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SUMMARY
The mortality risk of coronavirus disease 2019 (COVID-19) patients has been linked to the cytokine storm
caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Understanding the inflammatory
responses shared between COVID-19 and other infectious diseases that feature cytokine storms may there-
fore help in developing improved therapeutic strategies. Here, we use integrative analysis of single-cell tran-
scriptomes to characterize the inflammatory signatures of peripheral blood mononuclear cells from patients
with COVID-19, sepsis, and HIV infection. We identify ten hyperinflammatory cell subtypes in which mono-
cytes are the main contributors to the transcriptional differences in these infections. Monocytes from
COVID-19 patients share hyperinflammatory signatures with HIV infection and immunosuppressive signa-
tures with sepsis. Finally, we construct a ‘‘three-stage’’ model of heterogeneity among COVID-19 patients,
related to the hyperinflammatory and immunosuppressive signatures in monocytes. Our study thus reveals
cellular and molecular insights about inflammatory responses to SARS-CoV-2 infection and provides thera-
peutic guidance to improve treatments for subsets of COVID-19 patients.
INTRODUCTION

Currently, coronavirus disease 2019 (COVID-19), caused by se-

vere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is

still threatening public health in more than 200 countries. As of

December 1, 2020, over 61.8 million people have been infected

and more than 1.4 million deaths have been reported globally by

the World Health Organization (WHO). Studies have shown that

the elevated expression of proinflammatory cytokines, also

known as a ‘‘cytokine storm,’’ is one of the main causes of death

in COVID-19 (Del Valle et al., 2020; Giamarellos-Bourboulis et al.,

2020; Pedersen and Ho, 2020; Zhou et al., 2020). Elevated levels

of IL-10 and of proinflammatory cytokines, including interleukin

(IL)-6, IL-1, and tumor necrosis factor (TNF)-a, have been asso-

ciated with severe cases of COVID-19 (Chen et al., 2020; Huang

et al., 2020; Mathew et al., 2020). Further studies have demon-

strated that a subpopulation of monocytes with inflammatory

states in the peripheral blood is a major source of these cyto-
This is an open access article und
kines in severe COVID-19 patients (Guo et al., 2020; Ren et al.,

2021).

Inflammation is closely related to the disease progression of

infectious diseases (Hotchkiss et al., 2013b; Tay et al., 2020;

Tien et al., 2010; Zhu et al., 2020). For example, during the period

of acute HIV infection, a large number of cytokines and chemo-

kines, such as interferon (IFN)-a, IFN-g, IL-6, IL-10, TNF-a, and

MCP-1, are induced, and their expressionmay enhance the early

replication of the virus (Freeman et al., 2016; Muema et al., 2020;

Stacey et al., 2009; Teigler et al., 2018). A recent study using sin-

gle-cell RNA sequencing (RNA-seq) technology revealed the

gene modules (GMs) that vary with time and cell subtypes after

HIV infection, such as the inflammation-related modules driven

by IL1B, TNF, and OSM (Kazer et al., 2020). Cytokine storms

are one of the key mechanisms of lethality in COVID-19 (Hu

et al., 2021).

Sepsis is a disease syndrome with high mortality; a compre-

hensive report estimated that sepsis is associated with one in
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Figure 1. Single-cell transcriptional landscape of COVID-19, sepsis, and HIV infection

(A) A schematic outline depicting the workflow for data collection from published literature and subsequent integrated analysis. Numbers indicate the number of

samples of different cohorts (COVID-19, sepsis, HIV infection) and the number of single-cell transcriptomes analyzed.

(B) Top, uniform manifold approximation and projection (UMAP) embeddings of integrated single-cell transcriptomes of COVID-19, sepsis, HIV infection, and

healthy donors’ (HDs’) samples. Cells are colored by cell subtypes, and dashed circles indicate the major cell types. Bottom, UMAP embeddings of different

datasets illustrating no obvious batch effect in this integrated atlas.

(legend continued on next page)
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five deaths worldwide (Rudd et al., 2020). Sepsis-induced sys-

temic immune response disorder and dysregulated cytokine

production play key roles in the development of multiple organ

dysfunction (Bozza et al., 2007; Riedemann et al., 2003; Schulte

et al., 2013). Recently, a single-cell study reported a subset of

CD14+ monocytes (Reyes et al., 2020a) characteristic of sepsis.

These monocytes were similar to myeloid-derived suppressor

cells (MDSCs) and presented an immunosuppressive function

that is dependent on the levels of IL-6 and IL-10 in the plasma

(Reyes et al., 2020b). Importantly, the gene transcriptional signa-

ture of MDSC-like monocytes is also upregulated in severe

COVID-19 patients (Schulte-Schrepping et al., 2020; Silvin

et al., 2020). Integrative analysis enables the pooling of datasets

produced across diseases and conditions, which may facilitate

the discovery of cross-disease commonalities on a unified scale

(Stuart and Satija, 2019). We integrated COVID-19 and sepsis

peripheral bloodmononuclear cells (PBMCs) transcriptomic pro-

files to explore whether COVID-19 patients have similar immuno-

suppressive cellular modalities as sepsis patients.

Previous studies suggested that the inflammatory response of

COVID-19 patients was similar to that of sepsis and HIV infection

(Collora et al., 2021; Remy et al., 2020); however, it is not clear

which cell types may account for the commonalities of these re-

sponses. In addition, dysfunctions in the immune responses of

COVID-19 patients have been independently characterized (Su

et al., 2020; Wen et al., 2020; Wilk et al., 2020), and it is now clear

that patients with different disease statuses and genetic back-

grounds can have complex and varied molecular mechanisms

that are associated with severe symptoms (Arunachalam et al.,

2020; Pairo-Castineira et al., 2021; Su et al., 2020). There is still

much to learn about the heterogeneity in COVID-19 patients, and

investigations of dysregulated inflammatory responses in these

patients are likely to yield insights that can improve clinical out-

comes. Here, we conducted an integrative evaluation of a large-

scale single-cell transcriptome analysis of PBMCs from patients

with COVID-19, sepsis, and HIV infection. We identified the tran-

scriptome characteristics shared between COVID-19 and sepsis

or HIV infection. Our heterogeneity analysis revealed a ‘‘three-

stage’’ model of COVID-19 and the underlying molecular factors

and pathways, which provides potential guidance for precision

treatment of COVID-19 patients.

RESULTS

Integrated single-cell transcriptome atlas of PBMCs
from patients with COVID-19, sepsis, and HIV infection
To investigate the peripheral immune responses elicited by

different infectious diseases, we collected single-cell RNA-seq

datasets of PBMCs from patients with COVID-19 (Ren et al.,

2021), bacterial sepsis (Reyes et al., 2020a), and HIV-1 infection

(Kazer et al., 2020) (Figure 1A). Specifically, the COVID-19 single-

cell datasets were generated at multiple institutions and hospi-

tals (Ren et al., 2021) and included 67 samples taken from
(C) Violin plots of canonical markers (columns) for major cell types (rows).

(D) Dot plots of the proportion shifts of cell subtypes in COVID-19, sepsis

or depletion (blue), and the circle size indicates the values of log2(Diseas

megakaryocytes.
patients with an active disease (with severe disease, n = 48;

with moderate disease, n = 19), 85 samples of taken from pa-

tients during the convalescent phase (from severe disease,

n = 36; from moderate disease, n = 49), and healthy donors

(n = 20). The patients with sepsis included two independent co-

horts with five clinical entities, namely, urinary tract infection

(UTI) with leukocytosis (Leuk-UTI, n = 10), UTI with mild or tran-

sient organ dysfunction (Int-URO, n = 7), UTI with clear or persis-

tent organ dysfunction (URO, n = 10), and Bac-SEP (n = 4),

indicating those in hospital wards or intensive care units (ICU-

SEPs, n = 8) (Reyes et al., 2020a). Likewise, the HIV transcrip-

tome dataset was composed of 28 historical HIV samples from

4 patients sampled at multiple time points: 0 weeks, 1 week,

2 weeks, 3 weeks, 4 weeks, 6 months, and 1 year after the first

detectable viremia (Kazer et al., 2020) (Figure 1A; Table S1).

After removing cell doublets using Scrublet (Wolock et al.,

2019) and filtering out low-quality cells, we applied Harmony

(Korsunsky et al., 2019) to integrate the single-cell RNA-seq da-

tasets from patients with COVID-19, sepsis, and HIV infection,

analyzing a total of 1,080,252 single-cell transcriptomes. We

then normalized the gene expressionmatrix and performed clus-

tering analysis, which identified 28 cell clusters, and visualized

the clusters using uniform manifold approximation and projec-

tion (UMAP). Cell types including T cells, natural killer (NK) cells,

B cells, myeloid cells (monocytes, dendritic cells [DCs], neutro-

phils, and megakaryocytes), and MKI67+ proliferative lympho-

cytes were identified (Figures 1B, 1C, and S1A).

To further investigate the composition of cell subtypes of

different lineages, we performed subclustering separately for

the major immune cell types (B cells, NK cells, T cells, and

myeloid cells) and identified 4 B cell clusters, 3 NK cell clusters,

11 myeloid cell clusters, and 9 T cell clusters based on known

markers and differentially expressed genes (DEGs) (Figures 1B

and S1B). In addition, we confirmed that the cells of each cluster

showed remarkable consistency in cell identity with those previ-

ously annotated in the literature (Kazer et al., 2020; Ren et al.,

2021; Reyes et al., 2020a) (Figure S1C), indicating that we ob-

tained a reliable single-cell transcriptome atlas of PBMCs from

patients with COVID-19, sepsis, and HIV infection.

We then investigated the divergence in the proportions of

various cell types in these patients. The percentages of plasma

cells and classical monocytes (CD14+ CD16– monocytes) were

increased, while those of CD4+ T cells, CD8+ T cells, andNK cells

were decreased, in COVID-19 patients relative to controls and

particularly in patients in the severe onset state, which was

consistent with previous reports (Schulte-Schrepping et al.,

2020; Wen et al., 2020). The same trends in cell percentages

were detected for the HIV infection and sepsis samples (Figures

1D and S2). Notably, nonclassical monocytes (CD14– CD16+

monocytes, Mono-CD16) and DCs were reduced in COVID-19

patients with severe onset status but increased in patients with

sepsis and HIV infection (Figures 1D and S2). In contrast, the

proportion of megakaryocytes, which was increased in the
, and HIV, compared to HDs. The circle color indicates enrichment (red)

e/HD). Mono, monocytes; DCs, dendritic cells; Neu, neutrophils; Mega,
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COVID-19 patients with severe onset status, was decreased in

the patients with sepsis and HIV infection (Figures 1D and S2).

Hyperinflammatory cell subtypes in patients with
COVID-19, sepsis, and HIV infection
To characterize the inflammatory responses of patients with

these 3 infectious diseases, we defined an inflammatory score

for each cell according to its expression of literature-supported

cytokines and a set of inflammatory response-related genes

(Table S2). A total of 10 cell subtypes were defined as hyperin-

flammatory cells (see Method details for details), including 5

monocyte subtypes, 3 T cell subtypes, 1 neutrophil subtype,

and 1 megakaryocyte subtype (Figures 2A and S3A). UMAP

analysis showed that the inflammatory score was obviously

elevated in monocytes of COVID-19 and HIV patients compared

to healthy donors, excepting a small proportion of neutrophils

(Figure 2B). In contrast, little change in inflammatory score was

observed in the sepsis samples (Figure 2B).

This analysis supports that monocytes may be a major source

of cytokine storms, as reported in previous studies (Guo et al.,

2020; Zhou et al., 2020). Consistently, canonical proinflamma-

tory cytokines were highly expressed in monocytes of patients

compared to other cell subtypes (Figure 2C). IL1B and IL6

showed the highest expression levels in HIV patients, followed

by COVID-19, with the lowest levels in sepsis patients. To

further explore inflammatory responses, we conducted unsu-

pervised hierarchical clustering by applying relative gene

expression changes against the healthy donors in these hyper-

inflammatory cell subtypes (Figure 2D; see Method details for

details). The hyperinflammatory cell subtypes were clustered

together according to disease, rather than cell type (Figures

2D and S3B), findings similar to the results of an integrated anal-

ysis of COVID-19 and influenza infection patients (Lee et al.,

2020).

We also used Gene Ontology (GO) analysis to investigate

disease-specific and shared biological pathways among the 3

diseases (see Method details for details). The top 10 biological

pathways most enriched in the DEGs of each group are shown

(Figure 2E). Cytokine and chemokine receptor genes (i.e.,

CXCR4, TRAF1, IFNGR1) and nuclear transcription factors (TFs;

i.e., NFKB1, RUNX1, XBP1) were specifically upregulated in

COVID-19. Leukemia inhibitory factor (LIF) is known to play an

important role in cytokine storms in the lungs during pneumonia

(Foronjy et al., 2014; Quinton et al., 2012), and we found that the

response to the LIF pathway was specifically enriched in PBMCs

in COVID-19 patients. STAT1, IFI30, and class I HLA genes were

specifically upregulated in HIV infection. Genes encoding ubiqui-
Figure 2. Characterization of inflammation signatures in COVID-19, se

(A) UMAP embeddings of cells colored by ten hyperinflammatory cell subtypes.

(B) The bar plots representing the inflammatory score of each hyperinflammatory c

(bottom) in the COVID-19, sepsis, HIV infection, and HD groups. Error bars in th

(C) UMAP embeddings showing the gene expression of TNF, IL6, and IL1B in th

(D) Unsupervised hierarchical clustering of the Pearson correlation coefficients (P

subtypes in the COVID-19, sepsis, and HIV infection. Color bars indicate the sub

(E) Heatmaps of the upregulated (left) and downregulated (right) biological pathw

(F) Heatmap of relative normalized gene expression of the enriched genemodules

the disease groups and subtypes (left, see legend for key). Top, a WGCNA dend

Mega, megakaryocytes.
none oxidoreductase subunits were specifically upregulated in

sepsis. In addition, ISG15, ISG20, IFI6, IL1B, and TNF, genes

that are involved in the defense response to viruses and the type

I IFN signaling pathway, were upregulated in both COVID-19

and HIV infection. SLC25A5, CDKN2D, and ZNF385A, which are

involved in the regulation of apoptotic signaling, were downregu-

lated in both COVID-19 and HIV infection, suggesting viral infec-

tion-induced apoptosis of PBMCs (Cao and Li, 2020; Selliah and

Finkel, 2001; Zhang et al., 2020b). Both the downregulated and

upregulated gene sets in both COVID-19 and sepsis were en-

riched in antigen processing and presentation genes (e.g., HLA-

DRA and CD74), indicating varied alterations in different types of

antigen-presenting cells (APCs).

We conducted weighted gene correlation network analysis

(WGCNA) to further identify the contribution of each cell type

to each disease at the molecular level and identified four GMs

(Figure 2F; Table S3). We found that T cell subtypes shared a

common GM (GM2) (Figure 2F). CCL5, CSF1R, S100A8, and

IFITM3 were modularized in T cell subtypes of all 3 diseases

(GM2, Figure 2F) and were involved in T cell proliferation and

various cytokine-mediated cell pathways (Figure S3C). Interest-

ingly, we found 3 disease-specific GMs (GM1, GM3, and GM4),

all of which showed that the greatest portion of variation

compared to healthy donors were concentrated in the inflamma-

tory monocyte subtypes (Figures 2F and S3D). Specifically, in

the COVID-19 group, TNFSF13B, IRAK2 and APP, which func-

tion in cytokine-mediated signaling and platelet degranulation,

were modularized in monocytes (GM1; Figure 2F). In the sepsis

group,GRN, SRP14, andCSTB, which are involved in mitochon-

drial ATP synthesis and oxidative phosphorylation, were modu-

larized inmonocytes (GM4, Figure 2F). In the HIV infection group,

ISG15, IFI30, IFI6, IFIT1, JAK2, and STAT1, which have functions

related to the IFN response and viral genome replication, were

modularized in monocytes (GM3; Figure 2F).

These results imply that monocytes are the cell type respon-

sible for the greatest portion of the differences in immune re-

sponses among these diseases, while T cells may play a

common role in host responses to all of these infections. We

also observed consistent patterns of cytokine gene expression

in these diseases. In monocytes, TNFSF13, PDGFA, and

TNFSF13B were highly expressed in COVID-19. FTH1, IL18,

and S100A12 were highly expressed in sepsis. OSM, CCL4,

TNF, CXCL3, and IL1RN were highly expressed in HIV infection

(Figure S3E; see Method details for details). Thus, distinct cyto-

kines are secreted bymonocytes in response to these infections,

which may serve as hallmarks of these infectious diseases. In to-

tal, we identified 10 hyperinflammatory cell subtypes, and the
psis, and HIV infection

ell subtype (top) and UMAP embeddings of cells colored by inflammatory score

e bar plots represent the 95% confidence intervals.

e PBMCs from COVID-19, sepsis, HIV infection, and HD groups.

CCs) of the relative normalized gene expression of ten hyperinflammatory cell

type and disease state (see legend for key).

ays in COVID-19, sepsis, and HIV infection patients versus HDs.

fromweighted gene correlation network analysis (WGCNA). Color bars indicate

rogram. Bottom, WGCNA gene modules. Mono, monocytes; Neu, neutrophils;
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differences in inflammatory responses among these 3 infections

was dominated by monocytes.

Distinct inflammatory signatures of monocytes in
patients with COVID-19, sepsis, and HIV infection
We identified 7 clusters of monocytes, namely, Mono-CD14-

CCL3, Mono-CD14-HLA, Mono-CD14-S100A8-RETN, Mono-

CD14-S100A8-CD163, Mono-CD14-IFITM3, Mono-CD14-

CD16, and Mono-CD16 (Figure 1B). To further dissect the

immune signatures in monocytes among COVID-19, sepsis,

and HIV patients, we conducted differential expression analysis

and GO enrichment analysis to identify the DEGs and biological

functions of these 7 monocyte subtypes. Notably, Mono-CD14-

IFITM3 andMono-CD14-CD16 are twomonocyte subtypes spe-

cific to COVID-19 patients (Figure 1D) that initiate IFN signaling in

response to infection (Figure S4A). Both Mono-CD14-HLA and

Mono-CD16 expressed high levels of MHC class II molecules

(HLA-DRA, HLA-DRB1, and HLA-DQB1, Figure 3A). However,

Mono-CD14-HLA was simultaneously enriched in three dis-

eases, whereas Mono-CD16 was enriched in sepsis and HIV

but depleted in COVID-19 patients (Figure 1D). We found that

the antigen processing and presentation pathways and cellular

response to IFN-g were enriched in Mono-CD14-HLA (Fig-

ure S4A). This suggested that the Mono-CD14-HLA subtype

apparently represents a ‘‘classical monocyte subtype’’ that is

normally activated in response to infection.

Mono-CD14-CCL3 is marked by high expression of the proin-

flammatory cytokines IL1B andCCL3, whichmay be reminiscent

of cytokine storm-correlatedmonocytes in COVID-19 (Guo et al.,

2020). Consistent with this conjecture, Mono-CD14-CCL3 is

significantly enriched in cytokine-mediated signaling pathways

(Figure S4A). We also found that the proportion of Mono-

CD14-CCL3 cells was significantly increased in COVID-19 and

HIV patients (Figure S4B). To uncover the potential immune fea-

tures of Mono-CD14-CCL3 across the three diseases, we per-

formed pairwise differential expression analysis in samples

from different states of COVID-19, sepsis, HIV, and healthy do-

nors. We characterized five disease-specific and cross-disease

gene signatures using k-means clustering in Mono-CD14-CCL3

cells (Figure 3B). DEGs in C2 (shared between COVID-19 and

HIV) included the proinflammatory cytokines TNF and IL1B and

chemokines CCL3 and CXCL3, which have been reported to
Figure 3. Monocytes in COVID-19 share distinct signatures with sepsi

(A) Heatmap of the gene expression of the differentially expressed genes (DEGs

clustering. Hyperinflammatory cell subtypes are marked in red.

(B and D) Heatmaps showing K-means clustering of relative normalized gene expr

like monocytes (B) and Mono-CD14-CCL3 monocytes (D) from the COVID-19, s

(C and E) Violin plots of selected inflammation-associated genes for Mono-CD14-

colored by median expression.

(F) PHATE dimensionality reduction of Mono-CD14-HLA, Mono-CD14-CCL3, M

COVID-19 patients (left) and pseudotime trajectories, indicating the potential tra

CCL3; Path2, Mono-CD14-HLA to MS1-like monocytes).

(G) PHATE dimensionality reduction showing Palantir-imputed gene expression o

ALOX5AP, and RETN).

(H and I) Line plots for gene expression trends of enriched transcription factors (TF

and Path2 (I).

In (E), (F), and (G), MS1-like monocytes including Mono-CD14-S100A8-RETN a

genes are shown on the right side.
be correlated with cytokine storms in COVID-19 patients (Guo

et al., 2020; Huang et al., 2020). Further GO analysis indicated

that the DEGs in C2 exhibited significant enrichment for cyto-

kine-mediated signaling pathways and type I IFN responses (Fig-

ure S4C). Although these results showed thatMono-CD14-CCL3

was associated with cytokine storms, inflammatory cytokines

were expressed differently in the 3 diseases (Figure 3C): the

sepsis samples did not show high levels of proinflammatory

cytokine, chemokine, or interferon-stimulated genes (ISGs)

expression compared to healthy donors. Thus, we identified

Mono-CD14-CCL3 as a specific monocyte state that may

contribute to cytokine storms in COVID-19 and HIV patients.

Mono-CD14-S100A8-CD163 and Mono-CD14-S100A8-RETN

were marked by ALOX5AP and RETN, genes which have been

linked to immunosuppressive MS1 monocytes in sepsis (Reyes

et al., 2020a). We found that Mono-CD14-S100A8-CD163 and

Mono-CD14-S100A8-RETN significantly expressed gene signa-

tures derived from MS1-like monocytes (Reyes et al., 2020a) and

presented low expression of MHC class II genes (Figure S4D),

which are considered to be anergic in sepsis (Venet et al., 2020).

Therefore, we defined Mono-CD14-S100A8-CD163 and Mono-

CD14-S100A8-RETN as MS1-like monocytes. Furthermore, we

found that the proportion of MS1-like monocytes was elevated in

COVID-19 and sepsis patients compared with healthy donors

(Figure S4E).

Similar to the pairwise differential expression analysis in

Mono-CD14-CCL3 cells, we obtained 6 gene signatures in

MS1-like monocytes (Figure 3D). DEGs in C3 were shared be-

tween COVID-19 and sepsis and showed high expression of

calprotectin-encoding genes (S100A8, S100A9), RETN, and

ALOX5AP. The DEGs in pattern C3 were enriched for functional

annotations related to neutrophil activation and enhanced mito-

chondrial respiratory complex biogenesis (Figure S4F). Studies

have shown that mitochondrial biogenesis is stimulated after

mitochondrial damage in order to promote the maintenance of

healthymitochondria (Kraft et al., 2019; Zhang et al., 2018). Mito-

chondrial malfunction occurs in patients with sepsis and is one of

the potential pathogeneses of sepsis-induced multiple organ

dysfunction (Kohoutová et al., 2018; Mantzarlis et al., 2017). Un-

expectedly, major histocompatibility complex (MHC) class II

genes were highly expressed in the MS1-like monocytes of pa-

tients with HIV infection (Figure 3E). These results suggest that
s and HIV infection

) (top 20) for each monocyte subtype, arranged by unsupervised hierarchical

ession of DEGs from the comparison between different states and HDs in MS1-

epsis, and HIV infection groups.

CCL3 subtypes (C) andMHC class II genes for MS1-like subtypes (E), which are

ono-CD14-S100A8-RETN, and Mono-CD14-S100A8-CD163 subtypes from

nsition of monocyte subtypes (right; Path1, Mono-CD14-HLA to Mono-CD14-

f Path 1marker genes (IL1B, IL6, and TNF) and Path 2marker genes (HLA-DRA,

s) and corresponding target genes with pseudotime trajectories along Path1 (H)

nd Mono-CD14-S100A8-CD163 subtypes; in (A), (B), and (C), representative
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Figure 4. Heterogeneity analysis of COVID-19 patients illustrates a ‘‘three-stage’’ model associated with inflammatory signatures in

monocytes

(A) A workflow schematic for the heterogeneity analysis of COVID-19 patients.

(B) UMAP embeddings of samples fromCOVID-19 patients, colored by cluster (top) and pseudostage (bottom). Pie plots within the top panel show the proportion

of sample states for each cluster.

(C) Illustration of the proportion analysis of the ten hyperinflammatory cell subtypes in COVID-19 patients. Top, heatmap of cell-type proportions for each hy-

perinflammatory cell subtype in COVID-19 patients. The color bar above the heatmap indicates different clusters. Middle, heatmaps of the ordered pseudostage

and corresponding inflammatory score in samples from COVID-19 patients. Bottom, boxplots of the cell proportion of each sample for these four subtypes (from

left to right: T-CD4-LTB-S100A4, Mono-CD14-S100A8-RETN, Mono-CD14-S100A8-CD163, Mono-CD14-CCL3) from the indicated clusters (cluster 1, n = 93;

cluster 2, n = 37; cluster 3, n = 27).

(legend continued on next page)
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the immunosuppression of MS1-like monocytes is a character-

istic that may be shared between COVID-19 and sepsis patients.

SARS-CoV-2 infection can result in abnormal differentiation of

the myeloid compartment, such as sustained production of

circulating cytokines (e.g., IL-6, TNF-a) and functional abnormal-

ities caused by decreased expression of HLA-DR in monocytes

(Giamarellos-Bourboulis et al., 2020; Silvin et al., 2020). Schulte-

Schrepping et al. (2020) further described the dynamic

changes of monocyte phenotypes in longitudinal COVID-19

patients’ samples, including the dynamic shifts of inflammatory

(HLA-DRhigh) and immunosuppressive (HLA-DRlow) monocyte

subtypes. In the present study, we hypothesized that hyperin-

flammatory monocytes and immunosuppressive monocytes

may be derived from the abnormal activation of normally acti-

vated monocytes in response to SARS-CoV-2 infection. Pursu-

ing this, we conducted pseudotime analysis with Palantir (Setty

et al., 2019) (Figure 3F). The pseudotime ordering included two

lineages: Path 1 (from Mono-CD14-HLA to Mono-CD14-CCL3)

and Path 2 (from Mono-CD14-HLA to MS1-like monocytes),

along which different patterns of gene clusters were dynamically

downregulated and upregulated (Figure S5A). For example,

HLA-DRA, ALOX5AP, and RETN were obviously downregulated

with pseudotime along Path 2, indicating an immunosuppressive

state, whereas the proinflammatory cytokines IL6, IL1B, and TNF

were upregulated with pseudotime along Path 1, denoting a hy-

perinflammatory response (Figure 3G).

We next used SCENIC (Aibar et al., 2017) to predict the TFs

that may dynamically regulate the genes following Path 1 and

2 (Figure S5B). We observed that the gene expression of IL6

and ISG15 was upregulated in Path 1; simultaneously, their up-

stream TFs (FOS, JUN, ATF3, and IRF1) were significantly en-

riched by SCENIC and showed co-upregulated gene expression

(Figure 3H and S5B), in accordance with the enhancement of

cytokine-related pathways in Path 1 (Figure S5A). CIITA, a tran-

scriptional coactivator, has been reported as a key regulator of

all MHC class II genes (Greer et al., 2003). CIITA and its enriched

upstream regulators (ELF1, ETV6, BCLAF1) showed co-downre-

gulated expression, illustrating the dynamic loss of MHC class II

molecules with pseudotime along Path 2 (Figure 3I). Collectively,

these results support that monocytes in COVID-19 presented a

pathogenetic mechanism in response to SARS-CoV-2 infection

wherein the Mono-CD14-CCL3 subtype presented a hyperin-

flammatory state and MS1-like monocytes manifested immuno-

suppressive phenotypes.

Three distinct PBMC profiles in COVID-19 patients
correlate with inflammatory signatures in monocytes
COVID-19 patients at different disease states showed distinct

immune features. We took advantage of our broad set of
(D) Top, boxplots of the cell proportions of samples for each subtype (from left to

CD163) in different clusters (cluster 1, n = 8; cluster 2, n = 7; cluster 3, n = 21) from s

in different clusters from severe active patients.

(E) Diagram of biological pathways and genes enriched in samples of cluster 3 from

and edges of different pathways are indicated by different colors. The significan

represents fold change values in gene expression levels, p values were assesse

In (C) and (D), statistical significance was evaluated with Student’s t test. The box

1.5 3 IQR.
COVID-19 samples to investigate whether the 10 hyperinflam-

matory cell subtypes identified may informatively related to the

disease heterogeneity of the sampled COVID-19 patients. To

capture the co-variation in gene expression programs among

patients, we transformed the single-cell expression matrix into

a sample-level matrix and then utilized unsupervised analysis

to perform dimensionality reduction, clustering, and pseudo-

stage analysis (Figure 4A; see Method details for details). Our

basic working hypothesis was that the expression of inflamma-

tory signatures would somehow reflect the development of

COVID-19 disease, and we visualized the COVID-19 patient

samples into a trajectory. Each patient sample was reduced to

a single dot, and the dots were aligned (by the pseudo-stage)

within identified clusters.

We identified three clusters (cluster 1, cluster 2, and cluster 3)

of samples from individuals with different disease states along

the pseudo-stage and detected clear differences in the inflam-

matory responses of these clusters (Figure 4B). We then devel-

oped a ‘‘three-stage model’’ for understanding the state of

monocyte-mediated inflammatory responses in these different

groups of patients that is directly based on the subtype propor-

tions and DEGs of our data from cluster 1, cluster 2, and cluster

3. We found that the composition of different clusters presented

a diverse distribution (Figure 4B). Specifically, cluster 1 was

mainly composed of samples from healthy donors and convales-

cent patients, and cluster 2 contained most of the samples from

convalescent patients and a minority of samples from patients

with active disease, while cluster 3 was mainly the samples of

patients with severe active disease (Figure 4B). Notably, sam-

ples in cluster 3 were significantly enriched in inflammation-

related genes, such as IL1B, TNF, andCCL3 (Figure S6A). These

results indicated that peripheral inflammation is quite heteroge-

neous among COVID-19 patients.

Next, we analyzed the composition of immune cells in the

three clusters and found distinct enrichment of different cell sub-

types. The T-CD4-LTB-S100A4 subtype was enriched in cluster

1 samples; two MS1-like monocyte subtypes (Mono-CD14-

S100A8-CD163 and Mono-CD14-S100A8-RETN) were enriched

in cluster 2 samples, and megakaryocytes and Mono-CD14-

CCL3 were highly enriched in cluster 3 samples (Figure 4C).

These results suggested that the difference in inflammation

levels in patients may be caused by differential abundance of

certain immune cell subtypes. To further explore the relationship

between these immune cell subtypes and clusters of samples

from patients, we compared the expression of the identified

marker genes of these cell subtypes among samples from the

clusters 1–3. We found that samples from cluster 2 had the high-

est expression of MS1-like monocyte markers, while samples

from cluster 3 overexpressed markers of Mono-CD14-CCL3
right: Mono-CD14-CCL3, Mono-CD14-S100A8-RETN, Mono-CD14-S100A8-

evere active patients. Bottom, boxplots of the signature scores of each subtype

severe active patients. Network edges represent gene-pathway associations,

ce of the pathways is indicated by circle size. The color bar (from blue to red)

d by clusterProfiler’s built-in function ‘‘enrichGO’’ with default parameters.

plots show the mean and interquartile range (IQR), with whiskers extending to
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(Figure S6B). These findings indicated that the clusters of

COVID-19 samples represent 3 informative stages (three-stage)

reflecting distinct monocyte inflammatory signatures.

To further probe the heterogeneity of the inflammatory

response in patients with severe active disease, we first

compared the cellular composition and expression of inflamma-

tory markers in Mono-CD14-CCL3 and MS1-like monocytes of

samples from three clusters. We found that cluster 3 had the

highest inflammatory level and the highest proportion of the

Mono-CD14-CCL3 subtype. In contrast, the proportion and

expression of the signatures of two MS1-like subtypes (Mono-

CD14-S100A8-CD163 and Mono-CD14-S100A8-RETN) were

elevated in samples from patients with severe active disease in

cluster 2. Cluster 1 showed no enrichment in the signatures or

proportions of these monocytes (Figure 4D).

We then performed DEG analysis and GO enrichment analysis

to reveal the molecular factors and pathways, which may help

differentiate clusters 1–3. We noticed enrichment for T cell func-

tional pathways associated with adaptive immune response to

infection were enriched in patients of cluster 1 patients, sepsis-

associated terms including complement and coagulation cas-

cades were activated in cluster 2 patients, and inflammatory

genes and processes were overexpressed in severe patients

from cluster 3 (Figure S6C). In addition, IL6, IL1B, CCL3, and

other factors, which are involved in several inflammatory re-

sponses, were upregulated in patients from cluster 3 (Figure 4E),

suggesting inflammation. Genes associated with immunosup-

pression in sepsis, such as S100A8, S100A9, SLC30A1, IL18,

RETN, etc. (Gao et al., 2017; Reyes et al., 2020a), were highly ex-

pressed in patients from cluster 2 (Figure S6D). We further as-

sessed the expression level of cytokines in different pseudo-

stage clusters and found that CCL3, TNF, IL1B, and IL6 were

significantly increased in cluster 3 (Figure S6E). We also

confirmed the high expression levels of these cytokines in

plasma from matched patients in cluster 3 (Figure S6F). Indeed,

some of these profiled cytokines are currently being developed

for anti-COVID-19 clinical treatment worldwide (IL-6 receptor

blockade, chiCTR2000029765; IL-1 receptor antagonist, Clini-

calTrials.gov: NCT04594356).

Collectively, these results illustrate a ‘‘three-stage’’ heteroge-

neity of COVID-19 associated with inflammatory signatures in

monocytes, especially for those with severe active disease.

This information may help lead to a better understanding of the

mechanisms of cytokine storms in COVID-19 and may help

guide therapeutic choices COVID-19 patients in the clinic.

DISCUSSION

Most cases of SARS-CoV-2 infectionmanifest only mild disease,

but�10%–20% of cases progress into a severe state with acute

respiratory distress syndrome (ARDS) or severe pneumonia. A

previous study reported that 28% of fatal COVID-19 cases pre-

sented aggressive inflammation in which excessive pro-inflam-

matory cytokines were produced (Zhang et al., 2020a). In this

study, we collected single-cell transcriptome datasets from

several cohorts of patients with different inflammatory infectious

diseases (COVID-19, sepsis, andHIV infection). Through integra-

tive analysis, we uncovered the immune landscapes of these dis-
10 Cell Reports 37, 109793, October 5, 2021
eases and identified both common and distinct inflammatory

signatures. We conclude that inflammatory signatures were

generally upregulated in PBMCs from COVID-19 and HIV pa-

tients but displayed only minor changes in sepsis. Immune re-

sponses to different infections varied differently among different

PBMCs, especially in monocytes. Furthermore, we found a sub-

type of monocytes (Mono-CD14-CCL3) that may drive the hy-

perinflammatory response shared by patients with COVID-19

and HIV infection. Additionally, we identified another two sub-

types of monocytes (MS1-like monocytes: Mono-CD14-

S100A8-CD163 and Mono-CD14-S100A8-RETN) associated

with COVID-19 and sepsis, which might lead to immune sup-

pression. Thus, our integrative analysis of monocyte subpopula-

tions provided insights into the mechanism of pathogenesis in

COVID-19.

A recent study, which examined a cohort of seven COVID-19

patients (Wilk et al., 2020), reported that peripheral monocytes

do not express substantial amounts of pro-inflammatory cyto-

kines. In the present study, we detected that patients with

COVID-19 and HIV infection both show enrichment for a subset

of monocytes (‘‘Mono-CD14-CCL3’’) that express high levels of

inflammatory signatures, which may drive hyperinflammatory re-

sponses. Moreover, several studies (Chevrier et al., 2020; Zhou

et al., 2020) have confirmed at the protein level that circulating

monocytes highly express pro-inflammatory cytokines. Impor-

tantly, whenwe re-analyzed another large-scale COVID-19 data-

set (Stephenson et al., 2021), we again detected substantial

expression of pro-inflammatory cytokine genes (TNF, IL1B,

CCL3 etc.) by a subset of peripheral monocytes, lending support

to the idea that peripheral monocytes can apparently contribute

cytokine storms in COVID-19 (Figures S7A and S7B; seeMethod

details for details).

Recently, a mass-spectrometry-based study showed two

distinct stages of pathogenesis during COVID-19 disease pro-

gression (Tian et al., 2020), and extensive evidence points to a

key role for cytokine storms in severe COVID-19 (Del Valle

et al., 2020; Hu et al., 2021, Jose and Manuel, 2020; Kox et al.,

2020). Other studies have indicated that immune suppression

may also contribute to the development of this disease (Reyes

et al., 2020b; Tian et al., 2020). In the present study, we observed

a ‘‘three-stage’’ heterogeneity in our analyses of COVID-19 pa-

tients. In particular, patients in cluster 2 with severe COVID-19

showed high expression of MS1-like signatures associated

with immune suppression, patients in cluster 3 showed high

expression of inflammatory cytokines, and patients in cluster 1

showed enrichment for adaptive T cell immunity function

response to infection (Figure S7C). Intriguingly, COVID-19 pa-

tients in cluster 2 shared immunosuppressive phenotypes with

sepsis patients (Figure S7C). As treatments to elevate host im-

munity, IL-7, anti-PD-1, and thymosin alpha-1 have shown

promising results in trials for the sepsis indication (Hotchkiss

et al., 2013a; Payen et al., 2013), so these agents may aid the re-

covery of this group of COVID-19 patients. In contrast, COVID-

19 patients in cluster 3 had excessive inflammatory response

phenotypes that appeared similar to those of HIV patients

(including cytokine storm signatures, TNF, IL1RN, IL6, CCL3,

and IL1B) (Figure S7C). It is notable that immunosuppressive

agents such as tocilizumab (targeting the IL-6 receptor) have
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been reported to eliminate sustained inflammation in COVID-19

patients (Guaraldi et al., 2020; Stone et al., 2020). Our analysis

revealed that, in addition to IL-6, the IL1B, TNF, CCL3, and IL-

10 genes and their corresponding receptors could be potential

targets for COVID-19 patients with accompanying cytokine

storm. The most effective treatment for COVID-19 may depend

on whether the patient is in a hyperinflammatory or immunosup-

pressive state.

The large number of clinical samples included in our integrated

analysis allowed us to investigate the pathogenesis and hetero-

geneity of COVID-19 patients. However, the COVID-19 patients

analyzed in our study were all fromChina, and the HIV and sepsis

data included a few samples from patients with other ethnic

backgrounds. Therefore, our findings may be limited by the ge-

netic diversity of the included patients and by the number of pa-

tients with other infectious diseases. Heterogeneity analysis of

COVID-19 patients was performed based on single-cell tran-

scriptomes in PBMCs, but data from complementary technolo-

gies, such as single-cell proteomics, could help to verify and

extend our conclusions. Our work revealed the occurrence of

both hyperinflammation and immunosuppression in COVID-19

patients and revealed immunity-related trends in common with

two other infectious diseases, data which can help promote

drug development and individualized treatments for COVID-19

patients.
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Ren et al., 2021 Gene Expression Omnibus: GSE158055

Data files for single-cell RNA sequencing

from COVID-19 patients (raw data)

Ren et al., 2021 The Genome Sequence Archive (GSA), and

the access number is in the process

Data files for single-cell RNA sequencing

from sepsis patients (processed data)

Reyes et al., 2020a The Broad Institute Single Cell Portal:

SCP548

Data files for single-cell RNA sequencing

from HIV-1 infection patients (processed

data)

Kazer et al., 2020 The Broad Institute Single Cell Portal:

SCP256

Software and Algorithms

Harmony Korsunsky et al., 2019 https://github.com/immunogenomics/

harmony

Scrublet Wolock et al., 2019 https://github.com/swolock/scrublet

Scanpy Wolf et al., 2018 https://github.com/pachterlab/kb_python

Enricher Kuleshov et al., 2016 https://maayanlab.cloud/Enrichr/

PHATE Moon et al., 2019 https://github.com/KrishnaswamyLab/

PHATE

Palantir Setty et al., 2019 https://github.com/dpeerlab/Palantir

SCENIC Aibar et al., 2017 https://github.com/aertslab/SCENIC

scran Haghverdi et al., 2018 https://bioconductor.org/packages/

release/bioc/html/scran.html

Monocle3 Cao and Li, 2020 https://github.com/cole-trapnell-lab/

monocle3

custom analysis code This paper Zenodo: https://zenodo.org/record/

5498909
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Kun Qu

(qukun@ustc.edu.cn).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The published article includes all datasets generated or analyzed during this study. And the analysis codes supporting the current

study have been publicly deposited at Zenodo: https://zenodo.org/record/5498909. Any additional information required to reanalyze

the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Integrating the datasets and identifying the cell clusters
Before integrating the datasets collected from different pieces of literature and cohorts, a series of preprocessing steps were per-

formed. We first filtered out cells with fewer than 500 detected genes. We also removed potential doublets using Scrublet (Wolock

et al., 2019). We ran the typical Scrublet workflow to calculate the doublet scores and score threshold using the default parameters

except that expected_doublet_rate was set to 0.08. Then, we obtained the top 2000 most variable genes of each dataset after
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removing all the mitochondrial, ribosomal, and immunoglobulin genes. The top 2000 most frequently occurring genes were retained

for the integrated analysis. We ran Harmony (Korsunsky et al., 2019) with PCA embeddings (30 PCs) as input, using the default pa-

rameters (except setting theta = 1.5), to eliminate the batch effects among sixteen datasets (14 COVID-19 datasets, one HIV-1 infec-

tion dataset, and one bacterial sepsis dataset, the technical covariates). Subsequently, the Harmony embeddings were applied to

identify the clusters using scanpy (Wolf et al., 2018). In the first round of clustering, major cell types were identified by Louvain clus-

tering with resolution = 0.5, including T cells (CD4+ T, CD8+ T, gamma-delta T (gdT)), NK cells, MKI67+ lymphocytes, B cells, plasma

cells, monocytes (Mono), dendritic cells (DC), neutrophils (Neu), and megakaryocytes (Mega). In the second round of clustering,

T cells, B cells, plasma cells, mono cells, and DCs were further subclustered, with resolutions ranging from 0.1 to 0.8.

Characterization of hyperinflammatory cell subtypes
Similar to our last work (Ren et al., 2021), we downloaded a gene set termed ‘‘HALLMARK_INFLAMMATORY_RESPONSE’’ from

MSigDB (Liberzon et al., 2015) and a manually curated gene set of literature-supported cytokines in COVID-19, sepsis, and HIV

patients. (Table S2). The inflammatory score was calculated with the built-in function ‘‘scanpy.tl.score_genes’’ in Scanpy. We

performed the Mann-Whitney rank test (single-tailed, greater) for the scores of each pair of cell subtypes. Ten cell subtypes

(T-CD4-FOS, T-CD4-LTB-S100A4, T-CD8-SLC4A10, Mega, Mono-CD14-CCL3, Mono-CD14-HLA, Mono-CD14-S100A8-RETN,

Mono-CD14-S100A8-CD163, Mono-CD16, Neu) were defined as hyperinflammation-associated clusters with statistical significance

(P-value < 0.0001) in all three infectious diseases.

Differential expression analysis
To identify the DEGs in different clusters or disease states, we performed differential expression analysis using the built-in function

‘‘scanpy.tl.rank_genes_groups’’ in scnapy and then screened the DEGs with the following thresholds (exceptional cases are ex-

plained separately): fold change R 2, P-value % 0.01 and fraction of cells expressing the genes in both clusters > 10%. In Figures

3B and 3C, pairwise comparisons of HIV (hyperacute, acute), sepsis (cohort 1, cohort 2), COVID-19 (moderate, severe), and healthy

donors were performed for Mono-CD14-CCL3 and MS1-like monocytes, respectively. Then, we utilized the k-means clustering al-

gorithm to determine the relative average gene expression of DEGs to identify the gene signatures.

Enrichment analysis
Briefly, weperformedGOanalysis using Enrichr (Kuleshov et al., 2016). As proposed in a previous study (Lee et al., 2020), in Figure 2E,

the hyperinflammatory cell subtypes in COVID-19, sepsis, and HIV were separately compared to the same cell subtypes in healthy

donors. The DEGs of the hyperinflammatory cell subtypes in each disease were combined. Then, the ‘‘common up’’ or ‘‘common

down’’ gene sets at the disease level were defined by intersecting the upregulated or downregulated DEGs for COVID-19, sepsis,

and HIV. Figure S4A shows the top 100 DEGs of each monocyte subtype that were used for GO enrichment analysis.

Weighted correlation network analysis
We performed WGCNA (Langfelder and Horvath, 2008) using the relative average expression matrix of the hyperinflammatory cell

subtypes (The normalized gene expression values of the genes in COVID-19, sepsis, and HIV infection were divided by the values

in healthy donors and log2-transformed (pseudo-count = 1)). The genes included in thematrix were derived from the top 10 biological

pathway-related genes of each group in Figure 2E. We chose 10 as the soft thresholding power based on the criterion of

approximate scale-free topology and then constructed a signed topological overlap matrix (TOM). Next, we applied dynamic tree

cutting (minModuleSize = 25) to cluster the TOM and merged the close modules with default parameters, which resulted in eight

gene modules. We finally visualized these gene modules by unsupervised hierarchical clustering of relative normalized gene expres-

sion of hyperinflammatory cell subtypes.

Based on the WGCNA result, we further profiled the cytokine expression in COVID-19, sepsis, and HIV infection. Only those cy-

tokines which were expressed by at least 20% of cells in at least one cell subset were included in this analysis. Note that the total

number of neutrophils is only 5020, comprising 0.46% of all cells (1,080,252 cells) (N = 3046, 1918, 0, 56 cells in COVID-19, healthy

control, sepsis, and HIV samples, respectively). The total number of megakaryocytes is only 1,2767, consisting of 1.2% of all cells

(1,2168, 534, 34, 31 cells in COVID-19, healthy control, sepsis, and HIV samples, respectively). It bears emphasis that the cell

numbers for these subtypes is quite limited, and is extremely limited in the sepsis and HIV samples; these cell numbers are far

from enough to support downstream comparisons among these three infections with statistical power.

Trajectory inference of transition in monocytes
Dimensionality reduction was performed based onHarmony embeddings by using PHATE, a dimensionality-reductionmethod that is

capable of capturing both local and global structures (Moon et al., 2019). We conducted trajectory inference using Palantir (Setty

et al., 2019) with default parameters. We also obtained the MAGIC-imputed gene expression matrix in Palantir, which was further

used to determine the trends of gene expression. As implemented in Palantir, clustering of the gene expression trendswas generated

based on the Phenograph algorithm.
Cell Reports 37, 109793, October 5, 2021 e2



Article
ll

OPEN ACCESS
Gene regulatory network analysis
To explore the dynamics of regulon activity during the transition ofmonocytes, we applied the SCENIC (Aibar et al., 2017) algorithm to

these cells of two trajectory paths.We built a coexpression network to target TFswith the R packageGENIE3. DNAmotif analysis was

performed with RcisTarget, after which each cell was scored by AUCell.

Heterogeneity analysis of COVID-19 patients
We applied unbiased methods (Ren et al., 2021) to develop a workflow to uncover the heterogeneity of inflammation in COVID-19

patients. Since we identified ten hyperinflammatory cell subtypes that may contribute significantly to inflammatory heterogeneity,

our analysis focused on these cell subtypes. We first merged the cells by calculating the average gene expression for each sample

(samples with less than 1000 cells were filtered). Then, we calculated the variable genes in each dataset, counted the frequency of the

variable genes across datasets, and selected the top 2000 genes for downstream analysis. We further performed principal compo-

nent analysis (PCA) for dimensionality reduction and appliedmutual nearest neighbor (MNN) analyses to eliminate the potential batch

effects among datasets (Haghverdi et al., 2018). We utilized the Leiden clustering method to cluster samples of COVID-19 patients

and applied reversed graph embedding (RGE) to uncover the potential pseudostages to link the clusters of patients, which were orig-

inally proposed to unveil complicated trajectories in single cells (Qiu et al., 2017).

Label mapping analysis
We re-analyzed another recently published single-cell transcriptome of PBMCs from COVID-19 patients. We downloaded the h5ad

file with clustering annotation from https://www,covid19cellatlas.org/. we used the ingest function in scanpy (Wolf et al., 2018) to

project the cell annotations in this study to the unannotated data based on the PCA embeddings.

QUANTIFICATION AND STATISTICAL ANALYSIS

DEGs between conditions in this study were calculated with the Wilcoxon rank-sum test (two-tailed). In Figure S3A, significance was

evaluated by the Mann-Whitney rank test (single-tailed, greater). In Figure S4B, the Mann-Whitney rank test (single-tailed, greater

(left) or less (right)) was conducted to assess the significance of gene signatures. In Figure S4C, the Wilcoxon rank-sum test was uti-

lized to identify the significance of cell subtype proportion shifts among states in each cell type. For all boxplots in Figure 4 and Figure

S6, Student’s t test was applied to evaluate the significance of differences between conditions. In Figure S2, the significance of cell

type composition shifts between disease states and healthy donors was calculated by the Wilcoxon rank-sum test (two-tailed).
e3 Cell Reports 37, 109793, October 5, 2021
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Figure S1. Identification of subtypes of integrated atlas of PBMCs from COVID-19, sepsis, 

and HIV infection patients. Related to Figure 1. 

(A) UMAP projections showing cells from different diseases or healthy donors (Control, 

COVID-19, sepsis, HIV). (B) Violin plots of markers (columns) for subtypes (rows) in B cells, 

NK cells, myeloid cells, T cells. Violin plots are colored by subtypes.  (C) Jaccard similarities 

between the subtypes and cell-type annotations in original studies. Mono, monocytes. DC, 

dendritic cells. Neu, neutrophils. Mega, megakaryocytes. 



 



Figure S2. Compositional shifts of major subtypes of integrated atlas of PBMCs from 

COVID-19, sepsis, and HIV infection patients. Related to Figure 1. 

Box plots of the proportion of cell subtypes of samples in different states from COVID-19, 

HIV infection (left and middle panel) compared to healthy donors. Bar plots of the proportion 

of subtypes from sepsis cohort in different states (right) compared to healthy donors. Boxes 

and bars are colored according to disease states. Samples with less than 1000 cells were filtered 

out (control, n=20; COVID-19: moderate convalescent, n=48, severe convalescent, n=35, 

moderate onset, n=18, severe onset, n=38; HIV, 0 Weeks, n=3, 1 Week, n=2, 2 Weeks, n=4, 3 

Weeks, n=4, 4 Weeks, n=2, 6 Months, n=3, 1 Year, n=4). Statistical significance between 

disease states and healthy donors was evaluated with Wilcoxon rank-sum test (two-tailed). The 

mean and interquartile range (IQR), with whiskers extending to 1.5×IQR are shown in box 

plots. **** P < 0.0001, *** P < 0.001, ** P < 0.01, * P <0.05. 



 



Figure S3. Characterization of hyper-inflammatory cell subsets and inflammatory 

signatures. Related to Figure 2. 

(A) Boxplots of the inflammatory score of cell subtypes in COVID-19, sepsis, and HIV 

infection. Statistical significance was evaluated with Mann-Whitney rank tests for each subtype 

versus all the other subtypes. The mean and interquartile range (IQR), with whiskers extending 

to 1.5×IQR are shown in box plots. **** P-value < 0.0001. (B) Unsupervised hierarchical 

clustering of the pearson correlation coefficients on normalized gene expression of hyper-

inflammatory cell subsets in COVID-19, sepsis, and HIV infection. Color bars of the heatmap 

indicate the cell type and disease states (see legend for key). (C) Bar plots of representative 

biological pathways in gene modules (GM1, GM2, GM3, GM4) defined by WGCNA analysis. 

(D) Violin plot of module score (from left to right: GM1, GM3, GM4) among the 

hyperinflammatory cell subtypes in COVID-19, sepsis, HIV infection and healthy donors. (E) 

Unsupervised hierarchical clustering of normalized gene expression of cytokines for these 

three infectious diseases. Color bars on the left side indicate the cell subsets and disease states 

(see legend for key). In (A), (B), (E), Mono, monocytes. DC, dendritic cells. Neu, neutrophils. 

Mega, megakaryocytes. 



 

Figure S4. Functional characteristics of the monocyte subtypes. Related to Figure 3. 

(A) Heatmap of top 10 enriched biological pathways using top 100 DEGs of each monocyte 

subtype. The subtype in red color denote the hyper-inflammatory cell subsets in monocytes. 

(B, E) Box plots of the cell proportion of Mono-CD14-CCL3 (B) and MS1-like monocytes (E) 

of samples in different states from COVID-19, sepsis, and HIV infection. (C, F) Unsupervised 



hierarchical clustering showing biological pathways of gene clusters in Mono-CD14-CCL3 (C) 

and MS1-like monocytes (F). Filtering threshold: P-value < 0.01. (D) Box plots of the score of 

top 6 markers (RETN, CD63, ALOX5AP, SEC61G, TXN, and MT1X) of MS1 monocytes 

(left) and MHC II molecule score (right) in each monocyte subtype. Significance was evaluated 

with Mann-Whitney rank test (one-sided test, left: greater; right: less) for each subtype versus 

all the other subtypes. 

MS1-like monocytes include Mono-CD14-S100A8-RETN and Mono-CD14-S100A8-CD163 

subtypes. In (B) and (E), samples less than 1000 cells were removed before the cell proportion 

analysis (control, n=20; COVID-19, moderate onset, n=18, severe onset, n=38; HIV, acute, 

n=9, hyperacute, n=6). statistical significance was calculated by Kruskal-Wallis H-test. In (B), 

(D), (E), the mean and interquartile range (IQR), with whiskers extending to 1.5×IQR are 

shown in box plots. **** P < 0.0001, *** P < 0.001, ** P < 0.01, * P < 0.05. 



 

Figure S5. The dynamics of gene expression and regulators during the trajectory of 

monocytes. Related Figure 3. 

(A) Plots showing cluster results of expression trends of top 1000 variable genes in Path1 (left) 

and Path2 (right). Solid blue line, mean expression trend of the cluster; Grey line, expression 

trend of a specific gene; Dotted blues lines, standard deviation. Each cluster panel is annotated 

with enriched gene ontology terms. (B) Heatmaps of the area under the curve (AUC) scores of 

transcription factors (TFs) in Path1 (left) and Path2 (right), as estimated by SCENIC. Cells 

were ordered along with the continuous pseudotime of Path 1 and Path 2, which were divided 

into 50 bins uniformly for visualization. 



 

Figure S6. Differences of the three clusters in COVID-19 patients. Related to Figure 4. 



(A) Top, UMAP embedding of samples of COVID-19 patients colored by inflammatory score. 

Box plot within the top panel statistically shows the inflammatory score in three clusters. 

Bottom, box plots of gene expression levels of IL1B, IL6, CCL3, and TNF in three clusters. 

(B) Box plots of signature scores (top 100 marker genes) for each subtype (from left to right, 

Mono-CD14-CCL3, Mono-CD14-S100A8-RETN, and Mono-CD14-S100A8-CD163) in three 

clusters. (C) Unsupervised hierarchical clustering of top-10 ranking KEGG pathways enriched 

by cluster-specific DEGs, the color bar indicates the z-score of -log10(P-value). (D) The 

diagram of biological pathways and genes enriched in samples of cluster 1 (left) and cluster 2 

(right) from severe onset patients. Network edges represent gene-pathway associations, and 

edges of different pathways are indicated by different colors. The significance of the pathways 

was shown by circle size. The color bar from blue to red represents the fold change of gene 

expression level. P values were assessed by clusterProfiler’s built-in function “enrichGO” with 

default parameters. (E) Box plots of gene expression of CCL3, TNF, IL10, IL1B, and IL6 of 

samples in three clusters from severe onset patients. (F) Bar plots showing cytokine 

concentration in the plasma of IL1B, IL6, IL10, TNF, and CCL3 of eleven matched patients in 

cluster3. All points are shown and bars represent mean with standard error of the mean (SEM). 

In panel (A), (B), and (E), statistical significance was evaluated with Student t-test. The mean 

and interquartile range (IQR), with whiskers extending to 1.5×IQR are shown in box plots. 



 

Figure S7. Independent large cohort analysis and schematic for our “three-stage” model. 

Related to Figure 4. 

(A) UMAP embeddings of cell subtype annotations of the original study (Stephenson et al., 

2021) (left) and mapped annotations based on the cell subtype annotation of the present study 

(right, label mapping performed using the ingest utilities in scanpy). (B) UMAP embeddings 

of cells colored by gene expression of pro-inflammatory cytokines (TNF, IL6, IL1B, CCL3, 

CCL4 and CXCL2). (C) Schematic for our “three-stage” model of COVID-19 patients 

representing the differences of inflammatory responses. Patients in stage 1 showed enrichment 

of T-CD4-LTB-S100A4 subtype, which support adaptive immune response to infection. 

Patients in stage 2 showed enrichment of two MS1-like monocyte subtypes, appearing to share 

immunosuppressive phenotypes with sepsis patients. COVID-19 patients in stage 3 shared 



excessive inflammatory phenotypes (cytokine storm) with HIV patients. 
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