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Fig. S1. Overview of the bioinformatic workflow. See the Methods for detailed information.
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Fig. S2. Evaluation of viral prediction approaches. The number of vOTUs (A) and the average
length of the representative viral contigs (B) that were specifically recovered by different

prediction approaches.
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Fig. S3. Evaluation of viral host predictions. Numbers of host assignments according to the “ex

situ” (A) and “in situ” (B) pipelines by different prediction approaches. (C) Consistency between

different approaches at different taxonomic levels for vOTUs with host assignments by multiple

prediction methods (n=424). (D) Consistency between different approaches at different taxonomic

levels for vOTUs with the “in situ” host assignments by multiple prediction methods (n=118). For

each taxonomic level, only if 100% of the assigned host taxa were identical, the assignment was

regarded as consistent.
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Fig. S4. (A) Total and average lengths of viral genomes of OTVGD compared with those of the
previously published oceanic trench virome. (B) Read recruitment of OTVGD against previously
published viromes from the Pacific Ocean (1, 2). Reads hits with an e-value < 10, identity >
95%, and length > 50 bp were used to calculate reads recruited per kb of genome per Gb of
metagenome (RPKG).
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Fig. S5. Viral OTU accumulation curves for the OTVGD (A) and hadal trench viral genome
dataset (HTVGD) (B). The black lines within the box indicate the median value of the vOTU

number, and the ranges of the error bars represent 100 random replicates.
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Fig. S6. Genome size distribution in the vOTUs of OTVGD (A) and HTVGD (B). The x-axis was
truncated to increase the clarity of the graphs.
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Fig. S7. Hadal vOTUs belonging to inoviruses. (A) Genomic maps depicting predicted proteins
encoded by representative hadal inoviruses. The arrows depict the location and direction of

predicted proteins in the viral genomes, and the fill colours indicate different functional categories



of genes, as indicated in the legend. (B) Relative abundance of hadal inoviruses in different
ocean zones of the Mariana Trench. The relative abundance of one vOTU in a sample was based
on the recruitment of reads to the representative vOTU contig and was considered only if more
than 75% of the reference contig was covered. (C) Phylogenetic tree of inoviruses. An unrooted
phylogenetic tree was built from the conserved Zot-like proteins of known inoviruses using the
maximum-likelihood method with 1000 bootstraps. Nodes with bootstrap support values greater
than 0.9 and 0.8 are marked with black and grey circles, respectively. Clades of Zot proteins from
the same bacteria genus are assigned the same background colours. The Zot protein of hadal

inovirus obtained from this study is highlighted in red.
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Fig. S8. Virus—host abundance patterns in the OTVGD. Viral abundance and predicted host
abundance (n=457) (both calculated as the mean coverage depth from metagenomic read
mapping, normalized by the number of reads in the sample) are shown. Based on linear
regression analysis, best-fit lines and adjusted r? values are presented. The p value of the F-test
indicates whether the use of an interaction term in the linear regression models yielded a
significantly different result from no interaction term. Pearson’s correlation coefficient is also

presented. The statistical analysis was performed by using R 4.0.0.
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Fig. S9. Putative Oleibacter viruses in the hadal seawater of the Mariana Trench. (A) Genomic
maps depicting predicted proteins encoded on representative Oleibacter vOTUs. The arrows
depict the location and direction of predicted proteins on the viral genomes, and the fill colours
indicate different functional categories of genes, as indicated in the legend. (B) Relative
abundances of Oleibacter vOTUs in different ocean zones of the Mariana Trench. The relative
abundance of one vOTU in a sample was based on the recruitment of reads to the representative

vOTU contig and was considered only if more than 75% of the reference contig was covered.
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Fig. S10. Putative Thaumarchaeota viruses in the OTVGD. (a) Protein-sharing network of vOTUs
belonging to Thaumarchaeota viruses using vConTACT v2.0. The nodes represent vOTUs, and
the connecting edges indicate significant protein sharing among them. Each node is depicted in a
different colour, representing vOTUs from different studies, as indicated in the legend. The four
isolated viruses that infect Nitrosopumilus are depicted in red. (b) Genomic maps depicting
predicted proteins encoded on representative thaumarchaeal vOTUs. The arrows depict the
location and direction of predicted proteins on the viral genomes, and the fill colours indicate
different gene functional categories, as indicated in the legend. The annotations were based on
searches against NCBI’s nr protein database or HHpred analyses using standard settings, and
only significant results (e-value < 1e-5) were considered. The names of vOTUs identified in this

study are indicated in bold black text. (c) Relative abundance of thaumarchaeal vOTUs in
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different samples from the abyssal and hadal zones. The relative abundance of one vOTU in a
sample was based on the recruitment of reads to the representative vOTU contig and was

considered only if more than 75% of the reference contig was covered.
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Fig. S11. The whole protein-sharing network of the vOTUs in OTVGD using vConTACT v2.0. The
nodes and the connecting edges represent vOTUs their shared proteins, respectively. Nodes are
depicted in the color representing vOTUs from the hadopelagic samples of the Mariana Trench
(MT, red), Yap Trench (YT, blue), Kermadec Trench (KT, yellow), and epi-/abyssopelagic
samples from these trenches (light blue). vOTUs present in multiple trenches, which suggest
exchange of hadal viruses, are indicated by green nodes. Pink nodes correspond to the vOTUs

that were derived from hadal microbial genomes.
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predicted proteins encoded by representative vOTUs. The arrows depict the location and

direction of the predicted proteins on the viral genomes, and the fill colours indicate different gene

functional categories, as indicated in the legend. (B) Relative abundances of vOTUs in different

trenches. The relative abundance of one vOTU in a sample was based on the recruitment of

reads to the vOTU representative contig and was considered only if more than 75% of the

reference contig was covered.
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Fig. S14. Quantitative movement of vOTUs within oceanic trenches. Calculations were based on
reciprocal comparison of vOTU abundances between neighbouring samples according to
previously described methods (3). For each sample pair, the relative abundances of the vOTUs in
one sample originating from a neighbouring sample, and vice versa, were calculated and are
exhibited. The movement direction and magnitude are depicted with arrowheads and line widths,

respectively.

17



Sample type 087 sample type
Seawater Seawater
s Sediment Sediment
Ocean zone § o
. —_— «©
Z =
a § 5o Epipelagic g
g E Abyssopelagic ‘s
g £ Hadopelagic é
25 n oo
3 8
25 o
Q
Q
o
. 04 ANOSIM
T geoggs s g 88 r=0971
% % SE3 S g g g p=10.002
=EEEZ 3 =5
-1.0 -05 0o
== =

PCo1 (33.68% of variance)
Sample

Fig. S15. Alpha and beta diversity analyses of oceanic viruses. (A) Shannon’s H index of 19
trench samples. (B) Principal coordinates analysis (PCoA) based on a Bray-Curtis dissimilarity

matrix calculation from relative abundances of all vOTUs of 19 trench samples. Samples were

grouped by sample types in ANOSIM.



—— Hadopelagic seawater (OTVGD) ——— Hadopelagic sediment (OTVGD)
40

Epipelagic seawater (GOV)

10

vOTU percentage (%)

20 30 40 50 60 70 80
GC %

Fig. S16. GC plot of viral communities in different ocean zones. The blue and orange lines
represent the GC plot of vOTUs derived from the hadopelagic seawater and sediment in this
study, respectively, and the light and dark grey shading refer to the GC content patterns of
vOTUs of GOV 2.0 from the epipelagic and bathypelagic zones, respectively (4).
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Fig. S17. Carbon atoms per residue side chain (C-ARSC) analysis of viral genomes in OTVGD.
All representative viral contigs in each trench sample were used for the calculation. Heatmaps in
the top right corner of frames show significance levels of differences between all pairs of sample
groups calculated by the two-tailed Student’s t test. The bottom letters representing sample

groups correspond to coordinates of significance heatmaps.
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Fig. S18. Detailed gene contents (A) and abundance patterns (B) of the mostly active hadal
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Fig. S19. Abundance patterns of the class Il AMGs in the OTVGD by sample. The heatmap
displays the relative abundance of each viral AMG (y-axis) in each sample (x-axis). The per-base
per-contig coverage of mapped reads to vOTUs harbouring the corresponding AMGs is depicted
as a heatmap of relative abundances on the logz scale. The AMGs are clustered by sample and
abundance (average linkage, Spearman rank correlation). The bars on the top and bottom of the

figure indicate the type and ocean zone of each sample, respectively.
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Fig. S20. Predicted 3D structures of vDAO and microbial DAOs with experimentally verified
functions. The structures were modelled by PHYRE2 (www.sbg.bio.ic.ac.uk/phyre2/html/) with

default parameters. All the structures have a confidence of 100%.
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Fig. S21. vDAO expression, purification, and activity assay. (A) SDS-PAGE of purified vDAO with
the TF-Tag protein. (B) D-amino acid oxidation assays. Enzyme activity was shown by the
production of a brown product and an increase in the absorbance at 430 nm upon addition of
vDAO. H202 and the TF-Tag protein were used as the positive and negative controls,

respectively.
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Fig. S22. Relative abundances of DAO-encoding genes in oceanic trenches. The abundances
were calculated by the percentage of reads mapped to DAO-encoding genes among the total

reads in each sample.
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Supplementary Tables S1-S11

Table S1. List of metagenome datasets used in this study.
Table S2. List of hadal microbial genomes used in this study.
Table S3. Viral contig recovery by different assembly methods.
Table S4. Summary of manual curation for viral contigs.

Table S5. List and information of OTVGD vOTUs.

Table S6. Identification of NCLDVs in OTVGD by ViralRecall.

Table S7. Abundance and distribution of OTVGD vOTUSs.

Table S8. List of microbial OTUs and metagenomic bins recovered in this study.

Table S9. List of host predictions for OTVGD vOTUs.
Table S10. Distribution and abundance of class | viral AMGs in the OTVGD.

Table S11. Distribution and abundance of class Il viral AMGs in the OTVGD.
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