Supplementary methods

DXA measurement

The densitometer is operated by multiple radiology technicians. In CGMH, all technicians need to be

certified to operate the densitometer. The scans were analyzed following recommendations issued by the

Taiwan Radiological Society*® (amended from International Society for Clinical Densitometry, ISCD).*’ The

recommendation briefly: 1. All DXA technicians need to complete the ISCD training course (basic and

advanced) and operate at least 120 cases of DXA examination before the independent operation of DXA. 2.

All technicians need to obtain the SOP provided by the manufacturer and conduct BMD measurements

accordingly. 3. All DXA scanners need to have a detailed SOP at the examination site, which needs to be

updated regularly and reviewed by relevant professionals. 4. All DXA scanners need to comply with the

local radiation safety guideline. 5. Spine phantom BMD measurement is performed regularly to document

the stability of DXA performance over time. BMD values must be maintained within an error of £1.5%. A

monitoring plan is needed for a correction approach when the error has been exceeded. 6. All DXA

technicians need to establish a personal least significant change (LSC). The current recommendation is that

the personal LSC should be within 5.3% for the lumbar spine, 5.0% for the whole hip, and 6.9% for hip neck

BMD measurement.

Deep Adaptive Graph (DAG)

In DAG, the anatomical landmarks are formulated as a graph, G = (V,E, F), where the vertices V

represent the landmarks, the edges E represent the relationships between them, and the features F

encode visual patterns in the neighborhoods of the vertices. For a specific input image, the graph vertices

are first initialized in the image using the mean shape of the anatomy, and a neural network is used to



displace the vertices from the initial position to the target anatomy in the image. By formulating the
anatomical landmarks as a graph and modeling their displacements by the convolutional neural network—
graph convolutional network (GCN), DAG can effectively exploit the structural information and shape prior
to the anatomical landmarks. Therefore, DAG provides robust and accurate anatomical landmark detection

on both hip and spine radiographs.

The neural network consists of a convolutional neural network to encode the input image to produce graph
features F, and a GCN to process the graph to locate its vertices. Specifically, the GCN consists of two parts:
a global transformation GCN and multiple local refinement GCNs. The global transformation GCN produces

an affine transformation matrix, M, which brings the initial graph vertices closer to the target. The

transformed vertices are written as follows:

Equation (4): V! = {v;1} = {Mv;°},

where VO = {v;°} and V! = {v;1} denote the initial graph vertices before and after the estimated affine
transformation, respectively. The local refinement GCNs then iteratively estimate the displacements of the

graph vertices V1. In each iteration, the vertices are displaced as follows:

Equation (5): vi**1 = v;* + Ay}t

where Av;' is the displacement estimated by the local refinement GCN at the t-th step.

The training loss is calculated for both the global transformation GCN and the local refinement GCNs.
Because the goal of global transformation GCN is to locate the anatomy coarsely, the following margin loss

is used:
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where [u], = max(0,u); v;' and v; Denote the globally transformed and ground truth vertices,
respectively; and m is a hyperparameter representing a margin that aims to achieve high robustness for
coarse landmark detection and forgive small errors. To encourage the local refinement GCNs to learn a
precise localization, the L1 loss is directly applied to all vertices after the refinements, written as follows:

Equation (7): Ligca) = %Z |v;T — vy,
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where v;T denotes the vertices after the last local refinement GCN. The graph edge weights are treated as
learnable parameters, which are initialized randomly at the beginning of training and updated via back-
propagation during training.
Implementation details
Deep learning models were developed on a workstation with a single Intel Xeon E5-2650 v4 CPU @ 2.2
GHz, 128 GB RAM, and 4 NVIDIA TITAN V GPUs running Ubuntu 18.04 LTS. All code used in this study was
developed in Python v3.6, and deep learning models were implemented using PyTorch v1.3. Image
preprocessing was performed using the Python Imaging Library. ImageNet pre-trained weights were used
to initialize the backbone network VGG-16 block. The Adam optimizer was used to train the model for 200
epochs with a batch size of 8, a starting learning rate of 1e-4, and a weight decay of 1e-4. The learning rate
was reduced to 1e-5 after the first 100 training epochs. The following augmentations are performed during
training: 1) color jittering on both the brightness (+-0.2) and contrast (+-0.2). 2) random up-down and left-

right flipping, 3) random affine transformation (rotation +-30, shear +- 0.2, translation +- 25 pixels, scaling



+-10%). The trained model was evaluated on the validation set after each training epoch, and the model

with the highest validation correlation coefficient r-value was selected as the best model.



Supplementary Figure 1. Flowchart of the study population.
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Supplementary Figure 2 Comparison of the receiver-operator curve between FRAX-AI (Navy blue line) and

FRAX-NB tools (Maroon line) to classify high 10-year risk groups for (a) major fracture (>=20%) and (b) hip

fracture (>=3%)
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Supplementary Figure 3 Comparison of the precision-recall curve between FRAX-AI (Navy blue line) and

FRAX-NB tools (Maroon line) to classify high 10-year risk groups for (a) major fracture (>=20%) and (b) hip

fracture (>=3%)
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Supplementary Figure 4 The calibration plots for predicted-measured BMD. (a) 2060 pairs of predicted-

measured hip BMD (2060 patients) and (b) 11027 pairs of predicted-measured lumbar vertebral BMD (3346

patients). The DXA BMD was based on the measurement by the GE Lunar iDXA. Each point represents a

data pair of predicted and measure BMD. The points close to the diagonal line suggests good calibration.
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Supplementary Figure 5 Data flow chart for the real-world clinical test. (a) hip BMD predictions and (b)

spine BMD prediction. In this real-world test, we collected all patients receiving plain film for the hip and

lateral plain film of the lumbar spine during January—May 2021. These images were fed into our tool and

estimate the number (%) of images that can pass quality check, the distribution of predicted BMD, and the

categorization based on the threshold reported in table 4.
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Supplementary tables

Supplementary Table 1 Network performance across age and sex subsets

Discriminator

Hip osteoporosis

10-year risk of major

10-year risk of hip

Lumbar vertebral

y measures osteoporotic fracture fracture >=3% osteoporosis
>=20%
Hologic
AUROC/AUPR OR AUROC/AUPRC | OR AUROC/AUPRC | OR AUROC/AUPRC | OR
C (95% (95% (95% (95%

Cl) Cl) Cl) Cl)

Female 0.96/0.90 64.84 0.97/0.84 82.44 0.97/0.97 82.79 0.91/0.91 35.23
(52.23- (62.49— (67.15— (32.10-
80.48) 108.75) 102.07) 38.64)

Male 0.97/0.78 103.23 | NA* NA* 0.95/0.86 46.01 0.92/0.76 37.74
(55.98- (31.13- (30.55-
109.35 68.00) 46.63)
)

Age: <60 years | 0.98/0.78 106.99 | NA* NA* 0.98/0.80 205.33 | 0.92/0.81 43.23
(46.98— (74.08- (35.17-
243.69 569.14) 53.15)
)

Age: 60-74 0.97/0.86 95.75 0.98/0.82 154.61 | 0.95/0.89 42.37 0.91/0.89 36.09

years (63.59— (87.01- (31.43- (31.92-
144.19 274.73) 57.11) 40.82)
)

Age: 75-90 0.95/0.91 52.66 0.96 /0.84 69.22 0.97/0.97 59.93 0.91/0.92 31.93

years (41.18- (50.52— (46.56— (27.54-
67.34) 94.86) 77.12) 37.03)

* The number of patients with a 10-year risk of major osteoporotic fracture >=20% is less than 3.




Supplementary Table 2. Patient characteristics of the GE dataset for testing™*

Hip testing set

Spine testing set

Number 2060 3346

Female, n (%) 1554 (75.4) 2244 (67.1)
Mean age (sd), years 71.5(12.1) 64.8 (11.7)
Median time (IQR) between DXA and radiographs | 24 (6, 75) 28 (4, 95)

Mean BMI (sd), kg/m?" 23.7 (3.8) 24.5(3.7)

Mean BMD (sd) g/cm? ™" 0.689 (0.160) | 0.831(0.183)**
Median T-score (IQR) -1.5(-2.3,-0.6) | -1.5(-2.6, -0.3)**
Osteoporosis, n (%) 427(20.7) 975 (29.1)**

* Converted to the Hologic equivalent

** Calculated based on vertebrae with the lowest BMD.




Supplementary Table 3 BMD value conversion equations for GE Lunar to Hologic DXA scanners.

Measurement Site

Conversion Equation

Lumbar Spine

Hologic BMD=0.918 x Lunar BMD —0.038

Total Hip

Hologic BMD=0.971 x Lunar BMD —0.037




Supplementary Table 4. Summary of performance metrics of the predictive model for BMD* (GE DXA scanner)

Patient Number | Predicted vs. measured mean BMD (sd, | Correlation Linear regression | Calibration slop, | Bland-Altman bias
strata of ROIs g/cm?); p coefficient R2, RMSE CITL (g/cm?; sd)
The hip testing set (GE)*

Overall 2060 0.690 (0.151) vs. 0.689 (0.160); p=477 0.90 0.81,0.071 0.955, -0.001 -0.001 (0.071)
Female 1554 0.667 (0.143) vs. 0.670 (0.156); p<0.108 0.89 0.79,0.071 0.968, 0.003 0.003 (0.068)
Male 506 0.762 (0.152) vs. 0.749 (0.161); p<0.001 0.91 0.82, 0.068 0.957,-0.013 -0.013 (0.069)
40-59 years 358 0.811 (0.158) vs 0.803 (0.135); p=0.076 0.85 0.72,0.084 0.992, 0.008 0.008 (0.084)
60-74 years 685 0.726 (0.139) vs. 0.722 (0.147); p<0.03 0.91 0.82, 0.062 0.961, -0.005 -0.005 (0.062)
75-90 years 1017 0.626 (0.131) vs. 0.625 (0.137); p<0.001 0.86 0.74, 0.070 0.895, -0.002 -0.002 (0.072)
The spine testing set (GE)**

Overall 11027 0.899 (0.172) vs. 1.036 (0.196); p<0.001 0.89 0.79, 0.090 1.011, 0.015 0.015 (0.090)
Female 7404 0.859 (0.1164) vs. 0.867 (0.187); p<0.001 0.88 0.788, 0.089 1.005, 0.008 0.008 (0.089)
Male 3623 0.978 (0.159) vs. 1.007 (0.179); p<0.001 0.86 0.73, 0.093 0.964, 0.028 0.028 (0.093)
40-59 years 3884 0.970 (0.155) vs. 0.991 (0.175); p<0.001 0.88 0.78, 0.083 0.993, 0.022 0.022 (0.083)
60-74 years | 4598 0.878 (0.165) vs. 0.889 (0.188); p<0.001 0.88 0.77,0.091 1.001, 0.011 0.011 (0.091)
75-90 years | 2545 0.827 (0.168) vs. 0.838 (0.198); p<0.001 0.86 0.74,0.100 1.015, 0.010 0.010 (0.100)
L1 2476 0.807 (0.153) vs. 0.821 (0.169); p<0.001 0.86 0.74,0.085 0.946, 0.014 0.014 (0.085)
L2 3027 0.879 (0.164) vs. 0.887 (0.188); p<0.001 0.89 0.79, 0.087 1.020, 0.007 0.007 (0.087)
L3 2967 0.934 (0.163) vs. 0.959 (0.193); p<0.001 0.88 0.78, 0.091 1.046, 0.025 0.025 (0.091)
L4 2557 0.968 (0.165) vs. 0.980 (0.192); p <0.001 0.86 0.74, 0.097 1.005, 0.012 0.012 (0.097)

* GE BMD were converted to the Hologic equivalent.

** Calculated per eligible vertebrae.




Supplementary Table 5 Discriminatory performance (%) of the predicted BMD to classify hip/lumbar vertebral osteoporosis and high-risk groups for major

osteoporotic or hip fractures (GE DXA scanner).

Discriminatory measures

Hip osteoporosis (T-score <= -
2.5

Lumbar vertebral
osteoporosis (vertebrae with

the lowest T-score<= 2.5)

10-year risk of major

osteoporotic fracture >=20%

10-year risk of hip fracture
>=3%

Number of patients, % 427 20.7 975, 29.1 208, 10.4 922, 46.2
OR (95% Cl) 66.38 (48.32-91.18) 39.47 (32.00-48.68) 101.10 (66.40-153.92) 102.20 (75.15-138.98)
AUROC/AUPRC 0.96/0.87 0.92/0.89 0.94/0.79 0.96/0.93

Accuracy (%; 95% Cl)

91.4 (90.1-92.6)

87.6 (86.4-88.7)

94.8 (93.8-95.8)

91.0 (89.7-92.2)

Sensitivity (%; 95% Cl)

78.9 (74.7-82.7)

80.6 (78.0-83.1)

74.0 (67.5-78.0)

89.9 (87.8-91.8)

Specificity (%; 95% Cl)

94.7 (93.5-95.7)

90.5 (89.2-91.6)

97.3 (96.4-98.0)

92.0 (90.2-93.5)

PPV (%; 95% ClI)

79.4 (75.8-82.7)

77.7 (75.4-79.8)

75.9 (70.2-80.7)

90.6 (88.7-92.2)

NPV (%; 95% Cl)

93.5 (94.1-95.4)

87.6 (86.4-88.7)

97.0 (93.8-95.8)

91.4 (89.7-92.8)




Supplementary Table 6 Model performance in different x-ray machines and tanges of peak kilovolt (kV) for hip and lumbar radiographs.

Hip radiographs

Spine radiographs

kVp n % Correlation kVp n % Correlation

distribution coefficient distribution coefficient

60-69 kV 1245 | 24.11 0.909 70-80 kV 5157 28.37 | 0.896

70-74 kV 995 19.27 0.921 90 kv 4637 25.51 | 0.889

75 kv 1394 | 26.99 0.917 95 kV 4747 26.12 | 0.898

Other 1530 | 29.63 0.922 Other 3634 19.99 | 0.889

Machine type n % Correlation Machine type n % Correlation
coefficient coefficient

Canon CDXI 2576 | 49.88 0.919 Canon CDXI 12337 | 67.88 | 0.896

710C 710C

Shimadzu MUX- | 1161 | 22.48 0.914 Shimadzu MUX- | 3501 19.26 | 0.885

100H 100H

Other 1427 | 27,63 0.917 Other 2337 12.86 | 0.887




Supplementary Table 7. Summary of performances using different backbone networks for hip BMD prediction (Hologic DXA).

Models R-value | RMSE | Rsquared | Calib.slope | Calib. intercept | Mean diff | Std diff | Mean GT | Mean Pred | p-value
VGG-11 0.910 | 0.064 0.828 0.984 -0.002 0.002 0.064 0.689 0.690 0.034
VGG-16 0.906 | 0.065 0.821 0.966 0.013 -0.013 0.065 0.689 0.676 0.000
ResNet-18 0.917 | 0.062 0.839 0.985 -0.002 0.002 0.062 0.689 0.691 0.007
ResNet-34 0.917 | 0.062 0.841 0.984 -0.004 0.004 0.062 0.689 0.693 0.000
VGG-11 with age/gender 0.912 | 0.063 0.832 0.988 0.004 -0.004 0.063 0.689 0.684 0.000
VGG-16 with age/gender 0.909 | 0.064 0.827 0.973 -0.007 0.007 0.064 0.689 0.696 0.000
ResNet-34-retrain 0.917 | 0.062 0.841 0.982 -0.003 0.003 0.062 0.689 0.692 0.000

* Means were compared using student t test. Two-sided p values were reported.



Supplementary Table 8. Summary of performances using different backbone networks for spine BMD prediction (Hologic DXA).

R-

Calibration

Linear Regression R Calibration intercept Mean of Std of Mean GT Mean Pred p-
Models RMSE

value squared slope (CITL) difference difference BMD BMD value
VGG11 0.899 | 0.082 0.807 1.007 0.012 -0.012 0.082 0.839 0.827 0.000
VGG16 0.900 | 0.081 0.811 0.978 0.003 -0.012 0.082 0.839 0.837 0.000
ResNet18 0.893 | 0.084 0.798 0.971 -0.004 -0.003 0.081 0.839 0.843 0.000
ResNet34 0.896 | 0.083 0.803 0.980 0.000 0.003 0.084 0.839 0.839 0.168

VGG11 with
0.900 | 0.081 0.810 0.983 -0.001 0.001 0.081 0.839 0.840 0.002

age/gender

VGG16 with
0.902 | 0.080 0.814 0.977 -0.007 0.006 0.081 0.839 0.846 0.000

age/gender

* Means were compared using student t test. Two-sided p values were reported.




Supplementary Table 9. Pseudo code for hip BMD estimation in python style.

Input: hip X-ray image, I

def hip bmd(I):

Estimate hip BMD from pelvic X-ray images

mwmn

lmks = DagModel (I) # Apply the DAG model

score fx = FranctureModel (I) # Apply the fracture detection model

score_implant = ImplantModel (I) # Apply the implant detection model

box 1, box r = roi bounding box (lmks) # Generate bounding boxes

fx 1 = roi pooling(score fx, box 1) > 0.5 # Fracture classification
fx r = roi pooling(score fx, box r) > 0.5

impl 1 = roi pooling(score impl, box 1) > 0.5 # Implant classification
impl r = roi pooling(score impl, box r) > 0.5

if not fx 1 and not impl 1: # if no fracture and implant

rol 1 = roi extraction(I, box 1) # extract ROI of the left hip

bmd 1 BmdModel (roi 1) # Apply the BMD model
else:

bmd 1 = None

in not fx r and not impl r:

roi r = roi extraction(I, box r)

bmd r = BmdModel (roi r)




else:

bmd r = None

return bmd 1, bmd r # return left and right hip BMDs




Supplementary Table 10. Pseudo code for spine BMD estimation in python style.

Input: Spine X-ray image, I

def spine bmd(I):

Estimate spine BMD from lateral spine X-ray images

mwmn

1lmks = DagModel (I) # Apply the DAG model

score fx = FractureModel (I) # Apply the fracture detection model

score_implant = ImplantModel (I) # Apply the implant detection model

boxes = roi bounding box (lmks) # Generate bounding boxes as a dictionary

bmd = {}

for vert in ['L1', 'L2', 'L3', 'L4']:
fx = roi pooling(score fx, boxes[vert]) > 0.5 # Fracture classification
impl = roi pooling(score impl, boxes[vert]) > 0.5 # Implant classification
ap_ratio, mid ratio, height ratio = \

six point morph (boxes[vert]) # Calculate 6-point morphology metrics

if not fx and not impl and \

ap_ratio > 0.8 and mid raio > 0.6 and height ratio > 0.55: # If there is no fracture or implant and the morphology

is normal

roi = roi extraction(I, boxes[vert])
bmd[vert] = BmdModel (roi)
else:

bmd[vert] = None




return bmd['L1'],

bmd['L2'],

bmd['L3'],

bmd['L4"']

# Return 4 L-spine BMDs
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This project contains the inference engine for hip and spine BMD estimation models, described in our Nature Communications submission. The hip and spine model are

demonstrated in two ipython notebooks, hip_bmd.ipnb and spine_bmd.ipnb . This project depends on two datasets, bmd-data and bmd-model . Please link these two
datasets before running the inference service.
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xraybmd - nc-bmd-cpu X

Gigantum - Build it. Move it. Sha X +

& C @t @& gigantum.com/client#

& gigantumhub

o - X
2@

Welcome back, xraybmd

* B*D&

& . ~Niran -
G 019an tum
il xraybmd /

nc-bmd-cpu

. Branch: master
El Projects '

JEIER

k7 Sync

o Overview
& Datasets

Activity Environment Code

Datasets and Files

Datasets
)@ bmd-model
by xraybmd 0B
on disk
p@ bmd-data
e
by xraybmd 0B
on disk

=
o |
=

Gigantum Hub

° Files

xraybmd v Search Files Here

Input Data

Output Data

62 Link Dataset

% Unlink Dataset

7.0 GB
to download L Download All
% Unlink Dataset

23GB
to download Vv Download All

3 New Folder 3 Add Files

i Step 7: Click “Download All” for both bmd-model and bmd-data datasets. It
o will take a while to download the datasets to the client. Please note that this
action downloads the dataset to the client running on Gigantum’s cloud (so
that it can be used in JupyterlLab), not your local machine.
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Collaborators E
zandis..+1

Launch:
jupyterlab Stopped |
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xraybmd - nc-bmd-cpu X Gigantum - Build it. Move it. Sha X +

< Cc O & gigantum.com/client#

& gigantumhub

SEEENTU xraybmd / nc-bmd-cpu T [oes)

client
2 Launch:
g Sync \/} jupyterlab Stopped
Overview Activity Environment Code Input Data Qutput Data

Datasets and Files

Branch: master N ‘ E= ” + “ )

@ Projects

f\*% Datasets

Datasets 2 Link Dataset
e PN | D lnlicle DY admnnd
=

After downloading, you might see message saying that some files failed to
download. This maybe caused by Gigantum’s system stability. If this happens,
you need to refresh the page and open the dataset folders to check which

-e
files failed. The next page shows how to do it.
— File =t Size Modified Actions
=] Gigantum Hub
° = hip_images 21 days ago { Download
XEYybmdEg [@ 1006_PAP_20181127.dcm 13.5MB 21 days ago J Download

® a few seconds ago: gtmcore.workflows.gitlab.GitLabException: 1 file(s) failed to download. Check message detail and try again.

@ a few seconds ago: gtmcore.workflows.gitlab.GitLabException: 6 file(s) failed to download. Check message detail and try again. 0
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& gigantumhub

X Gigantum - Build it. Move it. Sha X +

@ gigantum.com/client#

* BeRZ/T @

5 gilgantum
client

@ Projects

$ Datasets

—
=] Gigantum Hub

xraybmd v

xraybmd / nc-bmd-cpu

Overview Activity Environment Code

Input Data

Output Data

Launch:
jupyterlab . Stopped

@ 3337_PAP_20120109.dcm

@ 3338_PAP_20160510.dcm

Q 3546_PAP_20120116.dcm
Step 8: Download the files that failed to
download by clicking the “Download” button.

Files that are already downloaded shows
“Downloaded”

@ 45366_PAP_20190128.dcm
@ 4699_PAP_20151209.dcm
@ 4810_PAP_20140217.dcm
@ 5051_PAP_20100331.dcm
@ 5147_PAP_20150801.dcm
@ 5203_PAP_20091220.dcm
@ 5219_PAP_20131112.dcm
@ 53150_PAP_20200922.dcm

@ 55260_PAP_20141017.dcm

123 MB

11.7 MB

11.1 MB

1MB

7 MB

1MB

145MB

11.7 MB

145 MB

14.5MB

145 MB

145MB

11.7 MB

16.6 MB

21 days ago

21 days ago

21 days ago

21 days ago

21 days ago

21 days ago

21 days ago

21 days ago

1 days ago

21 days ago

21 days ago

21 days ago

21 days ago

21 days ago

AN

1<

AN

1<

1<

Download

Download
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xraybmd - nc-bmd-cpu X Gigantum - Build it. Move it. Sha. X +

< C 1 @& gigantum.com/client#

@ ©
|
m)
X

% *DETA@
&> gigantumhub

i Welcome back, xraybmd

LSS xraybmd / nc-bmd-cpu Collaborators (oo ]
client
. = A !_aunch:
E] Projects Branch: master AV ‘ = H + H ) [g Sync jupyterlab Stopped

A

Overview Activity Environment Code Input Data Qutput Data
& Datasets _

Datasets and Files

Step 9: After confirming that all
& Link Dataset datasets are downloaded, click
“Launch jupyterlab”.

Datasets

» @ bmd-model

%% Unlink Dataset
by xraybmd 7.0 GB on disk
v Downloaded
» % bmd-data %% Unlink Dataset
by xraybmd 23GB 84.2 MB
on disk to download v Downloaded
% Gigantum Hub
° Files
xraybmd \/ Search File: ta New Folder [ Add Files

If all files are downloaded, you should see
. dified ctions
“Downloaded” in the dataset box. “

O untrackea @

File =-

an hour ago i)

Drag and drop files here




xraybmd - nc-bmd-cpu X | Gigantum - Build it. Move it. Sha X Gigantum - Build it. Move it. Sha X -+ [+] - X
[ = ]
g

&« cC O @& gigantum.com/client/xraybmd/nc-bmd-cpu/jupyterlab 7 * D é'ﬁ f? » 3
bglgantumhubl {Z] xraybmd/nc-bmd-cpu [Z Open Client ‘ Welcome back, xraybmd v

': File Edit View Run Kernel Tabs Settings Help

= + c % Launcher X [ hip_bmd.ipynb X %
B + X DO [ » m C » Markdown v Python 3 O

Q
o B / code / . . ®
Create the inference engine

.— Name - Last Modified

B untracked an hour ago .
import os

™ hip_bmd.ipynb an hour ago import sys

os.chdir('/mnt/labbook/input/bmd-model")
# sys.path.append('/mnt/Labbook/input/bmd-model ')
logging

A spine_bmd.ipynb an hour ago

import glob
import shutil

Step 10: Now you can run the notebooks for hip and
el spine BMD estimation in the client. We provide 100
fm; Brmce; EadgnOram; Indgoront test images for hip and spine. You can change the
e e et Framer = e variable “idx” to select the image for testing. After
o | ~_running, a visualization of the landmark detection,
o e e 75 quality assessment and estimated BMD will be display
from trauna.PX&. inference.engine import PxrInferencetngine,  |[) THEe Notebook.

from racad.utils.dcm2png import dicom2img_itk
from racad.utils import status_code

# Model directories

hip_bmd_dir = './hip_bmd/bmd_estimator’

pelvis_lmk_dir = './hip_bmd/pelvis_detector’ 1 1
pelvis_lak_dir = | /hip_bac/pelvis dsta: Please note that the code runs on Gigantum clients
hip_lmk_dir = './hip_bmd/hip_detector'

par_implant_dir = *./hip_bud/inplant_detector without GPU support. So the speed is slow. It runs
Vith open(par. PxSE 5 ~/run.yanle) a8 f: much faster with GPU.

config = edict(yaml.load(f, Loader=yaml.Fullloader))
pelvix_fx_engine = PxrInferenceEngine(config)

# Initialize pelvis implant detector
with open(pxr_implant_dir + '/run.yaml') as f:
config = edict(yaml.load(f, Loader=yaml.FulllLoader))

nelyic _imnlant engine - PverTmnlantTnferenceFnginaflcronfia)

Simple 0 B 1 @& Python3|ldle Mem:126.69 MB Mode: Command @ Ln1,Col1  hip_bmd.ipynb
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