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Mathematical basis of the Istrans program

Notation. A singular value decomposition of a matrix R is R = USV7T for orthogonal matrices
I/,V and diagonal matrix ¥, i > 0. The N x N identity matrix is denoted by Iy. The
Euelidian norm of a vector z is denoted by ||z|| = vaTz. Kronecker’s delta is denoted by 8y,

Lemma 1 (polar decomposition). If B = USVT is a singular value decomposition of an
invertible matriz, then A = UVT and § = VEVT are the unique orthogonal and symmetric
and positive definite matrices, respectively, satisfying R = AS.

Theorem 1. Given points p',q' € R, i = 1,..., N, we define the 3 x 3 matrix R = PJQT,
where

1
p=[pt .. P, @=1[et . @], T=Ivo et =1 . 1] ERY
If R is invertible then the unique solution of the absolute orientation problem
N
. i P2 . Ta
(1) min Z,I: | Ag' + b — p'||? subject to ATA = I,

is given by the orthogonal matriz A provided by the polar decomposition of R and

N
1 ) )
2 b= — — Ag").
(2) N ;(p ¢)
Proof. For an orthogonal matrix A we take into account that
1AG'|? = (Ag") T Ag" = ()T A" Aq' = (&) 'd" = ||’
to simplify the objective function of the problem:

N N
STAG +bo - P =" (HAQ'in P12+ 1)1 — 200 Ag' + 267 (Ag! fp"))
i=1 =1
N
=3 (Ig1 + 1517 = 2(5)7 Ad" + 6] + 267 (A" — ) = K + ¥(4,b),
i=1

where we have used the notation K = val(WHZ + [|¢'[]*) and

B(A,b) *22(19 ) Ag’ +NHbH2+ZZbT(Aq )

i=1 t=1
3 3 N 3
3) - fQZZZpﬂa]m+Nsz+QZZba Z%k% ~Pai)
=1 j=1 k=1 i=1 j=1

Therefore, the minimization problem (1) is equlvalent to

) min &(4,b)
3
(5) subject to Zakiakj =&yl <i<j <3
k=1
Since, for fixed A, limjg—e0 ®(A, b) = 00 (due to the presence of the quadratic term N Zg b2,

D(A,b) = 0 and the set of orthogonal matrices is compact (closed and bounded) it can be seen
that problem (1) has solutions. Since the 6 restrictions (5}, have a rank 6 Jacobian matrix, any
local minimizer of problem (1) will be a critical point of the Lagrangian of the problem, so the
problem reduces to finding the minimum of the function among such critical points.

The Lagrangian of (4)-(5) is

L{ADN) = Ab)+ZZA”Zaklak7 &i5)

=1 j=t



with A;; denoting the Lagrange multiplier corresponding to the restrictions. From (3) the
equations for the critical points of the Lagrangian corresponding to b,,, m =1, 2,3, are

ac 8(1)7

1(& 2

z—lkl

that is, for a critical point of the Lagrangian (A,b), the vector b is determined by the orthogonal
matrix A as

1 1 ol ; i
(6) b:N(P*AQ)EZNZ(p — Ad'),

=1
which is precisely (2).
Likewise, we compute aa ,form,n=1,2,3:

N

=2 mesz + 2 ZbMQM - (72PQT + QbeTQT)mn

i=1 i=1

3.3 3 Oy dag;
e (A= 80) = 330 S o )

od
O

i=1 §=4 i=1 j=t k=1
3 3
- E E )\1;/ E 6km inCkj + aklékm jn } § z] znamg + amzéjn)
=1 5=t k=1 i=1 j§=t

3 n 3
= Z )\njamj + Z )\inami =2 Z amkdlm - Q(AD)mna
j=n =1 k=1

where the symmetric matrix D is given by

A% k<n
(7) d;m = )\nn k =n
“\%’“ k>n
Therefore
oL T T AT
0:5&;J:GQPQ +2be’ Q7 + 2AD)pn

Since this is valid for any m,n =1,2,3, it is equivalent to
0=—2PQ" +20e7Q" + 24D = be' QT + AD = PQ*.
If we substitute (6) we get

POT =beTQT 4+ AD = %(p ~AQ)eeQT { AD =

T ! TAT _ _ i T AT
PQ" — NP@@ Q" =A(D NQee Q)=
(8) R=PJQT =AS, S=(D- %QeeTQT),

with S being symmetric since D is so.
We have therefore established that if (A,b) is a critical points of the Lagrangian then there
exist a symmetric matrix S such that

(9) AS =R,

and b given from A by (2). Since the argument is reversible, for the Lagrange multipliers can
be recovered from equation (8) and (7), the critical points of the Lagrangian are characterized

by (9) and (2).



The polar decomposition in Lemma 1 provides an instance of such a decomposition. The
purpose of the remainder of the proof is to show that it attains the least value of the objective
function among all critical points. The first step is to rewrite the objective function of (1) for
an orthogonal matrix A and & given from (6).

Since fori=1,... N

N
A’L b* 'L:A’L . g*AJ _ l:A""Li"‘Z
¢+b—p q+Nj§:1(p g)—p 7—r,
N N
=i ;1 1 T g1
P:pfﬁjgﬂpjfpfﬁpe Q’*Q*N;ﬂ%’*‘?*ﬁ@@
we have
N ' . N '
> AG +b PP => 147 —F|* = § IAG ||* + 15°)1* — 25°) T Ag°
i=1 i=1

N
= K1 —2) (PTAQ)s = Ky — 2trace(PTAQ), Ky = Z 11 + 11211

t=1

where

F=[" ... 7] :Pf%PeeT:PJ, Q=[a ... @ :Q—%Q%T:Ql
From standard properties of the trace operator we deduce

trace( PTAQ) = trace((PTAQ)T) = trace(QTATP) = trace(PQT A”) = trace(RAT),
since

PQT =prIQNT =PIJTQ"

1 1 1 1
JIT =72 =(Iy— NeeT)Q =1In+ (NeeT)z — QNeeT =In+ me(eTe)eT — —eel

=Iy+ %ENET — %eeT =1y %eeT =J
We congider an orthogonal matrix A and a symmetric matrix S that satisfy R = AS and
continue with the previous computation, taking into account that the trace of two similar
matrices coincides and it is given by the sum of the eigenvalues:

trace( PTAQ) = trace(RAT) = trace( ASA™1) = trace(S) = Z Al

where A;(S) are the (real) eigenvalues of the symmetric matrix 5, ordered as follows
(A9 < A5 < [Aa(S)].
From 52 = ST8 = STATAS = RTR, we get \,(S)? = \(5%) = X\, (RTR), thus
2i(9) = sign(M(S)) VA (RTR)

with +/A(RTR) > 0 since R is invertible. Therefore, the objective function computed for A
satisfying (9) is

K -2 ngn M(RTR)

and it attains its minimum exactly When all eigenvalues of S are positive, i.e., when S is positive
definite. O



Bond lengths normalized distribution functions for the gas phase in acrolein

1 T T T T
MD ——
AIMD
WS ——
0.8 - WS large basis set n
)
=
=
g 06 -1
[
©
=
|-
2 o4} -
)
(o)}
0.2 - -
0 L ] ! !
1. 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Figure S1. Normalized distribution functions (g(d)) of the O=C double bond length (d) from the
ensemble of geometries obtained for acrolein in the gas phase with distinct sampling schemes:
classical molecular dynamics (MD), ab initio molecular dynamics (AIMD), Wigner sampling with
the 6-31G basis set (WS) and Wigner sampling with the larger basis set 6-311G(2d,p) (WS large

basis set).
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Figure S2. Normalized distribution functions (g(d)) of the C-C single bond length (d) from the
ensemble of geometries obtained for acrolein in the gas phase with distinct sampling schemes:
classical molecular dynamics (MD), ab initio molecular dynamics (AIMD), Wigner sampling with
the 6-31G basis set (WS) and Wigner sampling with the larger basis set 6-311G(2d,p) (WS large

basis set).
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Figure S3. Normalized distribution functions (g(d)) of the C=C double bond length (d) from the
ensemble of geometries obtained for acrolein in the gas phase with distinct sampling schemes:
classical molecular dynamics (MD), ab initio molecular dynamics (AIMD), Wigner sampling with
the 6-31G basis set (WS) and Wigner sampling with the larger basis set 6-311G(2d,p) (WS large

basis set).



Absorption intensities of acrolein in the gas phase re-convoluted with 6 = 0.001
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Figure S4. Normalized absorption intensities of acrolein in the gas phase computed at the
CASPT2(6,5)/ANO-L-VTZP level of theory using distinct conformational sampling approaches,
classical molecular dynamics (MD), ab initio molecular dynamics (AIMD), and Wigner sampling
(WS). For WS, two basis sets are compared, 6-31G (WS 6-31G) and 6-311G(2d,p) (WS 6-
311G(2d,p)) and using a reduced phenomenological broadening of & = 0.001. The normalization

is performed for each set of sampling data.



Dihedral angles normalized distribution functions for the gas phase in acrolein
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Figure S5. Normalized distribution functions (g(t)) of the O=C-C=C dihedral angle (1), in
absolute value, from the ensemble of geometries obtained for acrolein in the gas phase with distinct
sampling schemes: classical molecular dynamics (MD), ab initio molecular dynamics (AIMD),
Wigner sampling with the 6-31G basis set (WS) and Wigner sampling with the larger basis set 6-

311G(2d,p) (WS large basis set).
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Radial distribution functions for water solution in acrolein
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Figure S6. Radial distribution function (g(r)) between the acrolein atoms and those of the water
solvent molecules for the 100 structures obtained in the 1 ns classical MD of Amber14 (blue line)
and the 100 geometries generated by inserting the Wigner geometries of the chromophore into 10
or 100 snapshots (red and green lines, respectively) from the 1 ns classical MD of Amber14 and

relaxing the system with 10 ps MD (see text).
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Bond lengths normalized distribution functions for the condensed phase in acrolein

1 T T T T
MD ——
QM/MM MD
WS+MD
0.8 —
)
c
5
.d 0.6 = =
[ -
®
z
| -
2 04} "
)
o
0.2 + -
0 ] ] |
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

d (A)
Figure S7. Normalized distribution functions (g(d)) of the O=C double bond length (d) from the
ensemble of geometries obtained for acrolein in water solution with distinct sampling schemes:
classical molecular dynamics (MD), quantum mechanics / molecular mechanics molecular
dynamics (QM/MM MD) and mixed Wigner sampling with the 6-31G basis set (chromophore)
and MD sampling for the solvent (WS+MD). Note that for the last approach the chromophore
geometries are the same for the two independent MD simulations carried out with Amber14 and

Materials Studio 2019.
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Figure S8. Normalized distribution functions (g(d)) of the C-C single bond length (d) from the
ensemble of geometries obtained for acrolein in water solution with distinct sampling schemes:
classical molecular dynamics (MD), quantum mechanics / molecular mechanics molecular
dynamics (QM/MM MD) and mixed Wigner sampling with the 6-31G basis set (chromophore)
and MD sampling for the solvent (WS+MD). Note that for the last approach the chromophore
geometries are the same for the two independent MD simulations carried out with Amber14 and

Materials Studio 2019.
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Figure S9. Normalized distribution functions (g(d)) of the C=C double bond length (d) from the
ensemble of geometries obtained for acrolein in water solution with distinct sampling schemes:
classical molecular dynamics (MD), quantum mechanics / molecular mechanics molecular
dynamics (QM/MM MD) and mixed Wigner sampling with the 6-31G basis set (chromophore)
and MD sampling for the solvent (WS+MD). Note that for the last approach the chromophore
geometries are the same for the two independent MD simulations carried out with Amber14 and

Materials Studio 2019.
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Absorption intensities of acrolein in the condensed phase re-convoluted with 6 = 0.001
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Figure S10. Normalized absorption intensities of acrolein in the gas phase computed at the
CASPT2(6,5)/ANO-L-VTZP level of theory using distinct conformational sampling approaches,
classical molecular dynamics (MD), quantum mechanics / molecular mechanics molecular
dynamics (QM/MM MD), and Wigner and molecular dynamics sampling for the chromophore and
solvent, respectively (WS+MD), and using a reduced phenomenological broadening of 6 = 0.001.
For WS+MD, two implementations are compared, Amber (WS+MD Amber) and Materials Studio

(WS+MD MatSt). The normalization is performed for each set of sampling data.
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Dihedral angles normalized distribution functions for the condensed phase in acrolein
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Figure S11. Normalized distribution functions (g(t)) of the O=C-C=C dihedral angle (t), in
absolute value, from the ensemble of geometries obtained for acrolein in water solution with
distinct sampling schemes: classical molecular dynamics (MD), quantum mechanics / molecular
mechanics molecular dynamics (QM/MM MD) and mixed Wigner sampling with the 6-31G basis
set (chromophore) and MD sampling for the solvent (WS+MD). Note that for the last approach

the chromophore geometries are the same for the two independent MD simulations carried out

with Amber14 and Materials Studio 2019.
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