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Section S1. Particle clustering algorithm 
In this section, we discuss the detailed procedure of background suppression through a particle clustering algorithm 

(Figure S2b). This algorithm is the second step in the hybrid object reconstruction algorithm. After the first step of 

object reconstruction through the pixel back projection, the reconstructed object could contain light from the focused 

object, and background from the defocused object, ghost object and system noise (e.g. stray light, camera readout 

noise). The particle clustering algorithm aims to pick out the focused object. This algorithm is suitable for sparse, 

discrete point objects distributed in a 3D space. The clustering algorithm contains two steps, and we illustrate it with 

an example in Figure S3. 

 

Step 1: Separate and cluster the reconstructed objects into isolated particle groups (Figure S3b). 

In this step, we aim to distinguish different particle groups that do not connect with each other, by a combined 

operation of thresholding and clustering.  

We first perform an intensity thresholding to remove the ghost object and system noise. The ghost object originates 

from the “fake” projections in the pixel back projection, due to the “one-to-many mapping” nature of microlens array. 

When the object is sparse, the ghost objects have a much smaller intensity than the correctly reconstructed object 

(including both focused and defocused). The same applies to the system noise. We can thus use a threshold to remove 

these two background components. The threshold is chosen based on the mean and standard deviation of all pixels’ 

intensity. This step essentially cleans up the background between the particle objects far from (or isolated from) each 

other. 

To distinguish the different particles groups, we perform clustering on the thresholded 3D volumetric data based 

on the pixel connectivity. From the graph perspective, each group has internal connections through overlapped focused 

and defocused light from particles that are close to each other within the group. No connection occurs between 

different groups.  

 

Step 2: Subdivide each clustered particle group into smaller particle clusters (Figure S3c-h).  

As each group could contain multiple particles, we aim to further divide them into individual smaller particle clusters. 

We note that the different particles within each group could have different intensity. The defocused light of the brighter 

particles may overlap with particles with weaker intensity. Thus, the clustered particle group could contain intensity 

peaks for the brighter particles, and intensity sub peaks from smaller particles. For each group, we can use thresholding 

to remove the low intensity light between the sub peaks and perform clustering again to separate them into smaller 

particle groups. This can be considered as a reiteration of step 1, but it is now performed for each group. We find a 

threshold setting as 5-20% of the peak intensity of each group (i.e. only keeping those voxels with intensity beyond 

this threshold) can typically yield desirable results. For each small cluster, we find the voxel that has peak intensity to 

represent the position of the particle in the 3D volume. 
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As a small threshold (e.g. 5%) may lead to clustering two close particles with high intensity into one and a large 

threshold (e.g. 20%) may remove particles with small intensity (Figure S3g), to maximize the number of clusters, we 

select multiple threshold (e.g. 5%, 10%, 15%, 20%). For each threshold, we perform the clustering (Figure S3c-g). 

We then unionize/superimpose the results together to achieve a final clustering result (Figure S3h).  

 

 
Section S2. Generation of training data for convolutional neural network 
The second approach of background suppression is through a U-net based convolutional neural network (Figure S2c). 

This method is suitable for 3D objects consisting of continuously connected features. To train the neural network, we 

generated artificial datasets using polygons. In each dataset, we generated polygons with random intensity and at 

random positions across 10 slices in an imaging stack. Each slice contains in-focus polygons and out-of-focus light 

from polygons at other slices, with a 5% additive noise. The out-of-focus light is modeled by a Gaussian blur process 

of polygons at other slices. The Gaussian blur kernel expands spatially with reduced weight when the slices are further 

away. The advantage of using Gaussian blur process is its low computational cost, so the training dataset can be 

generated fast. 

We validated the Gaussian blur process can indeed model the defocused objects. As the pixel back projection 

correctly models the physical process, we compared the intensity profile of the defocused light artificially generated 

by Gaussian blur process with that from pixel back projection of a snowflake object (Figure S4). The two sets of 

intensity profiles, and their depth dependent mean intensity, agree well with each other across all defocused distances 

(Figure S4b-c).  
 

 

Section S3. Derivation of the depth of field 
To calculate the depth of field of a single lens unit, we define the circle of confusion at the image space, and then 

project it into the object space with thin lens equation [1].  

    Given the diameter of the circle of confusion 𝑐, lens unit diameter 𝐷, lens focal length 𝑓, object distance 𝑧 and 

image distance 𝑣, and following the properties of similar triangles in Figure S6, we have 
𝑣𝑁 − 𝑣

𝑣𝑁
=

𝑐

𝐷
                                                                            (𝑆1) 

The thin lens equation expresses as, 
1

𝑧
+

1

𝑣
=

1

𝑓
                                                                              (𝑆2) 

1

𝑧𝑁
+

1

𝑣𝑁
=

1

𝑓
                                                                           (𝑆3) 

Expressing 𝑣𝑁 using 𝑣 in Equation S1, we have  

𝑣𝑁 =
𝐷𝑣

𝐷 − 𝑐
                                                                            (𝑆4) 

Substituting 𝑣𝑁 into Equation S3, we get expression of 𝑧𝑁 as 

𝑧𝑁 =
𝑓𝐷𝑣

𝐷𝑣 − 𝑓𝐷 + 𝑓𝑐
                                                                   (𝑆5) 

Expressing 𝑣 by Equation S2, we have 

𝑣 =
𝑓𝑧

𝑧 − 𝑓
                                                                            (𝑆6) 

Thus, the distance of the nearest scene in good focus is 

𝑧𝑁 =
𝑓𝐷

𝑓𝑧
𝑧 − 𝑓

𝐷
𝑓𝑧

𝑧 − 𝑓
− 𝑓𝐷 + 𝑓𝑐

=
𝑓2𝐷𝑧

𝑓2𝐷 + 𝑧𝑓𝑐 − 𝑓2𝑐
=

𝑓2𝑧

𝑓2 + 𝑧 𝐹#𝑐 − 𝑓 𝐹#𝑐
                   (𝑆7) 

where we replace 𝑓/𝐷 with the lens F-number 𝐹#. 

Similarly, for distance of the furthest scene in good focus, we have the following from similar triangles, 
𝑣 − 𝑣𝐹

𝑣𝐹
=

𝑐

𝐷
, 𝑣𝐹 =

𝐷𝑣

𝐷 + 𝑐
                                                             (𝑆8) 

Applying the thin lens equation, we get 
1

𝑧𝐹
+

1

𝑣𝐹
=

1

𝑓
                                                                       (𝑆9) 
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𝑧𝐹 =
𝑓𝐷𝑣

𝐷𝑣 + 𝑓𝐷 − 𝑓𝑐
                                                               (𝑆10) 

Substituting Equation S8 leads to, 

𝑧𝐹 =
𝑓𝐷

𝑓𝑧
𝑧 − 𝑓

𝐷
𝑓𝑧

𝑧 − 𝑓
+ 𝑓𝐷 − 𝑓𝑐

=
𝑓2𝐷𝑧

𝑓2𝐷 − 𝑧𝑓𝑐 + 𝑓2𝑐
=

𝑓2𝑧

𝑓2 − 𝑧 𝐹#𝑐 + 𝑓 𝐹#𝑐
                (𝑆11) 

The depth of field can thus be expressed as  

𝐷𝑂𝐹 = 𝑧𝐹 − 𝑧𝑁 ≅
2𝐹#𝑐𝑧2𝑓2

(𝑓4 − 𝐹#
2𝑐2𝑧2)

                                                  (𝑆11) 

 

 

 

Section S4. Performance of the individual lens units 
The nominal diameter 𝐷 and the focal length 𝑓 of an individual lens unit is 2 mm and 4.65 mm respectively. We 

simulate the 3D PSF in OpticStudio (Figure S7a). The lateral span of the focusing spot increases from the post focus 

position to pre focus position, due to spherical aberration of the lens. This translates to an enlarged reconstruction 

profile, and thus a degraded image resolution when an object point moves closer to the microlens array (Figure S9).  

To evaluate the off-axis performance of the lens unit, we simulate the dependence of Strehl ratio (Figure S7b) and 

FWHM of the lateral PSF (Figure S7c) on the lateral displacement of a point object from the optical axis. Setting a 

Strehl ratio above half of its peak value, we determine that the diameter of the effective field of view of each lens unit 

is ~6 mm. 

 

 

Section S5. Comparison between hybrid reconstruction method (pixel back projection followed by 
background suppression) and iterative optimization algorithms at different data scale 
We compared the reconstruction quality and the required computation time of the hybrid reconstruction method (pixel 

back projection followed by background suppression) and two representative global optimization solvers: ADMM 

and Richard-Lucy (R-L) deconvolution. Here, we used a convolutional forward model to project objects (either 

featureless objects containing discrete, isolated point sources or objects with continuous features) onto an image. The 

PSF was set to be sparse random points distributed across the image plane to mimic the random microlens array 

imaging scenario. While we chose a spatial invariant PSF here for simplicity, we note that similar conclusion can be 

reached in the spatial variant PSF case as the reconstruction algorithms follow the same principles.   

We performed the comparison for two classes of objects: featureless objects containing discrete, isolated point 

sources on a 2D plane (using particle clustering as background suppression algorithm), and 3D objects with continuous 

features (using convolutional neural network as background suppression algorithm). For each class of objects, we 

varied the data scale by controlling the pixel-voxel pairs, i.e. the pixel numbers in the measured image and the voxel 

number to be reconstructed in the object space. Across different data scale of pixel-voxel pair numbers, we kept the 

same pixel-voxel ratio. For the featureless objects containing discrete, isolated point sources on a 2D plane, the 

reconstructed objects are shown in Figure S11 with the ground truth for reference. For the 3D objects with continuous 

features, the reconstructed objects are shown in Figure S12 with the ground truth for reference. The results on the 

computation time and metrics of reconstruction quality are shown in Figure 7 in the main text.  
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Table S1 
 

Device Effective 

sensor 

pixels 

Lateral 

res. 

Axial 

res. 

Demonstrated 

field of view 

Depth of 

field 

Working 

distance 

Reported 

/Derived 

maximum 

number of 

resolvable 

points 

Object 

reconstruction 

time for max. 

resolvable points 

Max. 

pixel-

voxel 

pair 

counts 

FlatScope 

[2] 
1300
× 1000 

~2𝜇𝑚 ~15𝜇𝑚 2.25
× 2.8 𝑚𝑚2 

210𝜇𝑚 < 1 𝑚𝑚 2.2 × 107 15 min. 

NVIDIA Tesla 

GK210 GPU, 

MATLAB 

2.87
× 1013 

Diffuser-

Cam [3] 
1280
× 1080 

 

~60 𝜇𝑚 ~448 𝜇𝑚 > 10
× 10 𝑚𝑚2 

~8 𝑚𝑚 ~20 𝑚𝑚  5.3 × 108 26 min. 

Workstation/  

144-core CPU,  

85 GB RAM 

MATLAB  

7.4
× 1014 

Microlens 

diffuser [4] 
968
× 548 

~8 𝜇𝑚 ~50 𝜇𝑚 ~5.6
× 3.2 𝑚𝑚2 

1.5 𝑚𝑚 ~2 𝑚𝑚 8.4 × 106 
- 

4.46
× 1012 

MLA 

Mesoscope 

[5] 

2592
× 1944 

7 𝜇𝑚 200 𝜇𝑚 8 × 7 𝑚𝑚2 2.5 𝑚𝑚 ~12 𝑚𝑚 2.16 × 107 2.5 hr. 

Computing 

cluster/ 

8-core CPU, 

256 GB RAM 

MATLAB 

1.09
× 1014 

3D 

Miniscope 

[6] 

648
× 486 

2.76 

~3.9 𝜇𝑚 

15 𝜇𝑚 0.9
× 0.7 𝑚𝑚2 

0.39 𝑚𝑚 ~1.67 𝑚𝑚 
(through 

GRIN 

objective 

lens) 

2.15 × 106 8-24 min. 

NVIDIA RTX 

2080-Ti GPU, 

MATLAB 

7.72
× 1012 

GEOM-

Scope  

(this work) 

5120
× 5120 

40 𝜇𝑚 300 𝜇𝑚 ~23
× 23 𝑚𝑚2 

~5 𝑚𝑚 18~30 𝑚𝑚 5.5 × 106 30 sec. 

Desktop/CPU, 

<~50 MB RAM; 

18 sec. 

Workstation/  

16-core CPU,  

<~400 MB RAM 

MATLAB 

1.44
× 1014 

Table S1. Comparison of performance metrics between different lensless imagers. 

Note: 

1. The depth of field is specified/estimated as the range where the specified resolutions can be maintained. The 

actual depth of field can be larger at a tradeoff of degraded resolution.  

2. The maximum resolvable points are either reported value or derived value as the ratio of imaged volume and 3D 

resolution. 

3. The maximum pixel-voxel pair counts are calculated value from the product of effective sensor pixel number and 

reconstruction voxel number (either reported value or derived value as the ratio of imaged volume and 3D 

resolution).   
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Figure S1 

 

Figure S1. Modulation transfer function (MTF) of random microlens array and periodic microlens array. (a) 

Centroid positions of individual lens units of the random microlens array with a total lens unit of 213. (b) Centroid 

positions of individual lens units of the periodic microlens array with a total lens unit of 196. (c) Normalized MTF of 

the random microlens array and periodic microlens array.   
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Figure S2 

 

 

Figure S2. Hybrid reconstruction algorithm in GEOMScope. (a) Flow chart of hybrid reconstruction algorithm in 

GEOMScope. (b) Particle clustering algorithm, suitable for sparse featureless point objects. (c) Convolutional neural 

network, suitable for less sparse 3D objects with continuous features. Both the input and output of the neural network 

are 2D images at single depth. 
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Figure S3 

 
Figure S3. Demonstration of particle clustering algorithm. The data is part of the experimental data from Figure 5 

in the main text. (a) Fluorescent particles reconstruction through pixel back projection algorithm. (b) Results after step 

1 of particle clustering: the reconstructed objects are separated and clustered into isolated particle groups. (c-f) Results 

after step 2 of particle clustering: each clustered particle group is subdivided into smaller particle clusters. The particles 

are blurred intentionally for clearer visualization. Different thresholds are used in (c)-(f). (g) Maximum intensity 

projection view of the 3D volume in (a-f) at xy, xz and yz plane. (h) Maximum intensity projection view at xy, xz and 

yz plane and 3D view of the final reconstruction results. Scale bar: 1 mm in (a-h). We use different colorbars in (a-b), 

(c-f) and (g-h) for better visualization effect. 
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Figure S4 

 
Figure S4. Validation of Gaussian blur process to model the defocus light in the artificially generated training 

data. (a) Reconstructed 3D snowflake object at a certain depth, with feature of interest being selected in the box. (b) 

Mean intensity of the feature of interest reconstructed at 10 different depths by pixel back projection, and that from 

those generated by the Gaussian blur process of the in-focus reconstruction. (c) Intensity profile of the defocused light 

reconstructed by pixel back projection (top row) and that generated by the Gaussian blur process (bottom row). 
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Figure S5 

 

Figure S5. Evaluation of axial resolution. The axial resolution is evaluated as the minimum axial distance of two 

object point sources when their imaged spots are separated by a resolvable distance (i.e. lateral resolution 𝑟𝑥𝑦) on the 

camera sensor. 
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Figure S6 

 

 
Figure S6. Evaluation of depth of field (DOF). The depth of field is evaluated as the axial range in the object space 

when the object points on the two edges have an image size matching the defined confusion circle. 
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Figure S7 

 

Figure S7. Performance of the single lens unit in our microlens array design. (a) Cross section profile of the focal 

spot of a single lens unit, simulated by physical optics propagation. Scale bar: 100 µm. (b) Strehl ratio from ray tracing 

simulation. The dashed line indicates half of the peak Strehl ratio. (c) FWHM of the lateral PSF from ray tracing 

simulation. The dashed line indicates half of the sensor pixel size. 
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Figure S8 

 
Figure S8. Simulation on the 3D resolving power of GEOMScope. (a) The lateral spatial profile of the 

reconstruction of a single point object. Scale bar: 40 µm. (b) Line profile of the reconstructed single point object along 

the lateral (left) and axial (right) direction. (c) Simulated two-point lateral resolution: two object point sources laterally 

separated by 40 μm at z=20 mm can be resolved. Left, the spatial profile of the reconstructed object; right, line profile 

along the lateral direction of the reconstructed object. Scale bar: 40 µm. (d) Simulated two-point axial resolution: two 

object point sources axially separated by 300 μm at z=20 mm can be resolved. Left, the sub image from one lens unit, 

showing the two axially separated point sources are separated laterally in the sub image. Right, the reconstructed 

objects with its line profile along the axial direction. Scale bar: left, 10 μm; right, 100 μm.  
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Figure S9 

 

Figure S9. Experimental measurement of the reconstruction profile of a single object point versus object depth. 

(A) FWHM of the point reconstruction profile along lateral direction versus object depth. (B) FWHM of the point 

reconstruction profile along axial direction versus object depth. MLA, microlens array.  
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Figure S10 

 

Figure S10. (a) Microlens array mold (left) and the fabricated microlens array in a 3D printed mount to be attached 

to a camera (right). (b) Experimental setup. ND filter, neutral density filter; MLA, microlens array.  
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Figure S11 
 

 
 

Figure S11. Comparison of the reconstruction results (for featureless discrete / isolated point objects) using 

ADMM solver, Richard-Lucy (R-L) deconvolution, and pixel back projection with and without particle 

clustering, for different number of pixel-voxel pairs. 
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Figure S12 
 

 
Figure S12. (a) Comparison of the reconstruction results (for 3D objects with continuous features) using 

ADMM solver, Richard-Lucy (R-L) deconvolution, and pixel back projection with and without convolutional 

neural network, for pixel-voxel pairs of 𝟔. 𝟕𝟑 × 𝟏𝟎𝟔. 
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Figure S12 
 

 

Figure S12. (b) Comparison of the reconstruction results (for 3D objects with continuous features) using 

ADMM solver, Richard-Lucy (R-L) deconvolution, and pixel back projection with and without convolutional 

neural network, for pixel-voxel pairs of 𝟑. 𝟒𝟏 × 𝟏𝟎𝟕. 
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Figure S12 
 

 

Figure S12. (c) Comparison of the reconstruction results (for 3D objects with continuous features) using 

ADMM solver, Richard-Lucy (R-L) deconvolution, and pixel back projection with and without convolutional 

neural network, for pixel-voxel pairs of 𝟏. 𝟎𝟕 × 𝟏𝟎𝟖. 
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Figure S12 
 

 

Figure S12. (d) Comparison of the reconstruction results (for 3D objects with continuous features) using 

ADMM solver, Richard-Lucy (R-L) deconvolution, and pixel back projection with and without convolutional 

neural network, for pixel-voxel pairs of 𝟐. 𝟓𝟓 × 𝟏𝟎𝟖. 
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Figure S12 
 

 

Figure S12. (e) Comparison of the reconstruction results (for 3D objects with continuous features) using 

ADMM solver, Richard-Lucy (R-L) deconvolution, and pixel back projection with and without convolutional 

neural network, for pixel-voxel pairs of 𝟓. 𝟑𝟑 × 𝟏𝟎𝟖. 
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Figure S12 

 

Figure S12. (f) Comparison of the reconstruction results (for 3D objects with continuous features) using ADMM 

solver, Richard-Lucy (R-L) deconvolution, and pixel back projection with and without convolutional neural 

network, for pixel-voxel pairs of 𝟗. 𝟖𝟎 × 𝟏𝟎𝟖. 
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