Supplementary Information

$\Delta 133p53\beta$ isoform pro-invasive activity is regulated through an aggregation-dependent mechanism in cancer cells.

Nikola Arsic^{1,2}, Tania Slatter³, Gilles Gadea⁴, Etienne Villain^{1,2}, Aurelie Fournet^{5,2}, Marina Kazantseva³, Frédéric Allemand^{5,2}, Nathalie Sibille^{5,2}, Martial Seveno^{6,2}, Sylvain de Rossi⁷, Sunali Mehta³, Serge Urbach^{8,2}, Jean-Christophe Bourdon⁹, Pau Bernado^{5,2}, Andrey V Kajava^{1,2,10}, Antony Braithwaite³ and Pierre Roux^{1,2}

1. Université de Montpellier, Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), CNRS, UMR 5237, Montpellier, France

2. Université de Montpellier, Montpellier, France

3. Department of Pathology, University of Otago, Dunedin, New Zealand

4. Université de la Réunion, Unité Mixte 134 Processus Infectieux en Milieu Insulaire Tropical, INSERM Unité 1187, CNRS Unité Mixte de Recherche 9192, IRD Unité Mixte de Recherche 249. Plateforme Technologique CYROI, Sainte Clotilde, France.

5. Centre de Biochimie Structurale (CBS), INSERM, CNRS, 29 rue de Navacelles, Montpellier, France

6. BioCampus Montpellier, CNRS, INSERM, Montpellier, France.

7. MRI, UMS BioCampus Montpellier, CNRS, INSERM, Université de Montpellier, Montpellier, France.

8. IGF, CNRS, INSERM, Montpellier, France.

9. Dundee Cancer Centre, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom.

10. Institut de Biologie Computationnelle, Montpellier, France

To whom correspondence should be addressed: pierre.roux@crbm.cnrs.fr

Supplementary figure 1

red OC (Αβ42) green ∆133p53β (α-Flag)

Supplementary Figure 1. Immunofluorescent analysis p53 isoforms co-localisation with amyloid aggregates and protein oligomers.

a. 3D reconstruction of confocal immunofluorescent Z-stack images of H1299 cells transfected with WT, structurally and contact mutated p53 with separated acquisition channels. Green: α -Flag (p53), red: α -OC (A β 42, amyloid aggregates) antibody, blue: Hoechst. Scale bar 8µm. n=3

b. 3D reconstruction of the confocal immunofluorescent Z-stack images of H1299 cells transfected with WT, structurally and contact mutated Δ 133p53 β with separated acquisition channels. Green: α -Flag (Δ 133p53 β), red: α -OC (A β 42, amyloid aggregates) antibody, blue: Hoechst. Scale bar 8µm. n=3

c. Immunofluorescent analysis wt, structural and contact mutant of p53 co-localisation with protein oligomers visualised by A11 antibody. Green: Flag (p53), Red: protein oligomers (A11 antibody), Blue: Hoechst. n=3

d. Immunofluorescent analysis wt, structural and contact mutant of $\Delta 133p53\beta$ co-localisation with protein oligomers visualised by A11 antibody. Green: Flag ($\Delta 133p53\beta$), Red: protein oligomers (A11 antibody), Blue: Hoechst. n=3

The arrows indicate co-localisation.

Scale bar 10µm.

Source data are provided as a Source Data file.

Supplementary Figure 2

d

b

42°C

Enrichment plot: GO protein homotetramerizaton 0,35 Enrichment score (ES) 0,30 0,25 0,20 0,15 0,10 0,05 0.00 Ranked list metric (PreRanked) 1,0 0,5 at 1105 0,0 -0,5 4,000 6,000 8,000 10,000 12,000 14,000 16,000 2,000 **Rank in Orded Dataset** - Enrichment profile - Hits - Ranking metric scores е

Δ**133p53**β

(WB Flag)

Homo	Δ133p53β
tetramerization	correlation
KCNJ12	0.522
RNF135	0.511
KCTD5	0.483
FUS	0.476
TRPM2	0.448
CRTC2	0.399
KCTD15	0.392
POLQ	0.344
ALDOA	0.329
BLM	0.328
MCOLN1	0.308

Supplementary Figure 2. Evaluation of aggregate forming capacity of $\Delta 133p53\beta$ isoform in different breast cancer cell lines.

a. Immunofluorescent analysis of $\Delta 133p53\beta$ co-localisation with amyloid type aggregates in MCF-7, MDA-MB 231 D3H2LN and SK-BR-3 cells upon 3D reconstruction of confocal Z-stacks. Green: α -Flag ($\Delta 133p53\beta$), Red: α -OC (A β 42, amyloid aggregates), blue: Hoechst. Scale bar 10 µm. n=3

b. Western blot analysis of $\Delta 133p53\beta$ aggregation forming capacity in MCF-7, MDA-MB 231 D3H2LN and SK-BR-3 cells from the soluble protein fraction. n=3

c. Enrichment plot obtained by Gene Ontology analysis for protein homoligomerisarion processes upon RNAseq analysis performed on prostate cancer samples that correlate with $\Delta 133p53\beta$ expression. n=3

d. Enrichment plot obtained by Gene Ontology analysis for protein homotetramerisation processes upon RNAseq analysis performed on prostate cancer samples that correlate with $\Delta 133p53\beta$ expression.

e. Examples of genes involved in cellular processes linked to tetramerization obtained by Gene Ontology analysis for protein homotetramerisation processes upon RNAseq analysis performed on prostate cancer samples that correlate with $\Delta 133p53\beta$ expression.

The arrows indicate co-localisation. Molecular weight is expressed in kDa. Source data are provided as a Source Data file.

Supplementary Figure 3

Supplementary Figure 3. Evaluation of the Pontin and HSP70 effects on $\Delta 133p53\beta$ aggregation capacity.

a. Co-immunoprecipitation analysis of WT p53, structurally and contact mutated proteins association with Pontin in H1299 cell line. n=3

b. Co-immunoprecipitation analysis of WT p53, structurally and contact mutated proteins association with HSP70 in H1299 cell line. n=5

c. Co-immunoprecipitation analysis of WT $\Delta 133p53\beta$, structurally and contact mutated proteins association with Pontin in H1299 cell line. n=3

d. Co-immunoprecipitation analysis of WT $\Delta 133p53\beta$, structurally and contact mutated proteins association with HSP70 in H1299 cell line. n=5

e. Co-immunoprecipitation analysis of Pontin interaction with different p53 isoforms upon expression in H1299 cells. n=3

f and **g**. Co-immunoprecipitation analysis of Pontin interaction with $\Delta 133p53\beta$ isoform in MCF-7, MDA-MB 231 D3H2LN and SK-BR-3 cells. n=3

h-j. Co-immunoprecipitation analysis of HSP70 interaction with $\Delta 133p53\beta$ isoform in MCF-7, MDA-MB 231 D3H2LN and SK-BR-3 cells. n=5

k. Western blot analysis of Pontin depletion upon Sh RNA application in H1299 cell line. n=2 **l.** Western blot analysis of the soluble protein fraction from H1299 cells after Δ 133p53 β transfection in control and Pontin depleted backgrounds. n=2

m. Western blot analysis of the insoluble protein fraction from H1299 cells after WT Δ 133p53 β transfection in control and Pontin depleted backgrounds.n=2

n. Western blot analysis of HSP70 depletion upon two different Sh RNA applications in H1299 cell line. n=3

o. Western blot analysis of the soluble protein fraction from H1299 cells after Δ 133p53 β transfection in control and HSP70 depleted backgrounds. n=3

p. Western blot analysis of the insoluble protein fraction from H1299 cells after WT Δ 133p53 β transfection in control and HSP70 depleted backgrounds. n=3

Molecular weight is expressed in kDa.

Source data are provided as a Source Data file.

а

b

Supplementary Figure 4. p53 isoform and CCT complex abundance in MCF-7 and MDA-MB-231 D3H2LN.

a. Western blot analysis of p53 isoform abundance in MCF-7 and MDA-MB-231 D3H2LN cell lines. n=3

b. Western blot analysis of CCT complex subunit abundance in MCF-7 and MDA-MB-231 D3H2LN cell lines. n=3

Molecular weight is expressed in kDa.

Source data are provided as a Source Data file.

H1299 cell line

H1299 cell line

Supplementary Figure 5. Co-immunoprecipitation and expression analysis of WT $\Delta 133p53\beta$ interactions in different cellular backgrounds.

a. Co-immunoprecipitation analysis of WT $\Delta 133p53\alpha$ and WT $\Delta 133p53\beta$ interactions with different partners upon expression in HCT116 and SW480 colon cancer cell lines.

n=3-5 for different panels of the figure

b. Western blot analysis of expression and co-expression of EGFP tagged WT $\Delta 133p53\beta$ and $\Delta Np63\alpha$ and $\Delta Np63\gamma$ isoforms used for time-lapse imaging (Supplementary Movies 4-9). Representative immunoblot of one out of 3 experiments is shown.

c. Schematic representation of $\Delta 133p53\alpha$, β and $\Delta 160p53\beta$ isoforms.

d. Immunoprecipitation analysis of WT $\Delta 133p53\alpha$ isoform by Ab 240 and CM1 in H1299 cell line. n=2

e. Silver stained polyacrylamide gel upon electrophoretic separation of immunoprecipitation reaction with α -Flag beads performed on control and $\Delta 133p53\beta$ transfected H1299 cells. In total 3 different proteomic analyses were performed. The most pertinent is shown.

f. Delineated regions of the silver stained polyacrylamide gel upon electrophoretic separation of immunoprecipitation reaction with α -Flag beads performed on control and $\Delta 133p53\beta$ transfected H1299 cells that were dissected and used for proteomic analysis.

In total 3 different proteomic analyses were performed. The most pertinent is shown. Molecular weight is expressed in kDa.

Tissue type			n	% of samples	% of cells with
				with	aggregates
				aggregates	
Breast	Brain	Triple negative	5	100%	11, 30, 55, 70, and
tumour	metastasis				77%
	Brain	Her2 positive	5	80% (n=4)	12, 15*, 19 and 25%
	metastasis				
	Primary	Triple negative	5	60% (n=3)	18, 27*, and 30%*
	Primary	Her2 positive	5	40% (n=2)	17* and 26%
	Primary	ER+PR+ HER2-	5	20% (n=1)	Scattered positive
Breast			15	20% (n=3)	Scattered positive
normal					
associated					
Lung	Brain	Adenocarcinoma		40% (n=2)	9* and 25%*
tumour	metastasis				
	Primary	Adenocarcinoma	3	0%	
Lung			3	0%	
normal					
associated					
Colorectal	Brain	Adenocarcinoma	3	67% (n=2)	8* and 12%*
tumour	metastasis				

*, aggregates present in parts of the tumour only. In these tumours the percent of cells with aggregates were counted in positive areas

Supplementary Table 1. Quantification of aggregates in human tumour samples

Target gene	Sequence
Pontin	GCATGACTTGGATGTGGCTAATGC
HSP70	CGTGGAGGAGTTCAAGAGAA
HSP70	GCCATGACGAAAGACAACAA
ΔNp63	GGACAGCAGCATTGATCAA
TAp63	TTCCTCAGTCCAGAGGTTT
Δ133p53	GGAGGTGCTTACACATGTT
CCT2	GCCTCTCTTATGGTAACCAA
ССТ3	GCCAAGTCCATGATCGAAAT
CCT5	CCACTTCTGTGATTAAGTA
CCT7	GCCACAATTCTGAAACTTCT
Si∆133-1	GGAGGTGCTTACACATGTT
Si∆133-2	CTTGTGCCCTGACTTTCAA
Siβ	GGACCAGACCAGCTTTCA

Supplementary Table 2. List of Sh and Si RNA used for gene silencing

Antibody	Reference			
Flag	mouse monoclonal 1804, Sigma			
p53	Ab 240, mouse monoclonal ¹			
p53	DO-1, mouse monoclonal sc-126, Santa Cruz Biotechnology			
p53	Sapu, sheep polyclonal p53 pantropic ²			
p53	CM1, rabbit polyclonal ³			
p53	PAb421 antibody, Millipore Sigma, Burlington, MA, USA),			
Pontin	RUVBL1 rabbit polyclonal ref 102-10-2-AP, Proteintech,			
HSP70	mouse monoclonal (W27):sc-24 Santa Cruz Biotechnology			
CCT2	rat monoclonal VMA00026 Bio-Rad			
CCT3	goat polyclonal VPA00113 Bio-Rad			
CCT5	rat monoclonal MCA2178 Bio-Rad			
CCT7	rat monoclonal MCA2179 Bio-Rad			
GFP	rabbit polyclonal anti GFP (Invitrogen, Life Technologies, A-			
	6455)			
p63	rabbit monoclonal Abcam, Ab 124762			
p63	mouse monoclonal Abnova, MAB7941 clone 4A4			
E cadherin	mouse monoclonal Cat No 131700 Zymed (now Life			
	Technologies)			
N cadherin	mouse monoclonal Cat No. 610921 BD Biosciences			
tubulin	mouse monoclonal T6199 Sigma			
β actin	mouse monoclonal A5441 Sigma			
β p53 KJC8	(Bourdon et al., 2005)			
Oligomer A11 antibody	Rabbit polyclonal Invitrogen AHB0052			
α-p63	SFI-6 antibody (DCS Innovative Diagnostik-Systeme Germany)			

Supplementary Table 3. List of the antibodies used for immunoblot and immunofluorescent analysis

Antibody	dilution
α-p53 DO-1	1:500
α-pontin	1:250
α-Flag	1:500
α-p53 Sapu,	1:6000
α-β actin	1:10000
α-HSP70	1:500
α-CCT2, 3, 5 and 7	1:1000
α-p63	1:1000
α-E cadherin	1:500
α-N cadherin	1:500
α-tubulin	1:10000
α-GFP	1:500

Supplementary Table 4. Dilutions of the antibodies used for immunoblots

Antibody	dilution
α-Flag	1:500
α-Amyloid Fibrils OC	1:500
Oligomer A11 antibody	1:500
α- p63 (Abcam, Ab 124762)	1:500
KJC8	1:50
PAb421	1:100

Supplementary Table 5. Dilutions of the antibodies used for immunofluorescent analysis

exon	name	sequence	
E3	TAp63(e3)f	TTAGCATGGACTGTATCCGC	
E3'	DelNp63F	GCCCAGACTCAATTTAGTGAG	
E14	RT2p63	GCTCAGGGATTTTCAGACTTGCCAGATC	
E10'	p63grt1	GCTCCACAAGCTCATTCCTG	
E10b	p63epsr3	CACTCATGCCTCCTAAAATGACA	
E13-E14	p63alpharev	ACTTGCCAGATCATCCATGG	
E12-14	p63betaR	GCCAGATCCTGACAATGCTG	
E11-E14	p63delta rev	ACTTGCCAGATCTGTTGG	
E10'	p63gamma rev	CTCATTCCTGAAGCAGGCTG	
E10b	RTp63eps2	GCCTCCTAAAATGACACGTTGATAC	

Supplementary Table 6. List of the oligos used for p63 isoforms detection by nested PCR

	1 st PCR		2 nd PCR	
TAp63 α				p63 α rev
TAp63 β		RT2p63		p63 β rev
TAp63 δ	TAp63 e3f		TAp63 e3f	p63 δ rev
ТАр63 γ		p63 grt1		p63 γ rev
TAp63 ε		p63 epsr3		RTp63 eps2
$\Delta Np63 \alpha$				p63 α rev
$\Delta Np63 \beta$		RT2p63		p63 β rev
ΔNp63 δ	ΔNp63 f		ΔNp63 f	p63 δ rev
$\Delta Np63 \gamma$		p63 g rt1		p63 γ rev
ΔΝρ63 ε		p63 epsr3		RTp63 eps2

Supplementary Table 7. List of the oligos used for 1st and 2nd PCR reaction for p63 isoforms detection

Tumour type	Tumour details	No of patients	Sex	Age	Treatment
Breast metastases to the brain	-Triple negative -Her2 positive	5	Female	40-76	 -Paclitaxel, vinorelbine, and radiotherapy (3 patients) -Paclitaxel and Letrozole (2 patients) -Docetaxel, vinorelbine and Herceptin radiotherapy (4 patients) -Herceptin (1 patient)
Primary breast tumour	-Triple negative -Her2 positive -ER and PR positive, and Her2 negative	5 5 5	Female	41-80	 Paclitaxel, vinorelbine, and radiotherapy (3 patients) Paclitaxel and vinorelbine (1 patient) Vinorelbine, and radiotherapy ((1 patient) Docetaxel, herceptin, and radiotherapy (3 patients) Docetaxel and Herceptin (1 patient) Docetaxel, vinorelbine, and Herceptin (1 patient) Tamoxifen and radiotherapy (3 patients) Tamoxifen, letrozole, and radiotherapy (1 patient) Tamoxifen and letrozole (1 patient)
Lung metastases to the brain	Metastatic adenocarcinoma	5	Male (2 patients) Female (3 patients)	39-71	-Radiotherapy (3 patients) -Gefitinib, radiotherapy (1 patient) Radiotherapy, Cisplatin, and vinblastine (1 patient)
Lung primary	Adenocarcinoma	3	Male (2 patients) Female (1 patient)	50-61	 -Radiotherapy, cisplatin, and vinblastine (2 patients) -Radiotherapy and gefitinib (1 patient)
Colorectal metastases to the brain	Metastatic adenocarcinoma Bowel origin	3	Male (2 patients) Female (1 patient)	54-58	-FOLFOX, FOLFIRI with cetuximab (2 patients) - FOLFOX, FOLFIRI with radiotherapy (1 patient)

Supplementary Table 8: Clinical characteristics of the analysed patients.

Supplementary references:

- 1 Yewdell, J. W., Gannon, J. V. & Lane, D. P. Monoclonal antibody analysis of p53 expression in normal and transformed cells. *Journal of virology* **59**, 444-452, doi:10.1128/jvi.59.2.444-452.1986 (1986).
- 2 Vojtesek, B. *et al.* Conformational changes in p53 analysed using new antibodies to the core DNA binding domain of the protein. *Oncogene* **10**, 389-393 (1995).
- 3 Midgley, C. A. *et al.* Analysis of p53 expression in human tumours: an antibody raised against human p53 expressed in Escherichia coli. *Journal of cell science* **101 (Pt 1)**, 183-189 (1992).