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Multi-Layer Neural Network (MLNN) Architecture 

All input features were scaled using the standard normalization method before fitting in the 
model, and all weights were initialized to small uniformly random values between 0 and 0.05. 
For each unit in the hidden layers such as 𝑔௝ , we computed 𝑔௝  based on units 𝑓௞  from the 
previous layer: 𝑔௝ ൌ  𝜎ሺ∑ 𝑢௝௞𝑓௞ሻ.௞   𝜎ሺ𝑥ሻ function is the activation function, which is a rectifier 
function in the input and hidden layers, whilst a sigmoid function was applied to the output 
layer. As shown in Figure 3 (main paper), 𝑢௝௞ is the weight connected to unit 𝑔௝. Then we 
calculated the prediction 𝑦ො௜ and calculated its binary cross-entropy loss. The adaptive moment 
estimation (Adam)1 method was applied to minimize the loss by updating the weights 
connected to each unit. The batch size was 1400. Training continued to achieve minimal 
validation loss. To achieve the best performance on the test dataset, we examined the model 
learning curve. The MLNN model achieved its best training performance after 15 epochs. 
Finally, the model was tested on the test dataset. The output 𝑦ො௜ was the predicted results of the 
test data, which are a column of floating point numbers between 0 and 1. The threshold was 
chosen based on the model performance, if  𝑦ො௜ > threshold, it will be 1; otherwise, it will be 0. 
 
Figure 1 shows a schematic of our fully connected MLNN. It consists of five layers: the input 
layer, three hidden layers, and the output layer. The three hidden layers contained 2250, 825 
and 18 nodes respectively. The study dataset was divided into training (70%), validation (10%) 
and test sets (20%). 
  
Our study dataset has a significant class imbalance issue because more than 90% of the patients 
were in the negative class (Class 0 or no outcome) thereby overwhelming the ability of the 
algorithms to predict the outcome class. To address the class imbalance in our data we applied 
balanced the class weights while training the model. All the sampling was accomplished using 
the imblearn library2 in Python.  
 
Gradient Boosting 
The goal of a gradient boosting classifier is to create a sequence of weak learners (i.e. decision 
trees) to minimize the loss function. It was trained on 75% of the total cohort and tested on the 
remainder. We implemented a grid search and constrained 450 weak learners with learning rate 
0.01, max depth 10, minimum number of samples equals 700, minimum number of samples at 
leaf node 50, subsample 0.8, and max feature set as ‘sqrt’. The model was implemented by the 
scikit-learn package in Python.  
 
Support Vector Machine 
Support vector machine is a popular binary classification technique. It aims to build a 
hyperplane between two classes, with the maximal distance between the hyperplane and the 
nearest points from two classes. The dataset was split into training (75%) and testing set (25%). 
Through grid search, we set C to 3 with radial basis function (RBF) kernel and used ‘scale’ 
gamma. We applied ‘balanced’ class weight as the data is highly imbalanced.   
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Figure 1: Overview of our multilayer neural network, demonstrating prediction for patient 𝒙𝒊. For 
each unit in each hidden layer such as 𝒈𝒋, compute 𝒈𝒋 based on units 𝒇𝒌 from the previous layer. 
Then predict 𝒚ෝ𝒊  and calculate the binary cross-entropy loss. To minimize the loss of the model, an 
Adaptive Moment Estimation (Adam) optimizer was applied to update the connected weights 𝒖𝒋𝒌 for 
each unit in each hidden layer such as  𝒈𝒋 . The training process continues to achieve minimal 
validation loss. The figure was created using Microsoft PowerPoint 365, available from: 
https://office.microsoft.com/PowerPoint 
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Figure 2A: Feature importance of the prediction model for adverse outcomes: for ACS. 
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Figure 2B: Feature importance of the prediction model for adverse outcomes: for all-cause death. 
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Figure 2C: Feature importance of the prediction model for adverse outcomes: for composite outcome 
(ACS or all-cause death). 
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Table S1: ICD codes for comorbidities.  
ICD-9-CM, International Classification of Diseases, Ninth Revision, Clinical Modification; ICD-10-
AM, International Classification of Diseases and Related Health Problems, Tenth Revision, 
Australian Modification. 
 

Comorbidity  ICD-9-CM ICD-10-AM 
Ischaemic heart disease 410-414 I20-I25 
Hypertension 401-405 I10-I15 
Atrial Fibrillation 427.31 I48 
Diabetes 250 E10-E14 
COPD 490-496 J40-J46 
PVD 440-442, 443.1, 443.9, 444, 447.1  I70-I72, I73.1, I73.9, I74, I77.1 
Stroke 430, 431, 433, 436 I60, I61, I63, I64 
Chronic Kidney Disease 250.3, 250.4, 250.42, 250.43, 580.0, 

405.01, 405.11, 405.91, 405.02, 
405.12, 405.92,  
580.89, 580.9, 580.4, 582.4, 583.4, 
599.7, 581.9, 582.0, 582.1, 582.2, 
582.4, 582.89, 583.0, 583.1, 583.2, 
583.6, 583.7, 583.89, 583.9, 580.81, 
581.89, 582.81, 583.81, 587, 590.00, 
590.01, 590.80, 590.9, 590.2, 
590.81, 586, 588.0, 588.1, 588.8, 
588.9, 589.0, 589.1, 589.9, 590.3, 
593.0, 593.1, 593.2, 593.81, 593.82, 
593.89,  593.9, 593.6, 753.0, 753.10, 
753.11, 753.12, 753.13, 753.14, 
753.15, 753.16, 753.17, 753.19, 
753.2, 753.4, 753.3, 996.73, 996.81, 
585.1, 585.9, 403, 404, I12, I13, 
404.12, 404.13, 404.92, 404.93 
 

E10.2, E14.2, I15.0, I15.1, 
N00, N01, N02, N03, N04, 
N05, N06, N07, N08, N11, 
N12, N14, N15, N16, N18, 
N19, N25, N26, N27, N28, 
N39.1, N39.2, Q60, Q61, Q62, 
Q63, T82.4, T86.1, Z49.0, 
Z49.1, Z49.2, Z94.0, Z99.2 

Cancer 15, 16, 140, 141, 142, 143, 144, 145, 
146, 147, 148, 149, 170, 171, 172, 
196, 197, 198, 199, 200, 201, 202, 
203, 204, 205, 206, 207, 208 
 

C0, C1, C4, C5, C6, C7, C9, 
C20, C21, C22, C23, C24, C25, 
C26, C30, C31, C32, C33, C34, 
C37, C38, C39, C40, C41, C45, 
C46, C47, C48, C49, C50, C51, 
C52, C53, C54, C55, C56, C57, 
C58, C80, C81, C82, C83, C84, 
C85, C86, C87, C88 

Dementia 290 F00, F01, F02, F03 
Depression 311 F31, F32, F33, F34, F38 
Heart Failure 428 I50 
Cardiomyopathy 425 I42, I43 
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