

Supplementary Fig. 1. Dysregulation of ubiquitin-proteasome pathway results in increased R-loops. a) MRC-5 cells were treated with DMSO (M) or 25μ M CPT (10) for 10min and immediately harvested for nucleolin immunofluorescence. Data are the average ± SD from 3 biological repeats, each containing at least 100 cells. The average number of nucleoli foci/cell was calculated. ns; p > 0.05, two-tailed Student's t-test.

b) Raw data from a representative repeat of DRIP-qPCR related to Fig. 1f. HEK-293 cells were incubated with mock (DMSO) or 25µM MG132 followed by DNA/RNA immunoprecipitation using S9.6 antibodies. Quantitative PCR was conducted using primers targeting nucleolar (*28S*) and nuclear (*ING3*) loci. *In vitro*, on-bead ec-RNase H (ec-RH) treatment served as a signal validation control.

c) U2-OS cells were transfected with USP11 or Control siRNA (Con si) and examined for R-loops using S9.6/nucleolin immunostaining. Data are the average ± SD from 3 biological repeats, each containing at least 100 cells and presented as average number of S9.6 foci/cell (left panel) and mean S9.6 nucleolar intensity (right panel). Two-tailed Student's t-test. d) Raw data from a single biological repeat of DRIP-qPCR related to Fig. 2c. Lysates from Control (Con si) and USP11 depleted cells (USP11si) were subjected to DNA/RNA immunoprecipitation (DRIP) using S9.6 antibodies. Quantitative PCR was conducted using primers targeting nucleolar (*28S* and *R7*) and nuclear (*ING3* and *actin*) loci. *In vitro*, on-bead ec-RNase H (ec-RH) treatment served as a signal validation control.

e, f) Lysates from Control (Con siRNA) and USP11 depleted cells (USP11 siRNA) were subjected to a more recently published DNA/RNA immunoprecipitation (DRIP) protocol using S9.6 antibodies³⁶. Quantitative PCR was conducted using primers targeting nucleolar (*28S* and *R7*) and nuclear (*ING3, actin, EGR1, SNRPN-neg, MYADM-neg*) loci. *SNRPN-neg* and *MYADM-neg* loci are negative controls. *In vitro*, on-bead ec-RNase H (ec-RH) treatment served as a signal validation control. Pooled repeats (e) and raw % input values from a representative experiment are shown (f), and data represent the average ± SD from 3 biological repeats. ns; p > 0.05, two-tailed Student's t-test.

b

d

sgRNA Clone-1

Homo sapiens ubiquitin specific peptidase 11 (USP11), RefSeqGene on chromosome X sequence ID: <u>NG_012546.1</u> Length: 22414 Number of Matches: 1					
Range	1: 5012	to 5254 GenBank G	raphics	•	Next Match 🔺 Previous Mate
Score		Expect	Identities	Gaps	Strand
300 bi	ts(162)	1e-77	220/243(91%)	23/243(9%)	Plus/Plus
Query	1	CCCGCGACTGTTTGGGG	GGCTCTGCTTCCGTTTCCG	GGACCAGAATCCGGAAGTG	астат 60
Sbjct	5012	CCCGCGACTGTTTGGGG	GGCTCTGCTTCCGTTTCCG	GGACCAGAATCCGGAAGTG	SCTGT 5071
Query	61	TGAGGGGCGTCTTCCA4	TCTCGCACAGCTGCGTTGC	GCTGTAGAAGAGAACGGACGI	SCGAT 120
Sbjct	5072	TGAGGGGCGTCTTCCA	TCTCGCACAGCTGCGTTGG	GCTGTAGAAGAGAACGGACG	3CGAT 5131
Query	121		CTGCTGCTGCGGG	GGCTGTGGCGGCGGCAGCG	5CGGT 157
Sbjct	5132	GGCGACGGTCGCAGCAA	ATCCAGCTGCTGCTGCGGG	GGCTGTGGCGGCGGCAGCG	3CGGT 5191

			•g.		-		
Iomo sapiens ubiquitin specific peptidase 11 (USP11), RefSeqGene on chromosome X							
Sequence ID: NG_012546.1 Length: 22414 Number of Matches: 1							
Range	1: 5027	7 to 5257 <u>GenBa</u>	nk Graphics		•	Next Match 🔺	Previous Match
Score		Exp	ect Id	entities	Gaps	Strand	
414 bi	ts(224) 4e-1	12 22	9/231(99%)	2/231(0%)	Plus/Pl	us
)uery	8	GGGGCTCTGCTT	ссетттссее	GACCAGAATCCGG	AAGTGGCTGTTGAGGGGCG	ICTTCC 67	
bjct	5027	GGGGCTCTGCTT	ccotttccoo	GACCAGAATCCGO	AAGTGGCTGTTGAGGGGCG	rcttcc 5086	
Query	68	AATCTCGCACAG	стесеттеес	TGTAGAAGAGAAG	GGACGGCGATG GACGGT	GCAGC 125	
bjct	5087	AATCTCGCACAG	ctocottooc	TGTAGAAGAGAAG	GGACGGCGATGGCGACGGT	GCAGC 5146	

Ϋ́

sgRNA CI-1 sgRNA CI-2

C318S

Μ C318S

Supplementary Fig. 2 Loss of USP11 triggers R-loop accumulation.

a)Validation of indel mutations in USP11 sgRNA clones. Sanger sequencing reveals a 23-nucleotide deletion in exon 1 of USP11 gene, Clone-1 (left panel), and a 2-nucleotide deletion in exon 1 of USP11 gene, Clone-2 (right panel).

b) Corrected total nuclear fluorescence related to Fig. 2f was measured using ImageJ and normalised to control cells. Data are the average ± SD from 3 biological repeats, each containing at least 100 cells. ns; p > 0.05, two-sided Student's t-test. c) Raw data from a representative experiment of DRIP-qPCR related to Fig. 2g. Lysates from Control HEK-293 (Cont), USP11 sgRNA CI-2 (CI-2), USP11-sgRNA CI-2 complemented with WT USP11 (WT) or C318S USP11 (C318S) were subjected to DNA/RNA immunoprecipitation (DRIP) using S9.6 antibodies. Quantitative PCR was conducted using primers targeting nucleolar (28S and R7) and nuclear (ING3 and actin) loci. In vitro, on-bead ec-RNase H (ec-RH) treatment served as a signal validation control. d) Lysates from USP11 knockout cells complemented with either wild-type (WT) or catalytically inactive USP11 C318S (C318S) were subjected to a slot blot analysis using S9.6 and α-ssDNA antibodies. A representative experiment of 3 biological repeats is shown. ssDNA signal was used as a loading control.

e) S9.6 band intensities from (d) were normalised to ssDNA and presented as fold enrichment compared to control WT cells. Data are the average of 3 biological repeats and presented as mean ± SD. ns; p>0.05, two-sided Student's t-test.

saRNA Clone-2

SDS-PAGE and analysed by immunoblotting (left). USP11, SETX and TDP1 band intensities were normalised to Actin and presented as fold reduction compared to controls (right). Data are the average of 4 biological repeats and presented as mean ± SD. ns p>0.05, two-sided Student's t-test.

d) MRC-5 cells treated with Control, USP11, SETX or USP11 and SETX siRNA were incubated with the indicated doses of formaldehyde (FA) for 3 hours and left to grow for 7 days. The surviving colonies were counted and % survival calculated relative to mock-treated cells. Data are the mean ± SD from 3 biological repeats. Two-sided Student's t-test

e) Control experiments for proximity ligation assays (PLA) in MRC-5 cells. No antibodies (no ab) or single antibodies as indicated were used. For GFP PLA, MRC-5 cells were transfected with empty vector-eGFP (EV-GFP) first. The scale bar is equal to 10 µm. Images are representative of 3 biological repeats.

f) Validation of alpha-amanitin (AMN) treatment. MRC-5 cells were incubated with 50μM AMN or DMSO over-night, which was followed by 5'-ethynyl uridine (EU) incubation for 1h. After incubation, cells were immediately harvested for EU-staining. The scale bar is equal to 10 μm. Images are representative of 3 biological repeats.

Ni PD eGFP-SETX1-667 + Ub-His **USP11 si** d e Input Ni PD Con si ŝ ŝ USP11 USP11 Con Si Con Si kDa kDa FLAG-SETX 250 250 Ubi-eGFP 150 SETX1-667 100 eGFP-SETX1-667 250 USP11 100 His-Ub 150 100 250 His 150 100 50 Input 50 FLAG-SETX 250 50 Actin 37 USP11 100 Normalised Ubi-SETX p=0.020 3 2.0 Normalised Ubi-SETX p=0.017 1.5to His (arb. units) JSP11 S Cousi 4 ه، ^{در} ۱۹۹۱ در ۱۹۹۷ در Cousi

Supplementary Fig.4 USP11L208F,S242R:SETX interaction and ubiquitination of SETX.

a) MRC-5 cells were transcfected with empty vector-eGFP (EV), GFP-USP11 (WT) or GFP-USP11^{L208F,S242R}, and

subjected to Proximity Ligation Assay using antibodies against GFP and SETX. Representative images are shown, scale bars are equal to 10µm. Images are representative of 3 biological repeats.

b) Lysates from USP11 sgRNA CI-2 transiently over-expressing empty vector-eGFP (EV), GFP-USP11^{L208F,S242R} or GFP-USP11 (WT) were subjected to DNA/RNA immunoprecipitation using S9.6 antibodies. Quantitative PCR was conducted using primers targeting nucleolar (*28S* and *R7*) and nuclear (*ING3* and *actin*) loci. The data represent the average ± range from 2 biological repeats. c) Lysates from parental HEK-293 (Cont), USP11-sgRNA CI-2 (CI-2) and USP11-sgRNA CI-2 complemented with WT USP11 (WT) or active site mutant USP11 (C318S) cells were fractionated by SDS-PAGE and analysed by immunoblotting. Images are representative of 3 biological repeats.

d, e) Control (Con si) and USP11-depleted HEK-293 cells (USP11 si) were transfected with plasmids encoding FLAG-SETX (d) or eGFP-SETX¹⁻⁶⁶⁷ (e) and Ub-His, treated with 10 µM MG132 overnight (proteasomal inhibitor), lysed and subjected to nickel pull-down under denaturing conditions to purify ubiquitinated proteins.Samples were fractionated by SDS-PAGE and analysed by immunoblotting using anti-GFP, FLAG, USP11, His and actin antibodies. *denotes a non-specific band. The band intensities of Ubi-SETX were normalised to His-Ub and presented as fold increase of SETX ubiquitination compared to controls. Data are the average ± SD from 3 biological repeats. p values calculated using two-sided Student's t-test.

Supplementary Fig. 5. R-loop levels in aged USP11 knockout cells and ubiquitination of SETX.

a) Corrected total nuclear fluorescence of aged USP11 sgRNA Cl-1 and 2 (Cl-1 p12-15; Cl-2 p12-15) related to Fig. 5a was measured using ImageJ and normalised to mock (Cont; HEK-293). Data are the average \pm SD from 3 biological repeats, each containing at least 100 cells. ns; p > 0.05, two-sided Student t-test.

b) Raw data from a representative experiment of DRIP-qPCR related to Fig 5b. Lysates from Control HEK-293 (Cont) and aged USP11 sgRNA CI-2 (p12) were subjected to DNA/RNA immunoprecipitation (DRIP) using S9.6 antibodies. Quantitative PCR was conducted using primers targeting nucleolar (*28S* and *R7*) and nuclear (*ING3* and *actin*) loci. *In vitro*, on-bead ec-RNase H (ec-RH) treatment served as a signal validation control.

c) Lysates from young (p3-5) and aged (p15-17) USP11 sgRNA CI-2 were fractionated by SDS-PAGE and analysed by immunoblotting (top panel). p21 band intensities were normalised to tubulin (bottom panel). Data are the average of 3 biological repeats and presented as mean ± SD. p values were calculated using two-sided Student's t-test.

d, e) Control (Con), RNF168¹⁻¹¹⁰-mCherry (mCherry) and HA-KEAP1 (HA) over-expressing HEK-293 cells were transfected with plasmids encoding Ub-His, FLAG-SETX (e) or eGFP-SETX¹⁻⁶⁶⁷ (f), lysed and subjected to nickel pull-down under denaturing conditions to purify ubiquitinated proteins. Samples were fractionated by SDS-PAGE and analysed by immunoblotting using anti-GFP, FLAG, USP11, HA, His and mCherry antibodies. *denotes a non-specific band. The band intensities of Ubi-SETX were normalised to His-Ub and presented as fold increase of SETX ubiquitination compared to controls. Data are the average ± SD from 3 biological repeats. ns; p > 0.05, two-sided Student's t-test.

f) Lysates from HEK-293 cells treated with scrambled (Con), USP11, KEAP1 or USP11 and KEAP1 (U+K) siRNA were fractionated by SDS-PAGE and analysed by immunoblotting (top panel). USP11 and KEAP1 band intensities were normalised to actin and presented as fold reduction compared to levels in control cells (bottom panel). Data are the average of 4 biological repeats and presented as mean ± SD. p values calculated using two-sided Student's t-test.

Supplementary Fig. 6. USP11 nuclear fractionation, SETX chromatin binding and a model depciting the role of USP11 and KEAP1. a) HEK-293 cells were subjected to a USP11 ChIP followed by qPCR using primers targeting nucleolar (*28S, R7*) and nuclear (*ING3, Actin, KEAP1, EGR1, SNRPN-neg, MYADM-neg*) loci. IgG served as a negative control. Data represent the average ± SD from 3 biological repeats. p values calculated using two-sided Student's t-test.

b) HEK-293 cells were transfected with Control siRNA or SETX siRNA and subjected to nuclear fractionation assay followed by immunoblotting. Levels of SETX, USP11 and H2A were analysed. H2A served as a loading control specific to insuluble fraction. * denotes a non-specific band. Images are representative of 3 biological repeats.

c) HEK-293 cells were subjected to a SETX ChIP followed by qPCR using primers targeting nucleolar (*28S, R7*) and nuclear (*ING3, Actin, KEAP1, EGR1, SNRPN-neg, MYADM-neg*) loci. IgG served as a negative control. Data represent the average ± SD from 3 biological repeats. ns; p > 0.05, two-sided Student's t-test.

d) A diagram representing PCR amplicons generated by primers used for ChIP and DRIP-qPCR experiments (Fig. 7). NTS - nontranscribed spacer; ITS - intergenic transcribed spacer.

e) KEAP1 and USP11 add and remove K48-Ub chains from SETX respectively. In the absence of USP11, SETX is ubiquitinated and subsequently degraded, which leads to R-loop accumulation. In the absence of KEAP1, SETX is deubiquitinated and thus its protein level is stabilised, which results in R-loop resolution.

Gene	NCBI Gene ID	Primer name	Forward Primer (5'-3')	Reverse Primer (5'- 3')	Amplicon length	Location	Targeted splice variants	Source	Comment
ACTB	60	Actin β	GCT CAG GGC TTC TTG TCC TT	TCG ATG GGG TAC TTC AGG GT	121bp	Exon 3	All	Li,M., Pokharel,S., Wang,J.T., Xu,X. and Liu,Y. (2015) RECQ5-dependent SUMOylation of DNA topoisomerase I prevents transcription-associated genome instability. <i>Nat. Commun.</i> , 6, 1–13.	Reference gene for RT-qPCR
USP11	8237	USP11	TGGAAGGCGA GGATTATGTG C	ATGACCTTGCGTT CAATGGGT	102bp	Exon 4	All	Zhou,Z., Luo,A., Shrivastava,I., He,M., Huang,Y., Bahar,I., Liu,Z. and Wan,Y. (2017) Regulation of XIAP Turnover Reveals a Role for USP11 in Promotion of Tumorigenesis. <i>EBioMedicine</i> , 15, 48–61.	Target gene
SETX	23064	SETX	CTT CAT CCT CGG ACA TTT GAG	TTA ATA ATG GCA CCA CGC TTC	176bp	Exon 26	All	Skourti-Stathaki,K., Proudfoot,N.J. and Gromak,N. (2011) Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2- dependent termination. <i>Mol. Cell</i> , 42, 794–805.	Target gene
KEAP1	9817	KEAP1 (RT- qPCR)	TGG CCA AGC AAG AGG AGT TC	GGC TGA TGA GGG TCA CCA GTT	60bp	Exon 3	All	Hussong,M., Börno,S.T., Kerick,M., Wunderlich,A., Franz,A., Sültmann,H., Timmermann,B., Lehrach,H., Hirsch-Kauffmann,M. and Schweiger,M.R. (2014) The bromodomain protein BRD4 regulates the KEAP1/NRF2-dependent oxidative stress response. <i>Cell Death Dis.</i> , 5, 1–11.	Target gene for RT-qPCR
KEAP1	9817	KEAP1 (ChIP/DRIP- qPCR)	GGA AAG GAG CGG CGA TTC	CAT CCA GCA ACG AAA TCG GG	137	Promoter proximal region	All	This study	Target gene for ChIP/DRIP- qPCR
RNA28S N3	10991 0382	28S	CAG GGG AAT CCG ACT GTT TA	AT GAC GAG GCA TTT GGC TAC	173bp	ribosomal RNA	All	Johnston,R., D'Costa,Z., Ray,S., Gorski,J., Paul Harkin,D., Mullan,P. and Panov,K.I. (2016) The identification of a novel role for BRCA1 in regulating RNA polymerase I transcription. <i>Oncotarget</i> , 7, 68097–68110.	Target gene
RNA5- 8SN3	10991 0381	R7	GAC ACT TCG AAC GCA CTT G	CTC AGA CAG GCG TAG CCC CG	55bp	ribosomal RNA	All	Shen,W., Sun,H., De Hoyos,C.L., Bailey,J.K., Liang,X.H. and Crooke,S.T. (2017) Dynamic nucleoplasmic and nucleolar localization of mammalian RNase H1 in response to RNAP I transcriptional R-loops. <i>Nucleic Acids Res.</i> , 45, 10672–10692.	Target gene
ING3	54556	ING3	TTT TTC TTC TCT AAC TAC CCT CCC C	GTG CCC TAA TCT GAA TGA CTA CA	99bp	intron 4	All	Halász,L., Karányi,Z., Boros-oláh,B., Kuik-rózsa,T., Sipos,É., Nagy,É., Mosolygó-I,Á., Mázló,A., Rajnavölgyi,É., Halmos,G., <i>et al.</i> (2017) RNA-DNA hybrid (R-loop) immunoprecipitation mapping: an analytical workflow to evaluate inherent biases. 10.1101/gr.219394.116.6.	Target gene

Supplementary Table 1. List of primers and DNA sequences used in the study

ACTB	60	Actin	TTA CCC AGA GTG CAG GTG TG	CCC CAA TAA GCA GGA ACA GA	104bp	5' of 3' pause site	All	Skourti-Stathaki,K., Proudfoot,N.J. and Gromak,N. (2011) Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2- dependent termination. <i>Mol. Cell</i> , 42, 794–805.	Target gene
EGR1	1958	EGR1	CATAGGGAAG CCCCTCTTTC	CTTGTGGTGAGGG GTCACTT	90bp	Promoter proximal region	All	Ginno,P., Lott,P., Christensen,H., Korf,I. and Chédin,F. (2012) R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. <i>Mol. Cell</i> , 45, 814–825.	Target gene
FRA3B	2272	FRA3B	TTAGCCTACTT CAGGGTTTCT	TGGAGAGGTTACT ACTGGCA	148bp	Common Fragile Site	All	Björkman, A., Johansen, S.L., Lin, L., Schertzer, M., Kanellis, D.C., Katsori, AM., Christensen, S.T., Luo, Y., Andersen, J.S., Elsässer, S.J., et al. (2020). Human RTEL1 associates with Poldip3 to facilitate responses to replication stress and R-loop resolution. Genes Dev. 34, 1065–1074.	Target gene
FRA16D	2463	FRA16	CAGCCAGCAC TCCTTCTCAA	CTCTGTGGAGAAG CCAAGCA	149bp	Common Fragile Site	All	Björkman, A., Johansen, S.L., Lin, L., Schertzer, M., Kanellis, D.C., Katsori, AM., Christensen, S.T., Luo, Y., Andersen, J.S., Elsässer, S.J., et al. (2020). Human RTEL1 associates with Poldip3 to facilitate responses to replication stress and R-loop resolution. Genes Dev. 34, 1065–1074.	Target gene
SNRPN	6638	SNRPN-neg	GCCAAATGAG TGAGGATGGT	TCCTCTCTGCCTG ACTCCAT	102bp	5' UTR	All	Ginno, P., Lott, P., Christensen, H., Korf, I. and Chédin, F. (2012) R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. <i>Mol. Cell</i> , 45, 814–825.	Target gene
MYADM	91663	MYADM- neg	TGCATCTACAT CCGCAAAAG	AGAGTGGACGCT GCAGAAAT	146bp	5' UTR	All	Ginno, P., Lott, P., Christensen, H., Korf, I. and Chédin, F. (2012) R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. <i>Mol. Cell</i> , 45, 814–825.	Target gene

SDM & Cloning primers

Name of the	Forward Primer (5'-3')	Reverse Primer (5'-3')	Method	Purpose	Template
primer					plasmid
USP11	CAA TCT GGG CAA CAC GAG CTT CAT GAA	GCC GAG TTC ATG AAG CTC GTG TTG CCC	SDM	Generation of FLAG-HA-	FLAG-HA-
(C318S)	CTC GGC	AGA TTG		USP11(C318S)	USP11
SETX(1-667)	ACA AGT CCG GAC TCA GAT CTA TGA GCA	5'CAC TCA CTG GTA CTG GCC CTT TAG TCA	Gibson	To amplify SETX(1-667) for eGFP-	pCMV6-XL-
· · · ·	CAT GTT GTT GG	CCT TCT ATA GTG TTA TC	Cloning	SETX(1-667)	SETX
peGFP-C1	AGG GCC AGT ACC AGT GAG	AGA TCT GAG TCC GGA CTT G	Gibson	To amplify peGFP-C1 for eGFP-	peGFP-C1
•			Cloning	SETX(1-667)	•
USP11 (WT)	CAA GTC CGG ACT CAG ATC TAT GGC AGT	ACT CAC TGG TAC TGG CCC TTC AAT TAA	Gibson	To amplify USP11 for eGFP-	FLAG-HA-
. ,	AGC CCC GCG A	CAT CCA TGA ACT CAG AGC TGG	Cloning	USP11(WT)	USP11
peGFP-C1	AGG GCC AGT ACC AGT GAG	AGA TCT GAG TCC GGA CTT G	Gibson	To amplify peGFP-C1 for eGFP-	peGFP-C1
			Cloning	USP11 (WT)	
RNF168(1-	TCAGATCTCGAGCTCAAGCTATGGCTCTACC	ATGTCGACTGCAGAATTCGAAGGTTTACTGAGC	Gibson	To amplify RNF168(1-110) for	peGFP-
110)	CAAAGAC	AGACG	Cloning	pRNF168(1-110)-mCherry	RNF168

pmCherry-N1	TCGAATTCTGCAGTCGAC	AGCTTGAGCTCGAGATCTG	Gibson	To amplify pmCherry-N1 for	pmCherry-N1
			Cloning	pRNF168(1-110)-mCherry	
USP11	CCAAGAACTCAGAAGGCTCTTTCGATAGGTT	GTGTGTGTCATACAACCTATCGAAAGAGCCTTC	SDM	Generation of FLAG-HA-	FLAG-HA-
(L208F)	GTATGACACACAC	TGAGTTCTTGG		USP11(L208F)	USP11
USP11	GGCACTTGGCCCAGAGCACAGCTGCATGTC	GACATGCAGCTGTGCTCTGGGCCAAGTGCC	SDM	Generation of FLAG-HA-	FLAG-HA-
(S242R)				USP11(L208F, S242R)	USP11(L208F)

Supplementary Table 2. List of siRNA and gRNA used in this study

siRNA	siRNA Sequence
siControl	5' UAA UGU AUU GGA ACG GAU 3'
siUSP11 #1	5' GCG CAC AGC UGC AUG UCA U 3'
siUSP11 #2	5' GAG AAG CAC UGG UAU AAG C 3'
siUSP11 #3	5' GGA CCG UGA UGA UAU CUU C 3'
siUSP11 #4	5' GAA GAA GCG UUA CUA UGA C 3'
siSETX #1	5' GCA CGU CAG UCA UGC GUA A 3'
siSETX #2	5' GCA AUA AGC UCA UCC UAG U 3'
siSETX #3	5' GCU CAA CUC UCC AAA UAG A 3'
siSETX #4	5' UAG CAC AGG UUG UUA AUC A 3'
siKEAP1	5' CAG CAG AAC UGU ACC UGU U 3'

gRNA	gRNA Sequence
USP11_Exon1 top strand	5' CAC CGA GAA CGG ACG GCG ATG GCG A 3'
USP11_Exon 1 bottom strand	5' AAA CTC GCC ATC GCC GTC CGT TCT C 3'

Supplementary Table 3. List of antibodies used in this study

Antibody	Dilution / Quantity	Purpose	Source	Identifier
TDP1	1.1000	IB	Abcam	ab4166
Beta-actin	1:2000	IB	Sungene Biotech	KM9001
S9.6	1:500	IF	Kerafast	ENH001
59.0	20 or 28 µg		ixerurust	Littiooi
USP11	1.1000	PLA	Bethyl	A301-613A
00111	1:2000	IB/IF	Dethyr	11301 01311
	2 119	ChIP		
K48 ubiquitin	$\frac{2 \mu g}{1.1000}$	IB	Abcam	ab140601
GFP	1.1000	PLA	Abcam	ab290
	1.2000	IB/IF		
SETX	1.2000	PLA	Abnova	2579-2676
	5 119	ChIP	Bethyl	A 301-104A
	1:1000	IB		11501 10 111
His	1:1000	IB	Abcam	ab18184
НА	1:1000	IB	Santa Cruz	F-7
GAPDH	1:2000	IB	Calbiotem	CB1001
Beta-tubulin	1:2000	IB	Abcam	ab7792
RPA-194	1:1000	IB	Santa Cruz	sc-48385
Cyclin A2	1:1000	IB	Cell Signalling	#4656
Nucleolin	1:1000	IB/IF	Abcam	ab136649, ab22758
mCherry	1:1000	IB	Abcam	ab167453
KEAP1	1:1000	WB/PLA	Abcam	ab139729
yH2A.X	2 µg	ChIP	EMD Millipore	05-636
XPF	1 µg	ChIP	Abcam	ab76948
p21	1:200	WB	Invitrogen	14-6715-81
RNA Pol II	1:1000	IB	Santa Cruz	sc-55492
ssDNA	1:1000	Slot blot	EMD Millipore	#MAB3868
Alexa Fluor 555	1:500	IF	Thermo Fisher	A21428
goat anti-rabbit IgG				
Alexa Fluor 594	1:500	IF	Thermo Fisher	A110012
goat anti-rabbit IgG				
Alexa Fluor 594	1:500	IF	Thermo Fisher	A11005
goat anti-mouse IgG				
Alexa Fluor 488	1:1000	IF	Thermo Fisher	A11008
goat anti-rabbit IgG				
Rabbit IgG	2 μg	IP	Invitrogen	02-6102
Goat Anti-Rabbit	1:4000	IB	Bio-Rad Laboratories	170-6515
lgG (H+L)-HRP				
Conjugate				
Goat Anti-Mouse	1:4000	IB	Bio-Rad Laboratories	170-6516
IgG (H+L)-HRP				
Conjugate				

Supplementary Table 4. List of plasmids used in this study:

Plasmid	Purpose	Reference / Source
HA-KEAP1	Transient recombinant protein expression	Plasmid # 21556 - Addgene
FLAG-HA-USP11	Complementation of USP11 sgRNA clones, SDM, cloning	Plasmid # 22566 - Addgene
FLAG-HA-USP11 ^{C318S}	Complementation of USP11 sgRNA clones	This study
pCMV6-XL-SETX	Cloning	Plasmid SC308907 – OriGene
peGFP-SETX ¹⁻⁶⁶⁷	Pull-down	This study
FLAG-SETX	Pull-down	Gift from S. Wilson
peGFP-C1	Cloning, Pull-down, PLA	Clonetech
peGFP-USP11	Transient recombinant protein expression, PLA, SDM	This study
peGFP-USP11 ^{L208F, S242R}	Transient recombinant protein expression, PLA	This study
RNF168(1-110)-mCherry	Pull-down	Gift from S.El-Khamisy
Ubiquitin-10xHis	Pull-down	Gift from S.El-Khamisy
pSpCas9(BB)-2A-GFP_PX458	Gene silencing	Plasmid # 48138 - Addgene