth and behavioural changes.
Changes of behaviour driven by phenomena such as awareness of fatalities or fatigue with respect to mobility restrictions can
be modelled by a time modulation of the infection rate β .

To start with, we analyse this problem on synthetic data. Namely, we consider an exact dynamics given by the SIR model
with parameter changes on two given dates. We now take part of the resulting points as given observations. The goal is to carry
an optimisation procedure where we try to identify the dates and magnitudes of these changes i.e. the different values of β that
come into play. Later on we will consider the Thau lagoon data.

Figure S1 represents a piece-wise constant modulation in time with reduction of social interactions down to 70% starting
Day t = 25 followed by an increase to 50% on Day t = 50.

Figure S1. Time modulation function associated with collective behaviour modulation as a function of time (day numbers)

The effect on such modulation leads to the interruption of the growth phase followed by a lower decrease for later times.
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Figure S2. Rate of infected individuals as a function of days

We developed a toolbox based upon PYGMO2 particle swarm optimisation algorithms in order to solve the type of inverse
problem we encounter here. We consider a time sampled version of infection rates in the total population. We allow a given
number of transition times associated with behaviour changes, in between which the coefficient β is constant. The problem
then is to determine in an optimal way the SIR model parameters, initial conditions, the transition times and the values of the
β ’s in between. Using a least square objective function, we obtained a satisfactory convergence towards the dynamics of the
initial model and associated modulation function.

Figure S3. Rate of infected individuals as a function of days as a result of the inverse problem: blue dots correspond to daily
sampling of synthetic data, red line to the resulting SIR model.
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Figure S4. Modulation of collective behaviour as a result of the inverse problem

We developed a similar approach with noise added to sampled synthetic data, with satisfactory convergence both in terms
of dynamics of infection rate (Figure S5) and modulation functions (levels and time changes in Figure S6).

Figure S5. Inverse problem with noisy synthetic data: blue dots correspond to daily sampled synthetic data with noise, blue
and red curves respectively to the initial synthetic model and to the result of the inverse problem.

3/15



Figure S6. Original modulation function in blue and result of the inverse problem in red.

A model with change of behaviour at discrete times in Thau lagoon.
We applied the preceding algorithmic approach on real data of the four WWTP measurement campaigns of the Thau lagoon. In
order to keep the model parsimonious, we used the same time modulation function of β for all the four cities together. The
transition dates and levels have to be determined.

Figure S7. Change of behaviour in logarithmic scale in the Thau lagoon (initial day t = 0 being associated with May 12th,
2020). The red curve represents the model output (rate of infected population) and the blue dots correspond to measurements.
Zones I1, I2, I3 and I4 respectively correspond to Sète, Mèze, Frontignan and Pradel-Marseillan.

The above results show that the optimal capture of the transition from exponential growth to plateau type dynamics occurs
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on August 10th, 2020. The resulting piecewise constant modulation function in time is represented in Figure S8 below.

Figure S8. Time modulation of collective behaviour in Thau lagoon as a result of the inverse problem.

Even though the plateau dynamics seems to be correctly represented in Figure S7, the main shortcoming of this is that it
does not really explain the observations of the Thau lagoon data. Indeed, the model does not explain why the four zones reach
the same infection rate level associated with the plateau regime and why there is a two weeks delay. Furthermore, it does not
yield a shoulder effect, as seen in the data.

One may use spatial diffusion to describe the delay between the zones (Frontignan, Mèze) on the one hand and (Sète,
Pradel-Marseillan) on the other hand. But it also fails to explain why there are two parallel curves. We plan to come back to
spatial diffusion in future work.

Derivation of the Model
This section is concerned with the formal derivation of the additional diffusion term in the dynamics of susceptible individuals.
As previously emphasised, this diffusion term stems from the combination of the heterogeneity of behaviours and their
variability in time. A natural case to consider here is to assume that the shuffling of behaviours happens according to Brownian
motion. Namely, individual risk traits move according to the process

dat =
√

2σ dWt ,

where σ > 0 is the possibly a-dependent diffusion, and Wt is a Brownian motion in (0,1) with reflection conditions at the
end-points of the interval. By the Fokker-Planck equation, in the absence of epidemic, an initial distribution of population
S(0,a) gives rise to S(t,a) = E[S(0,at)] governed by

∂S
∂ t

=
∂ 2[σ2(a)S]

∂a2 . (2)

To consider the dynamics of the epidemic, we are thus led to the following more general version:

∂S(t,a)
∂ t

= d
∂ 2[σ2(a)S(t,a)]

∂a2 −β (a)S(t,a)
I(t)
N

,

dI(t)
dt

=
I(t)
N

∫ 1

0
β (a)S(t,a)da − γI(t),

dR(t)
dt

= γI(t).

(3)
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The first equation involves drift and other additional terms. The numerical and theoretical analysis of the case where σ

depends on a, and the corresponding extensions of the Fokker-Planck equation with drift terms, seem relevant from a modelling
viewpoint.

In the simple case where σ2(a) = d where d is a constant, one ends up with the first equation of our system (see System (4)
below).

One could also envision a multi-dimensional variable a = (a1, . . . ,ap) to encompass various behavioural characteristics that
could possibly be related to sociological observations. In this case, one would be led to a higher dimensional partial differential
equation. where the term ∂ 2

aaS is replaced by the Laplace operator ∆aS as we did in the general model presented in Methods
section. Such developments would be useful to improve the model and its applicability.

Simple properties of Model (4)
For the convenience of the reader, we recall the model introduced in the main paper

∂S(t,a)
∂ t

= d
∂ 2S(t,a)

∂a2 −β (a)S(t,a)
I(t)
N

,

dI(t)
dt

=
I(t)
N

∫ 1

0
β (a)S(t,a)da − γI(t),

dR(t)
dt

= γI(t),

(4)

The case d = 0 (heterogeneous but without variability) writes:

∂S(t,a)
∂ t

=−β (a)S(t,a)I(t)
N

,

dI(t)
dt

=
I(t)
N

∫ 1

0
β (a)S(t,a)da− γI(t),

dR(t)
dt

= γI(t).

(5)

We list below some elementary mathematical properties of the model. First, we note that this model contains the traditional SIR
model when the initial profile of susceptible a 7→ S0(a) is uniform in a. Indeed, it is straightforward to see that then, S(t,a) also
does not depend on a.

The dynamics of total infectious individuals is governed by

dI(t)
dt

= I(t)
(

1
N

∫ 1

0
β (a)S(t,a)da− γ

)
, (6)

so that the equivalent of the so called "effective R" coefficient in traditional SIR model, namely βS(t)/(γN), is replaced by

1
Nγ

∫ 1

0
β (a)S(t,a)da. (7)

Unlike traditional SIR model, in which the evolution of infectious t 7→ I(t) begins by an exponentially growing phase, has a
unique maximum and tends to zero for large time, Model (4) may exhibit more sophisticated behaviours such as rebounds in I
with multiple local maxima as well as plateaus. This property can be intuitively understood by analysing the evolution of the
growth factor in (6):

1
N

d
dt

∫ 1

0
β (a)S(t,a)da =− I(t)

N2

∫ 1

0
β

2(a)S(t,a)da− d
N

∫ 1

0
β
′(a)

∂S(t,a)
∂a

da. (8)

In the absence of diffusion, d = 0, this growth factor is non increasing in time. For heterogeneous profiles and non zero diffusion,
the first term of the right hand side is always negative whereas the second term may be positive if for instance a 7→ β (a) is
increasing and a 7→ S(t,a) is a decreasing function. Below we show that it is always the case under some conditions. Thus,
depending on the amplitude of the above two terms, the growth factor may have increasing and decreasing phases. It naturally
leads one to consider initial conditions characterised by the property S′0(a)β

′(a)< 0 such as

β (a) = β0 exp
(

a2

η2

)
for some η > 0, (9)
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S0(a) = S1 +(S0−S1)exp
(
− a2

κ2

)
for some κ > 0 and 0 < S1 < S0. (10)

It means that individuals are sorted by increasing infection rate, according to the variable a, and that the vast majority of
individuals have low infectiousness whereas few individual close to a = 1 have extremely risky behaviour. To some extent,
social contact surveys 3–5 justify an initial distribution of susceptible individuals like (10). However, we are not aware of a
rigorous justification of the expression (9) of the sharply increasing profile in β .

Let us now show that the evolution preserves the property of being decreasing in a for the profiles of the susceptible
population.

Proposition 1. If S0 is a decreasing function of a, then S(t, ·) is also decreasing in a for all time t.
To prove this property, we simply note that the derivative v(t,a) := ∂S(t,a)/∂a of S with respect to a satisfies the following
equation

∂v
∂ t

+β
I(t)
N

v−d
∂ 2v
∂a2 =−β

′(a)S(t,a)
I(t)
N

v(t,0) = v(t,1) = 0,

v(0,a) =
∂S(0,a)

∂a
.

(11)

Since the right hand side of the first equation of (11) is negative and the initial condition v(0,a)≤ 0, the parabolic maximum
principle then shows that v(t,a)≤ 0 for all further time.

Further mathematical properties of Model (4)
Let us first notice that we can describe the dynamics of susceptible individuals in (4) in terms of its probability density
f (t,a) = S(t,a)/S(t) where S(t) =

∫ 1
0 S(t,a)da:

∂ f (t,a)
∂ t

=− I(t)
N

f (t,a)
(
β (a)− β̄ (t)

)
+d

∂ 2 f (t,a)
∂a2 , (12)

where we denote ψ̄(t) =
∫ 1

0 ψ(t,a) f (t,a)da. This equation shows the effect of infections on the distribution of susceptible
population as a function of a. Indeed, it shows that, for instance in the absence of diffusion (d = 0), the proportion of the
population of high a goes down as a result of infection affecting it more in relative terms than the remaining of the population.
The presence of diffusion (d > 0) mitigates this effect by fuelling as it were the epidemic with individuals who had initial lower
risk trait.

The equivalent of (8) for the average transmission rate β̄ is

dβ̄ (t)
dt

=− I(t)
N

Var(β )(t)−d
∫ 1

0
β
′(a)

∂ f (t,a)
∂a

da, where Var(β ) = β 2− β̄
2. (13)

In other words, in the absence of behavioural variability (d = 0), the average of the transmission rate decreases under the effect
of its variance, the latter being directly linked to behavioural heterogeneity. Thus a higher heterogeneity promotes a faster decay
of the average transmission rate. This is a remarkable property of the system in absence of diffusion or with small diffusion.

In the presence of diffusion d > 0, this effect is in competition with the second term of the right hand side of (13) which
may be positive if for instance the profile a 7→ β (a) is increasing while the distribution f decreases along variable a.

Our next result concerns the effect of heterogeneity on herd immunity. We analyze it in the absence of diffusion.

Theorem 1. Let (t,a) 7→ (S(t,a), I(t),R(t)) be the solution of (5) (that is when d = 0) with initial conditions S(0,a) = S̃0 f0(a),
I(0) = Ĩ0 > 0 and R(0) = 0 (for some positive constants S̃0 and Ĩ0). Then, t 7→ S(t, ·) tends as t → +∞ to a limit profile
a 7→ S∞(a) in such a way that ∫ 1

0
S∞(a)da≥ S̃∞,

where S̃∞ > 0 is the limit value as t goes to +∞ of susceptible individuals S̃(t) associated to the homogeneous SIR model (1)
with initial conditions (S̃0, Ĩ0,0) and transmission rate β̄0 =

∫ 1
0 β (a) f0(a)da.

Thus, this theorem asserts that heterogeneity lowers the herd immunity rate needed to stop an epidemic. Note that Several
works study the asymptotic states of similar models without diffusion, in a discrete class framework. We mention in particular
Magal et al.6, Dolbeault and Turinici7 and Almeida et al.8.
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Sketch of proof: The existence of the limit profile a 7→ S∞(a) follows from the monotonicity of t 7→ S(t,a) for fixed a ∈ (0,1).
Since t 7→ I(t) can be easily proved to vanish for large time, the recovered compartment R(t) also tends to a limit R∞. Using R
as a time variable leads to:

I(R) = Ĩ0−R−
∫ 1

0
S0(a)

(
exp
(
−β (a)R

Nγ

)
−1
)

da,

so that

S∞(a) = S0(a)exp
(
−β (a)R∞

Nγ

)
and

Ĩ0 = R∞ +
∫ 1

0
S0(a)

(
exp
(
−β (a)R∞

Nγ

)
−1
)

da. (14)

Equation (14) expresses Ĩ0 as an increasing function Fβ of R∞, which is therefore uniquely defined. Application of Jensen’s
convexity inequality then leads to

G
(∫ 1

0
β (a) f0(a)da

)
≤
∫ 1

0
G(β (a)) f0(a)da, where G(Z) = exp(−ZR∞/(γN)). (15)

We deduce that Fβ (x)≥ F
β̄0
(x) for all x > 0, where F

β̄0
is associated with the homogeneous SIR model (1) with initial conditions

(S̃0, Ĩ0,0) and homogeneous parameter β̄0, which allows to conclude.
An interesting property of System (5) is the conservation of the following entropy-like quantity

V (t) =
∫ 1

0
S(t,a)da+ I(t)− γN

βm

∫ 1

0
logS(t,a)da, where βm =

∫ 1

0
β (a)da. (16)

The property V (t) =V (0) can be deduced from (5).
Next, we consider more specifically the role of diffusion d > 0. First, we note that in the presence of diffusion, the above

entropy V d based on solutions (Sd(t,a), Id(t),Rd(t)) of (4) is non-decreasing in a similar manner as in the framework of viscous
perturbations of scalar conservation laws:

dV d(t)
dt

=−γNd
βm

∫ 1

0

(∂aSd(t,a))2

Sd(t,a)
da≤ 0. (17)

The following result emphasises the differences between the case with diffusion (d > 0) and the case without (d = 0).

Proposition 2. Assume d > 0 and consider solutions (Sd(t,a), Id(t),Rd(t)) of (4). The following properties hold:

(i) t 7→ Sd(t,a) is not necessarily decreasing in time for a ∈ (0,1) given.

(ii) If R0 =
∫ 1

0 Sd
0(a)β (a)da/(Nγ)> 1, then there exists t0 > 0 such that t 7→ Id(t) is increasing for t ∈ (0, t0).

(iii) If R0 < 1, t 7→ Id(t) is decreasing in time over a finite time interval. Still, there are situations where Id can be
increasing over some later time intervals.

We will give the proof of this result in a forthcoming work.

We now compare the combined impact of heterogeneity and variability compared with the case of homogeneous populations.

Theorem 2. For given d > 0, let (Sd(t,a), Id(t),Rd(t)) be solution of (4) with initial conditions (Sd
0(a) = S0(a), Id(0) =

I0,Rd(0) = 0). The following results holds

(i) Sd(t, ·) converges as t goes to +∞ to a positive constant Sd
∞ independent of a.

(ii) Let (S̄(t), Ī(t), R̄(t)) be solution of the homogeneous SIR model (1) with initial conditions (S̄(0) =
∫ 1

0 S0(a)da, Ī(0) =
I0, R̄(0) = 0) and transmission rate βm =

∫ 1
0 β (a)da. Then, denoting S̄∞ the large time limit of t 7→ S̄(t), one has Sd

∞ > S̄∞.
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We already know from Theorem 1 above that heterogeneity is beneficial in terms of herd immunity. From this point of
view, the effect of variability is a priori not so clear because the constant shuffling of population keeps fuelling as it were the
epidemic. However, part (ii) in the previous result shows that heterogeneity and variability still have a positive effect on herd
immunity (that is Sd

∞ > S̄∞).
The convergence of solutions to states that do no depend on a is natural because of the role of diffusion. Indeed, the

diffusion term takes over once the I(t) term becomes small and thus the first equation describes a diffusion. But this only
happens in the long term and the relevance here is rather at intermediate times.
Sketch of proof: Assuming that the initial profile S0 and β are regular enough in the a variable, integration by parts of the S
equation of (4) multiplied by ∂tS leads to:∫ 1

0

Sd(t,a)2

2
da+

∫ t

0
Id(τ)

∫ 1

0

β (a)Sd(τ,a)2

N
dτda+

∫ t

0

∫ 1

0
d |∂aSd(τ,a)|2 dτda

=
∫ 1

0

Sd
0(a)

2

2
da for all t ≥ 0. (18)

Moreover,∫ t

0

∫ 1

0
|∂tSd(τ,a)|2 dτda+

∫ 1

0
d
|∂aSd(t,a)|2

2
da =−

∫ t

0

∫ 1

0

β (a)Sd(τ,a)Id(τ)

N
∂tSd(τ,a)dτda

+
∫ 1

0
d
|∂aSd

0(a)|2

2
da. (19)

Hence,∫ t

0

∫ 1

0
|∂tSd(τ,a)|2 dτda+

∫ 1

0
d
|∂aSd(t,a)|2

2
da≤ 1

2

∫ t

0

∫ 1

0
|∂tSd(τ,a)|2 dτda

+sup
τ≥0

Id(τ)

N
sup

a∈(0,1)
β (a)

∫ t

0

∫ 1

0

β (a)Sd(τ,a)2Id(τ)

2N
dτda+

∫ 1

0
d
|∂aSd

0(a)|2

2
da for all t ≥ 0, (20)

so that we have∫ t

0

∫ 1

0
|∂tSd(τ,a)|2 dτda+

∫ 1

0
d |∂aSd(t,a)|2 da≤

∫ 1

0
d |∂aSd

0(a)|2 da

+ sup
a∈(0,1)

β (a)
∫ t

0

∫ 1

0

β (a)Sd(τ,a)2Id(τ)

N
dτda. (21)

It follows that ∂aSd(t, ·) converges to 0 in L2(0,1): if it does not hold, there exists (tn)n∈N → +∞ and α > 0 such that
‖∂aS(tn, ·)‖2

L2(0,1) ≥ α . On the other hand, there exists T such that

sup
a∈(0,1)

β (a)
∫ +∞

T

∫ 1

0

β (a)Sd(τ,a)2Id(τ)

N
dτda≤ α

2
.

From (21) generalised between two positive times, for all t > T , there exists n such that tn > t and∫ 1

0
d |∂aSd(tn,a)|2 da≤

∫ 1

0
d |∂aSd(t,a)|2 da+

α

2
, so that

∫ 1

0
d |∂aSd(t,a)|2 da≥ α

2
,

which contradicts the integrability of ∂aS in L2(R+× (0,1)). Next, from (21), we deduce that Sd(t, ·) is bounded in H1(0,1)
uniformly in time, so that it is compact in C0,1/2(0,1): a sequence (tn)n∈N → +∞ exists such that Sd(tn, ·) converges in
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C0,1/2(0,1) to some Sd
∞ ∈ H1(0,1) as n goes to +∞. Since ∂aSd

∞ = 0, Sd
∞ is a constant. In order to prove the uniqueness of Sd

∞,
we observe that for all (t, t ′) ∈ R+2

1
2

∫ 1

0

(
Sd(t,a)2−Sd(t ′,a)2

)
da =−d

∫ t

t ′

∫ 1

0
|∂aSd(τ,a)|2 dτda−

∫ t

t ′

∫ 1

0

β (a)Id(τ)Sd(τ,a)
N

dτda, (22)

and use the fact that ∂aS ∈ L2(R+× (0,1)), S/N ≤ 1, and I ∈ L1(R+).
In order to prove (ii), using the fact that dRd(t)/dt = γId(t) ≥ and Rd(t) ≤ N, we deduce that Rd(t) converges to some

Rd
∞ > 0. The conservation of total population

∫ 1
0 Sd(t,a)da+ Id(t)+Rd(t) = 1 then yields the convergence of Id(t) to 0 as

t→+∞.
Integrating (17) between 0 and t, and letting t go to +∞ leads to

Sd
∞−

γN
βm

logSd
∞ =V d(0)−d

∫ +∞

0

∫ 1

0

|∂aSd(t,a)|2

Sd(t,a)
dtda, (23)

which yields the estimate Sd
∞ > S̄∞. The detailed proofs and further developments are postponed to a forthcoming work.

Some simulations with rebounds and plateaus
Some simulations show that the model adequately captures dynamical features such as epidemiological rebounds and plateaus.
The initial conditions considered here are (10) where κ = 0.44, S0 = 90 and S1 = 119,000 (total initial susceptible individuals
are around 46,398), initial infected people I(0) = 1, and β is given by (9) for β0 = 0.008 and η is taken such that β (1) = 26.

Figure S9. Model behaviour depending on diffusion parameter values: infected rate dynamics in logarithmic scale. From left to right and then top to
bottom, graphs are associated with d = 10−5, d = 5 ·10−5, d = 10−3 and d = 5 ·10−3 (in day−1 unit)

Diffusion of susceptible individuals seem to be the most sensitive parameter in order to obtain either traditional SIR type
behaviour or rebounds and plateau-type dynamics. Figure S9 illustrates the changes of dynamics depending on diffusion
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parameter d. The associated dynamics of susceptible individuals are represented in Figure S10 when variable a ∈ (0,1) is
discretized into ng = 50 groups through a finite difference scheme. Coloured curves represent each discretized group and the
black curve the average of the groups (total susceptible individuals).

Figure S10. Model behaviour depending on diffusion parameter values: 50 groups of susceptible individuals, in logarithmic scale. The black curve
corresponds to total susceptible individuals and the bottom light blue curve is associated with the most risky behaviour (a close to 1) and may not be
monotonically decreasing in time. From left to right and then top to bottom, graphs are associated with d = 10−5, d = 5 ·10−5, d = 10−3 and d = 5 ·10−3 (in
day−1 unit)

One can observe the effect of diffusion: while individuals with the riskiest behaviour are rapidly consumed, their group is
renewed through diffusion from the majority of less infectious individuals. Depending on the parameter range of the diffusion
coefficient d in (4), it leads to multiple epidemic waves, plateaus, or classical single wave SIR-like dynamics.

Stability of plateaus: the key role of diffusion
Let us illustrate in a heuristic manner the impact of diffusion on the existence and stability of plateaus in the dynamics of
infectious individuals in Model (4). First, the second derivative of x = log I satisfies

d2x
dt2 (t) =−I(t)

∫ 1

0

β 2(a)S(t,a)
N2 da−d

∫ 1

0
β
′(a)

∂S(t,a)
∂a

da. (24)

In the case d = 0, we deduce from (24) that d2x/dt2(t)< 0 for all t ∈ R+, so that x = log I is a strictly concave function of
time. The consequence is that only slow decrease at the beginning of the decay phase can be obtained. Plateaus or shoulder-like
patterns cannot arise in the case d = 0, nor rebounds since x(t) has a single maximum after which it keeps decreasing.

In the case d 6= 0, Equation (24) can be reformulated as

d2x
dt2 (t) = η(t)

(
1− I(t)

Ip(t)

)
, (25)
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where

η(t) =− d
N

∫ 1

0
β
′(a)

∂S(t,a)
∂a

da and Ip(t) =
N2

η(t)∫ 1

0
β

2(a)S(t,a)da
. (26)

Assuming that β and S0 are respectively increasing and decreasing functions of a, we deduce from Proposition 1 that η(t) and
Ip(t) are always positive. Introducing xp(t) = log Ip(t), Equation (25) can be rewritten as

d2x
dt2 (t)+η(t)(exp[x(t)− xp(t)]−1) = 0. (27)

It means that d2x/dt2(t) may be positive (resp. negative) depending on whether x(t) is lower (resp. greater) than xp(t). In
particular, in the neighborhood of times t such that x(t) is close to xp(t),

exp[x(t)− xp(t)]−1≈ x(t)− xp(t),

so that oscillations may arise, leading to patterns such as the ones seen on Figure S9. These oscillations also explain rebounds,
or shoulders-like patterns before plateaus. Of course, this is not a proof but an indication to this effect and it warrants further
mathematical investigation.

More general systems
First, it should be noted that the coefficient β (a) can be time dependent: β = β (t,a). We can thus incorporate public health
policies changes such as social distancing, lockdowns etc. For instance, we can consider a transition between two profiles β1(a)
and β2(a) at a given date.

Then, we observe that System (4) is a particular case of a more general class of models. Indeed, we may want to also
consider heterogeneity in the compartment of infected. This for instance reflects the division between symptomatic and
asymptomatic individuals, or other differences. In particular, in terms of behaviour one can then include effects such as
“super-spreaders”. We then get a model where the population of infected also depends on the same parameter a, that is I = I(t,a).
We assume that the probability of interaction between a susceptible of class a and an infected of class b is given by a coefficient
of transmission B(a,b). These considerations lead us to the following general system.

∂S(t,a)
∂ t

−d
∂ 2S(t,a)

∂a2 =−S(t,a)
N

∫ 1

0
B(a,b)I(t,b)db,

∂ I(t,a)
∂ t

=
S(t,a)

N

∫ 1

0
B(a,b)I(t,b)db− γI(t,a),

dR(t)
dt

= γ

∫ 1

0
I(t,a)da.

(28)

We observe that our model above (4) is derived from this more general class by assuming that B(a,b) is independent of b. In
fact, the same is true for a finite number of states. This type of modelling of heterogeneity can be found in Magal et al.6 and
Arino et al.9 in the discrete setting (a has a finite number of values) and without diffusion (d = 0). These works do not seem to
yield shoulder, plateau and rebound-type patterns.

For simplicity we assume that the decay rate γ is uniform. Note that the second equation states that new infected individuals
of class a result from an infection of a susceptible individual of the same class. Other choices are possible, but then, in order to
be consistent, one would need to introduce new compartments such as symptomatic/asymptomatic, hospitalised etc. Likewise,
we could consider other variants of the SIR model, such as the SEIR model. It would then be natural to assume that exposed
individuals also move around. We are then led to a system of the following kind.

∂S(t,a)
∂ t

−d
∂ 2S(t,a)

∂a2 =−S(t,a)
N

∫ 1

0
B(a,b)I(t,b)db,

∂E(t,a)
∂ t

−d
∂ 2E(t,a)

∂a2 =
S(t,a)

N

∫ 1

0
B(a,b)I(t,b)db−ρE,

∂ I(t,a)
∂ t

= ρE− γI(t,a),

dR(t)
dt

= γ

∫ 1

0
I(t,a)da.

(29)
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We can also consider a more general diffusion process on the behavioural variables than Brownian diffusion. We already
mentioned above (3) the version involving a diffusion ∂ 2

aa[σ
2(a)S(t,a)] rather than d ∂ 2

aaS(t,a).
With a somewhat different point of view, we can assume that there is a probability kernel K(a,b) that represents the

probability distribution that an individual with trait b jumps to behaviour a. Then, the variation of S involves an integral operator
rather than a heat operator. We are then led to the following system.

∂S(t,a)
∂ t

=
∫ 1

0
K(a,b)S(t,b)db−S(t,a)−β (a)S(t,a)

I(t)
N

,

dI(t)
dt

=
I(t)
N

∫ 1

0
β (a)S(t,a)da − γI(t),

dR(t)
dt

= γI(t),

(30)

System (30) is supplemented with the same type of initial conditions as above (4). Note that there are no boundary conditions
in this case.

It is classical that one can recover System (4) as a certain limit of the more general class of systems (30) (compare e.g. the
article by the first author et al.10). However, here it is interesting to look at more behavioural assumptions on the kernel K. For
instance, it is natural to assume that K(a,b) is singular when b is close to a, that K(a,b) is rather large when b is close to 1,
whereas it is very small when b is small. We leave the study of such kernels for future study.

Digital PCR in the framework of wastewater based epidemiology
Wastewater-based surveillance has been used over the past two decades to assess in real time the exposure of people to
chemicals (in particular pollutants, licit and illicit or misused therapeutic or other drugs) and pathogens (bacteria or viruses) at
the community level11. It provides a global picture of population health at the scale of an urban area connected to wastewater
treatment plants (WWTP). Fully complying with the privacy of individuals, this approach rests on an explicit, objective
observation. It also has the advantage to serve as an early warning system. Nonetheless, there are also uncertainties in the
quantitative interpretation of these measurements. In particular, dilution due to storm-water, infiltration of parasite inflow water,
varying population, bio-marker degradation, varying time spent in the flow..., all generate a variety of biases.

In spite of these uncertainties, there is a renewed interest in wastewater based epidemiology (WBE), in the context of the
Covid-19 outbreak. There are numerous initiatives over the world, in Australia12, Japan13, Netherlands14, Detroit15, Paris16,
Spain17 and Canada18. The recent periodic sampling campaigns in WWTPs rely on classical quantitative real time PCR
(qRT-PCR) to estimate the concentration of SARS-Cov-2. At this stage, these programs serve as early warning platforms based
on the observation that they detect SARS-Cov-2 in sewers at least seven days ahead of individual testings15, 17, 19.

Only a few of them also used digital PCR on sub-samples to assess the measurement uncertainties of qRT-PCR measurements.
Even if the benefit of dPCR in particular for low viral loads is mentioned18, it is not currently used routinely for systematic
measurements, mainly for economic reasons.

Plateau-type patterns at country level
In most European countries, Covid-19 data exhibit similar plateau-type features, as illustrated in the so called effective R
coefficient computed from the daily number of deaths20. This effective R coefficient exhibits phases where it stabilises around
1, which corresponds to an epidemic plateau.
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Figure S11. Effective R coefficient as a function of time21 https://shiny.biosp.inrae.fr/app_direct/mapCovid19/.

Campo et al.22 study more specifically the dynamics of Covid-19 in Italy and put emphasis on plateaus and multi-wave
patterns, for which they discuss meta-stability properties.

Press articles illustrate the political leaders’ observation that the Covid-19 outbreak has reached a plateau phase: Reuters,
January 21st ,202123; French government information service, December 10th, 202024; A. Merkel, Westdeutsche Zeitung,
January 21st ,202125; E. Macron, February 2nd , 2021, interview on TF1 TV channel26).
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