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1 Single plasmid, single population ODE models

1.1 Conjugative plasmids

1.1.1 Model equations

The equations governing the dynamics of conjugative plasmids are:

dρ

dt
= αCρ− γcρρp − δρ+ p`(1−∆)αCρp, (S1)

dρp

dt
= (1−∆)αCρp + γcρρp − δρp − p`(1−∆)αCρp, (S2)

dC

dt
= S − αCρ− (1−∆)αCρp. (S3)

where α is the growth rate of plasmid-free cells, ρ is the number density of plasmid-free cells, C is the nutrient

concentration, γc is the conjugation rate, ρp is the number density of plasmid-containing cells, δ is the death

rate of cells, p` is the plasmid loss coefficient, ∆ is the plasmid fitness cost, and S is the nutrient supply rate.

1.1.2 Condition for plasmid invasion

It can be seen that there is a plasmid-free equilibrium, y∗f , at

y∗f =


ρ∗

ρ∗p

C∗

 =


S/δ

0

δ/α

 . (S4)

If this equilibrium is locally unstable, plasmids can invade. The plasmid-free equilibrium will be unstable

when the real part of the eigenvalues of the Jacobian evaluated at this equilibrium are greater than zero. In

these eigenvalue calculations, we will take advantage of the fact that the eigenvalues of block upper or lower

triangular matrices are the eigenvalues of the diagonal block matrices. To obtain a block lower triangular

Jacobian, Jf, we reorder the equations to be [ρp, C, ρ], yielding

Jf =


(1−∆)δ + γcS

δ − δ − δp`(1−∆) 0 0

−δ(1−∆) −Sαδ −δ

−γcS
δ + δ(1−∆)p`

Sα
δ 0

 . (S5)
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The submatrix in the lower right corner will always have negative eigenvalues since its Tr = −Sαδ < 0 and its

Det = Sα > 0. Therefore plasmids will invade if

(1−∆)δ +
γcS

δ
− δ − δp`(1−∆) > 0. (S6)

We can rearrange this as

γcρ
∗ > δ∆ + δp`(1−∆). (S7)

This inequality has an intuitive physical interpretation: plasmid invasion requires the rate of conjugation to

overcome the losses due to lower fitness and random plasmid loss events during division.

1.1.3 Conjugative plasmid phase diagram

To obtain the phase diagram of possible ecologically stable outcomes, we assume that the rate of plasmid loss

is negligible such that p` = 0. This system contains three equilibria: a no-plasmid equilibrium, a plasmid-only

equilibrium, and an equilibrium where the two cell types coexist. We construct the phase diagram by assessing

the conditions for local stability of all equilibria. The stability conditions of the no-plasmid and plasmid-

only equilibria are explicitly derived here, while the stability of the coexistence equilibrium is determined by

numerical analysis of the Jacobian in MATLAB. We have the plasmid-free equilibrium from Eq. S4, and with

p` = 0 there is now a plasmid-only equilibrium located at

y∗s =


ρ∗

ρ∗p

C∗

 =


0

S/δ

δ/(1−∆)α

 . (S8)

We already have the condition for the stability of the plasmid-free equilibrium (Eq. S7) which is γcρ
∗ < δ∆

when p` = 0. The Jacobian at the plasmid-only equilibrium is

Jp =


0 S(1−∆)α

δ
γcS
δ

−δ −S(1−∆)α
δ − δ

1−∆

0 0 δ
1−∆ −

γcS
δ − δ

 . (S9)

Note that this matrix is computed using the same order of the variables as in Eq. S5. The submatrix in the

upper left will always have negative eigenvalues since it has Tr = −S(1−∆)α
δ < 0 andDet = S(1−∆)α > 0.
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Thus, the plasmid-only equilibrium is stable if

δ

1−∆
− γcS

δ
− δ < 0. (S10)

We can rearrange this to

γcρ
∗
p >

(
1

1−∆
− 1

)
δ. (S11)

This has a similar interpretation to Eq. S7. In order to resist invasion by plasmid-free cells, the plasmid-

containing cells must conjugate faster than
(

1
1−∆ − 1

)
δ, a rate that increases monotonically with fitness

burden. When the fitness burden is small, this function is the same as in the Eq. S7:
(

1
1−∆ − 1

)
δ =

(∆ + O(∆2))δ, meaning that the two stability conditions converge as ∆ → 0. Now that we have determined

the conditions for stability of the pure strain equilibria, we can search for regions of coexistence or bistability

within the phase diagram. Coexistence between plasmid-containing and plasmid-free cells will occur if both

of the single-strain equilibria are unstable. This implies a region in the phase diagram where the conjugation

rate is high enough for plasmids to invade the plasmid-free equilibrium, but not high enough for the plasmid-

containing cells to resist invasion by the plasmid-free cells. Formally, this means that the critical conjugation

rate for stability of the plasmid-free equilibrium is lower than the critical conjugation rate for stability of the

plasmid-only equilibrium:

(
1

1−∆
− 1

)
δ

ρ∗p
>
δ∆

ρ∗
, (S12)

=⇒ ∆ > 0. (S13)

For parasitic plasmids, there will always be a region of the phase diagram where coexistence occurs. The

condition for bistability between the plasmid-free and plasmid-only equilibria is the opposite of the coexistence

condition, as it requires the plasmid-free critical conjugation rate be above the plasmid-only critical conjugation

rate. Thus, for parasitic plasmids this system cannot support bistability between the plasmid-free and plasmid-

only equilibria when p` = 0. Note that even if ∆ < 0, the system cannot support bistability since Eq. S12 is

true for all ∆ 6= 0.
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1.2 Transformative plasmids

1.2.1 Model equations

The equations governing the dynamics of transformative plasmids are:

dρ

dt
= αCρ− γtρP − δρ+ p`(1−∆)αCρp, (S14)

dρp

dt
= (1−∆)αCρp + γtρP − δρp − p`(1−∆)αCρp, (S15)

dC

dt
= S − αCρ− (1−∆)αCρp, (S16)

dP

dt
= neffδρp − γtρP − δpP, (S17)

where γt is the transformation rate, P is the number density of free plasmids, neff is the average number of

plasmids released upon the death of a plasmid-containing cell, and δp is the decay rate of free plasmids.

1.2.2 Condition for plasmid invasion

We once again have a plasmid-free equilibrium, y∗f , this time at

y∗f =



ρ∗

ρ∗p

C∗

P ∗


=



S/δ

0

δ/α

0


. (S18)

Plasmids will invade if this equilibrium is unstable. We reorder the variables to be [ρ, C, ρp, P ] to obtain Jf, a

block triangular Jacobian at the plasmid-free equilibrium:

Jf =



0 αS
δ δp`(1−∆) −γtS

δ

−δ −αSδ −(1−∆)δ 0

0 0 (1−∆)δ − δ − δp`(1−∆) γtS
δ

0 0 neffδ −γtS
δ − δp


. (S19)

The submatrix in the upper left will always have negative eigenvalues since it has Tr = −Sαδ < 0 and

Det = Sα > 0. Thus stability depends on the eigenvalues of the lower right submatrix. When the plasmid

is costly, i.e. (1 − ∆) < 1, this matrix always has at least one negative eigenvalue because it has Tr =
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−∆δ − δp`(1−∆)− γtS
δ − δp < 0. Thus plasmids will successfully invade if Det < 0, i.e. if

Sγt

δ
> δp

(
∆ + p`(1−∆)

neff −∆− p`(1−∆)

)
. (S20)

Note that this inequality flips if neff−∆−p`(1−∆) < 0. For a high-copy-number plasmid that releases many

plasmids upon death (neff � 1), the plasmid invasion condition reduces to

γtρ
∗ >

(
δp

neff

)
(∆ + p`(1−∆)) . (S21)

This has a similar interpretation to the earlier invasion condition. For plasmid invasion, transformation rates

must overcome losses due to fitness cost and random losses during cell division.

1.2.3 Transformative plasmid phase diagram

Similar to our analysis of the conjugation model, we build a phase diagram by analyzing the stability of the

equilibria. We again assume that the plasmid loss rate is negligible (p` = 0). This system also has plasmid-only,

plasmid-free, and coexistence equilibria. We will explicitly derive the stability condition for the two pure strain

equilibria here and assess the stability of the coexistence equilibrium by numerically analyzing the Jacobian in

MATLAB. The stability condition for the plasmid-free equilibrium with p` = 0 is

Sγt

δ
<

δp∆

neff −∆
. (S22)

Also note that if the denominator is negative (neff < ∆), the inequality flips, and because γt > 0, the plasmid-

free equilibrium will always be stable. Next, we find the plasmid-only equilibrium to be:

y∗p =



ρ∗

ρ∗p

c∗

P ∗


=



0

S/δ

δ/(1−∆)α

neffS/δp


. (S23)
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The Jacobian for this equilibrium (using the original order of the variables) is

Jp =



δ
(1−∆) −

γtneffS
δp
− δ 0 0 0

γtneffS
δp

0 (1−∆)αS
δ 0

− δ
(1−∆) −δ − (1−∆)αS

δ 0

−γtneffS
δp

neffδ 0 −δp


. (S24)

Jp is block lower triangular, and the middle submatrix is the same as the matrix in the upper left of Eq. S9 and

has only negative eigenvalues. Thus, the plasmid-only equilibrium is stable if

δ

1−∆
− γtneffS

δp
− δ < 0. (S25)

This can be rearranged to

γtneffS

δp
>

(
1

1−∆
− 1

)
δ. (S26)

Note that the LHS is equal to γtP
∗. This is similar in form to Eq. S11. For a population of plasmid-only cells

to resist invasion by plasmid-free cells, the rate of transformation must overcome a rate that is monotonically

increasing with plasmid cost. Using these stability conditions, we can explore whether this system can support

coexistence or bistability. We begin with the condition for coexistence: the critical conjugation rate for stability

of the plasmid-only equilibrium must be greater than that of the plasmid-free equilibrium, such that

(
1

1−∆
− 1

)
δδp

Sneff
>

(
δp∆

neff −∆

)
δ

S
. (S27)

When ∆ > 0 and neff > ∆, this reduces to

neff > 1. (S28)

Thus, when these conditions are met and neff > 1, coexistence is possible. Like in the conjugation case, the

condition for bistability between the plasmid-free and plasmid-only equilibria is the opposite of the condition

for coexistence. Thus, when neff < 1, the phase diagram contains a region of bistability. Even if neff < ∆

(only possible when neff < 1), the system will not support coexistence because the inequality in Eq. S22 will

flip and the plasmid-free equilibrium will always be stable.
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Fig. S1: Ratio of optimal segregation loss p` to optimal fitness cost ∆ for different plasmid copy costs ∆p.
Using the same parameters as in Fig. 1C, we compute the np that minimizes the right-hand side of Eq. 4 and
find the corresponding ratio of the optimal p` to ∆.

1.3 Relating ∆, neff, and p`, to plasmid copy number

Many of the parameters in the ODE models (see Eqs. S1-S3 and S14-S17) are strongly influenced by a single

property: the copy number of the plasmid, np. Plasmid copy number is property that plasmids can themselves

control by modulating their replication rate and is a major factor in plasmid evolution. How might plasmid cost

∆ depend on np? If the cost of a plasmid primarily arises from its replication, it is reasonable to assume that

the cost will scale with copy number, such that ∆ = ∆pnp where ∆p is the cost per individual plasmid copy.

The number of plasmids released upon cell death is also likely to scale with np, such that neff = εnp where ε is

the fraction of plasmids that remain viable after cell death. How might the plasmid loss coefficient p` relate to

copy number? If we assume that daughter cells receive plasmids from the parent cell by random segregation, it

follows that p` = 21−np , i.e. the probability that one daughter cell receives zero plasmids.

As we discuss in the main text, the relationships between the model parameters and plasmid copy number

allow us to compute optimal copy numbers that maximize the invasion potential of the plasmids. For a con-

jugative plasmid, this generally results in an intermediate optimal copy number. In Fig. S1 we characterize the

relationship between the fitness cost ∆ and segregation loss rate p` of optimal plasmids for different values of

plasmid copy cost ∆p. As can be seen, optimal conjugative plasmids have p` < ∆.

1.4 Conjugation and transformation phase diagrams with finite loss rate p`

In earlier sections we analytically characterized the stable ecological states of the single-plasmid models as-

suming negligible segregation loss rates (p` = 0). To confirm that allowing p` > 0 does not significantly alter

the results, we numerically characterized the stable ecological states with finite segregation loss rates. In the

9



Fig. S2: Ecological outcomes for conjugation and transformation single-plasmid models with the same pa-
rameters as in Fig. 1, except with finite segregation loss rate p` = 0.05. Stability of equilibria is determined
by numerical analysis of the Jacobian. (A) Stable equilibrium fraction of plasmid-free cells as a function of
conjugation rate γc and plasmid cost ∆. (B) Phase diagram for transformative plasmids with a finite loss rate.

case of conjugation, there is no longer a definite transition between plasmid-only and coexistence states. Since

plasmid loss is finite, all equilibria contain at least a small fraction of plasmid-free cells. As such, instead of

a phase diagram, we show a heatmap of the steady-state fraction of plasmid-free cells in Fig. S2A. As can be

seen, there is still a transition between plasmid-containing and coexistence equilibria, but no true plasmid-only

state. However, the behavior is qualitatively similar to that of the p` = 0 as the plasmid-free cells become a

negligible fraction of the population as plasmid cost decreases or conjugation rate increases. For transformation

with finite loss rates, we show a phase diagram in Fig. S2B. As can be seen, bistability still occurs but is now

between a plasmid-free state and a coexistence state.

1.5 Plasmid-driven extinction

Can a sufficiently virulent and costly plasmid drive its population to extinction? In order to answer this question

we must modify the model to include a nutrient depletion term, as this will allow the existence of a equilibrium

where no cells persist. We show the analysis for the conjugation model in detail here, but these results hold for

the transformation model as well. First, we must modify Eq. S3 to be:

dC

dt
= S − αCρ− (1−∆)αCρp − δcaC. (S29)
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The extinction equilibrium of the system with therefore be:

y∗e =


ρ∗p

C∗

ρ∗

 =


0

S/δca

0

 . (S30)

The corresponding Jacobian is:

Je =


−δ + α(1−p`)(1−∆)S

δca
0 0

−α(1−∆)S
δca

−δca −αSδca

αp`(1−∆)S
δca

0 −δ + αS
δca

 . (S31)

This matrix is block triangular, and thus the eigenvalues are the eigenvalues of the diagonal blocks. By inspec-

tion, it can be seen that the largest eigenvalue is −δ + αS
δca

. This eigenvalue is positive when plasmid-free cells

are able to persist in the absence of plasmids. In the case of transformation, the eigenvalues of the extinction

Jacobian are identical except for an additional negative eigenvalue corresponding to the decay rate of free plas-

mids. Thus, in biologically-relevant scenarios where cells persist in the absence of the plasmid, the extinction

equilibrium is unstable. This means that plasmids in our model cannot drive the population to extinction.

However, this result depends on populations being measured as continuous variables. With finite populations

it is possible that a highly infectious plasmid could reduce the plasmid-free population to zero cells.

2 Multiplasmid, single population ODE models

For multiple plasmids in a single population, the models consist of 2m + 1 equations governing the dynamics

of all possible types of plasmid-containing cell. For large m, these equations are difficult to represent and we

instead developed a script to automatically generate and simulate these equations. As an example, we show the

equations for m = 2:
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dρ

dt
= αCρ− γcρ(ρ10 + ρ01 + 2ρ11) + (1−∆)αCp`(ρ10 + ρ01)− δρ,

(S32)

dρ10

dt
= (1−∆)αCρ10 + γcρ(ρ11 + ρ10)− γcρ10(ρ01 + ρ11)− (1−∆)αCp`ρ10 + (1−∆)2αCp`ρ11 − δρ10,

(S33)

dρ01

dt
= (1−∆)αCρ01 + γcρ(ρ11 + ρ01)− γcρ01(ρ10 + ρ11)− (1−∆)αCp`ρ01 + (1−∆)2αCp`ρ11 − δρ01,

(S34)

dρ11

dt
= (1−∆)2αCρ11 + γc(ρ11ρ01 + ρ11ρ10 + 2ρ10ρ01)− 2(1−∆)2αCp`ρ11 − δρ11,

(S35)

dC

dt
= S − αCρ− (1−∆)αCρ10 − (1−∆)αCρ01 − (1−∆)2αCρ11.

(S36)

The subscripts of ρ indicate plasmid content (e.g. ρ10 contains plasmid one but not plasmid two). If all plasmids

are identical and begin at identical abundances, these equations can be condensed into a set ofm+2 equations:

dρ

dt
= αCρ− γcρ(ρ1 + 2ρ2) + (1−∆)αCp`ρ1 − δρ,

(S37)

dρ1

dt
= (1−∆)αCρ1 + γcρ(2ρ2 + ρ1)− 2γc

(ρ1

2

)2

− γcρ1ρ2 − (1−∆)αCp`ρ1 + 2(1−∆)2αCp`ρ2 − δρ1,

(S38)

dρ2

dt
= (1−∆)2αCρ2 + γcρ2ρ1 + 2γc

(ρ1

2

)2

− 2(1−∆)2αCp`ρ2 − δρ2,

(S39)

dC

dt
= S − αCρ− (1−∆)αCρ1 − (1−∆)2αCρ2.

(S40)

Here, the subscript of ρ indicates number of unique plasmids (e.g. ρm has m unique plasmids). As ∆→ 0, the

steady-state distribution of plasmids among cells will approach a binomial (in the case of identical plasmids)

or a Poisson binomial (in the case of non-identical plasmids). To demonstrate this, we show in Fig. S3 the

difference between the binomial approximation and true solution for varying values of ∆ in a system of three
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Fig. S3: Deviation from binomial approximation as a function of plasmid cost ∆ for a system of three identical
plasmids with the same parameters as in Fig. 2. For the binomial approximation, we analytically compute the
steady-state fraction of plasmid-containing cells in a system containing a single plasmid and use this as the p
in the binomial distribution. For each value of ∆, the conjugation rate is adjusted such that γc = 3γ∗c , where γ∗c
is the critical conjugation rate needed for plasmid invasion. The solution to the full set of equations is found by
numerical solution as in Fig. 2. The reported deviation is the 2-norm of the difference between the two plasmid
distributions.

identical plasmids. As can be seen, the error approaches zero as ∆ decreases.
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Fig. S4: Distributions of unique plasmid types per genome in non-clinically relevant genera, along with corre-
sponding model fits. We excluded 91 clinically relevant genera from our initial set of 17 725 genomes, including
all major pathogens and human commensal genera. The final dataset was composed of 4845 genomes. Distri-
butions truncated and fit using the same method as in Fig. 4B and C, with fitting parameters q = 0.0054, ∆ =
0.0098. The genera removed were Achromobacter, Acinetobacter, Actinobacillus, Actinomyces, Aeromonas,
Akkermansia, Alcaligenes, Alistipes, Arcobacter, Bacillus, Bacteroides, Bartonella, Bifidobacterium, Blau-
tia, Bordetella, Borrelia, Borreliella, Brucella, Burkholderia, Campylobacter, Candidatus, Capnocytophaga,
Chlamydia, Chryseobacterium, Citrobacter, Clostridioides, Clostridium, Collinsella, Corynebacterium, Cox-
iella, Cronobacter, Cutibacterium, Desulfovibrio, Edwardsiella, Eggerthella, Elizabethkingia, Enterobacter,
Enterococcus, Escherichia, Eubacterium, Faecalibacterium, Flavobacterium, Francisella, Fusobacterium,
Gardnerella, Glaesserella, Haemophilus, Helicobacter, Histophilus, Hungateiclostridium, Klebsiella, Lacto-
bacillus, Lactococcus, Leclercia, Legionella, Leptospira, Leuconostoc, Listeria, Microbacterium, Micrococ-
cus, Moraxella, Mycobacterium, Mycobacteroides, Mycoplasma, Myroides, Neisseria, Nocardia, Pandoraea,
Pantoea, Pasteurella, Prevotella, Propionibacterium, Proteus, Providencia, Pseudomonas, Rickettsia, Rothia,
Salmonella, Serratia, Shigella, Sphingomonas, Staphylococcus, Stenotrophomonas, Streptococcus, Treponema,
Ureaplasma, Veillonella, Vibrio, and Yersinia. In certain rare cases where only a genome’s family was anno-
tated, we removed the families Enterobacteriaceae and Lachnospiraceae.
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Fig. S5: Plasmid distribution analysis with putative engineered strains removed. The NCBI complete genomes
dataset may contain genomes that have been artificially engineered, potentially skewing the observed plasmid
distribution. To determine the impact of such genomes on our analysis, we filtered genomes based on the
description of their associated Bioproject. We removed BioProjects containing the following strings in their
description: ‘engineer’, ‘clone’, ‘cloni’, ‘artificial’, ‘laboratory’, ‘recomb’, ‘industr’, ‘chimera’, and ‘Evolution
of bacterial fitness with an expanded genetic code’. This filtering removed 173 genomes, and we then repeated
the analyses found in Fig. 3. As can be seen, the results have not substantially changed. The parameters
estimated from this filtered dataset are very similar to those estimated from the original dataset. Thus, we
conclude that the presence of potential artificially engineered genomes has not substantially impacted our
analysis of natural genomes.
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Fig. S6: Distributions of unique plasmid types per genome in common genera, along with corresponding model
fits. We show the nine genera with the largest number of genomes, excluding Klebsiella and Escherichia (shown
in Fig. 4B and C). We also exclude Bordatella, which only has one point above the observation count cutoff.
Distributions truncated and fit using the same method as in Fig. 4B and C, with fitting parameters shown in
each panel.

3 Multiplasmid, multipopulation Wright-Fisher models

3.1 Model formulation and stationary distribution

We begin with a Wright-Fisher model with N populations living in N demes. At every time period (“epoch”),

new residents of the demes are selected via a weighted random sampling (with replacement) of the previous

populations. The probability of a population being selected is proportional to its fitness, with the fitness of a

cell population with i plasmids being given by wi. Each epoch, each population is invaded by a novel plasmid

with probability q. As we only keep track of the number of demes occupied by population with i (= 0, 1, 2...)

plasmid types, every new epoch can be described as N draws from a multinomial distribution:

pi =
niwi(1− q)∑∞

j=0 njwj
i = 0, (S41)

pi =
niwi(1− q) + ni−1wi−1q∑∞

j=0 njwj
i > 0. (S42)
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Where pi is the probability of drawing a population with i plasmids, ni is the number of populations with

i plasmids. For brevity we define T ≡
∑∞
j=0 njwj . In the models we analysis, w0 = 1. The stationary

distribution will occur when the expectation of the multinomial draws is equal to the current population such

that

E[ni(t+ 1)] = Npi(t) = ni(t). (S43)

For i = 0, applying the stationary condition yields

n0 =
Nn0(1− q)

T
(S44)

=⇒ T = N(1− q). (S45)

Thus for i > 0 the stationary condition is

ni = N

(
niwi(1− q) + ni−1wi−1q

N(1− q)

)
. (S46)

For brevity we define κ ≡ q/(1− q) and divide both sides by N to obtain an expression for i > 0 in terms of

the population fractions, fi:

fi = fiwi + κfi−1wi−1. (S47)

This is an infinite set of equations, but we can infer the relationship between the f0 and all later entries by

examining the first few equations. We first write out the equations for k = 1, 2, 3:

f1 = f1w1 + κf0w0, (S48)

f2 = f2w2 + κf1w1, (S49)

f3 = f3w3 + κf2w2. (S50)
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Solving these equations gives a recursion relationship for i > 0:

fi =

(
κwi−1

1− wi

)
fi−1. (S51)

Therefore, the expression in terms of f0 is

fi = f0

i∏
j=1

(
κwj−1

1− wj

)
i > 0. (S52)

For the fractions to be proper, they must all sum to 1:

f0 +

∞∑
i=1

f0

i∏
j=1

(
κwj−1

1− wj

)
= 1. (S53)

From this, we can solve for the value of f0:

f0 =
1

1 +
∑∞
i=1

∏i
j=1

κwj−1

1−wj

. (S54)

Thus for i > 0, the population fractions are

fi =

∏i
j=1

κwj−1

1−wj

1 +
∑∞
j=1

∏j
k=1

κwk−1

1−wk

. (S55)

3.1.1 Case of positive epistasis

In this version of the Wright-Fisher model, we take the plasmid-free populations to have a fitness of unity,

while all plasmid-containing populations have a fitness of 1−∆. This is an extreme form of positive epistasis

among plasmid types (i.e. the presence of one plasmid reduces the fitness burden of another plasmid). Every

new “epoch” can again be described as N draws from a multinomial distribution:

pi =
nk(1− q)∑∞

j=0 nj(1−∆)1j 6=0
i = 0, (S56)

pi =
ni(1−∆)(1− q) + ni−1(1−∆)1i−16=0q∑∞

j=0 nj(1−∆)1j 6=0
i > 0, (S57)

where pi is probability of drawing a species with i plasmids, ni is the population of species with i plasmids,

and 1 is the indicator function. For brevity we define T ≡
∑∞
j=0 nj(1 −∆)1j 6=0 . The stationary distribution
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will occur when the expectation of the multinomial draws is equal to the current population:

E[ni(t+ 1)] = Npi(t) = ni(t). (S58)

For i = 0, applying the stationary condition yields

n0 =
Nn0(1− q)

T
(S59)

=⇒ T = N(1− q). (S60)

Thus for i > 0 the stationary condition is

ni = N

(
ni(1−∆)(1− q) + ni−1(1−∆)1i−16=0q

N(1− q)

)
. (S61)

For brevity we define κ ≡ q/(1− q) and divide both sides by N to obtain an expression for i > 0 in terms of

the population fractions, fi:

fi = fi(1−∆) + κfi−1(1−∆)1i−16=0 . (S62)

Once again we will examine the first few equations to extract a recursion relationship between population

fractions. Writing out the equations for k = 1, 2, 3 yields:

f1 = f1(1−∆) + κf0, (S63)

f2 = f2(1−∆) + κf1(1−∆), (S64)

f3 = f3(1−∆) + κf2(1−∆). (S65)

Solving each of these gives:
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f1 =
( κ

∆

)
f0, (S66)

f2 =

(
κ(1−∆)

∆

)
f1, (S67)

f3 =

(
κ(1−∆)

∆

)
f2. (S68)

We can therefore extract a recurrence equation relating fi to f0 for i > 0:

fi =
( κ

∆

)(κ(1−∆)

∆

)i−1

f0. (S69)

Since these proportions must sum to unity, we can find f0 from the infinite sum of the coefficients:

1

f0
= 1 +

∞∑
i=1

( κ
∆

)(κ(1−∆)

∆

)i−1

=
∆

∆− q
. (S70)

For the stationary distribution to exist this series must converge, requiring that

(
κ(1−∆)

∆

)
< 1 (S71)

=⇒ q < ∆. (S72)

This makes intuitive sense: in order for the number of plasmid types per cell not to increase without bound,

the reduction in reproduction probability due to the presence of plasmids must be greater than the invasion

probability. The entire distribution is therefore

f0 =
∆− q

∆
i = 0 (S73)

fi =

(
q(∆− q)
∆2(1− q)

)(
q(1−∆)

∆(1− q)

)i−1

i > 0. (S74)

Note that if ∆� 1 and q � 1, this distribution can be reduced to a single parameter distribution:

fi =
(

1− q

∆

)( q
∆

)i
. (S75)
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3.1.2 Case of arbitrary invasion and fitness costs

In order to determine what classes of Wright-Fisher models are able to capture the exponential distribution seen

in the data, we expand the model to include arbitrary plasmid invasion rates and fitness costs. A population

with i plasmids has an invasion rate of q(i) and a fitness cost of ∆tot(i). The resulting multinomial is therefore

pi =
ni(1−∆tot(i))(1− q(i))∑∞

j=0 nj(1−∆tot(j))
i = 0, (S76)

pi =
ni(1−∆tot(i))(1− q(i)) + ni−1(1−∆tot(i− 1))q(i− 1)∑∞

j=0 nj(1−∆tot(j))
i > 0. (S77)

As in the previous cases, we can then apply the steady-state condition for i = 0 to obtain T = N(1 − q(0)).

This gives us a general recursion relationship for i > 0:

fi =
fi(1−∆tot(i))(1− q(i)) + fi−1(1−∆tot(i− 1))q(i− 1)

1− q(0)
. (S78)

Note that here we assume ∆(0) = 0. We can rearrange this to obtain an expression for the ratio of consecutive

entries of the distribution

fi
fi−1

=
(1−∆tot(i− 1))q(i− 1)

1− q(0)− (1−∆tot(i))(1− q(i))
, (S79)

fi
fi−1

=
q(i− 1)−∆tot(i− 1)q(i− 1)

1− q(0)− 1 + ∆tot(i) + q(i)−∆tot(i)q(i).
(S80)

In limit of small invasion probability and fitness cost, this reduces to:

fi
fi−1

=
q(i− 1)

q(i)− q(0) + ∆tot(i)
= Ki. (S81)

In order to yield an exponential distribution, Ki = K < 1 ∀i. Imposing this condition leads to:

q(i− 1)

K
− q(i) + q(0) = ∆tot(i). (S82)

This result indicates that there are multiple models that can produce an exponential distribution. For example,

if q(i) = qp + qpi and ∆tot(i) = ∆pi, an exponential distribution can be recovered if ∆p =
(

1
K − 1

)
qp.
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3.1.3 Incompatibility interactions

How would our model behave if we included incompatibility interactions between plasmids? First, let us con-

sider cells sampling from a uniform distribution of plasmids. Suppose there are N distinct, equally abundant,

incompatibility groups that can coexist over long timescales within a single cell. Whenever a plasmid invades

a cell, its incompatibility group is randomly selected from these incompatibility groups, and the invasion is

only successful if the incoming plasmid belongs to a new incompatibility group. In this case, we can represent

this with an invasion function q = q0(N − i)/N where i is the number of plasmids in the cell and q0 is the

invasion probability for a cell containing no plasmids. The outcome will depend on the number of incompat-

ibility groups. If the number of plasmids contained within the average cell is small relative to the number of

incompatibility groups, the outcome will be similar to that of a constant invasion probability. This is because

the invasion probability does not change substantially if i � N . However, if there are a small number of

incompatibility groups, this would have an effect similar to negative fitness epistasis and shorten the tail of the

plasmid distribution. Any deviation from a uniform distribution of plasmids would actually shorten the tail of

the plasmid distribution. This is because it would be more likely for plasmids that already reside within the cell

to attempt and fail to invade, effectively reducing the invasion rate and thus favoring lower plasmid numbers.
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