
Supplementary methods 

DXA measurement 

The densitometer is operated by multiple radiology technicians. In CGMH, all technicians need to be 

certified to operate the densitometer. The scans were analyzed following recommendations issued by the 

Taiwan Radiological Society46 (amended from International Society for Clinical Densitometry, ISCD).47 The 

recommendation briefly: 1. All DXA technicians need to complete the ISCD training course (basic and 

advanced) and operate at least 120 cases of DXA examination before the independent operation of DXA. 2. 

All technicians need to obtain the SOP provided by the manufacturer and conduct BMD measurements 

accordingly. 3. All DXA scanners need to have a detailed SOP at the examination site, which needs to be 

updated regularly and reviewed by relevant professionals. 4. All DXA scanners need to comply with the 

local radiation safety guideline. 5. Spine phantom BMD measurement is performed regularly to document 

the stability of DXA performance over time. BMD values must be maintained within an error of ±1.5%. A 

monitoring plan is needed for a correction approach when the error has been exceeded. 6. All DXA 

technicians need to establish a personal least significant change (LSC). The current recommendation is that 

the personal LSC should be within 5.3% for the lumbar spine, 5.0% for the whole hip, and 6.9% for hip neck 

BMD measurement.  

Deep Adaptive Graph (DAG) 

In DAG, the anatomical landmarks are formulated as a graph, G =  (V, E, F), where the vertices V 

represent the landmarks, the edges E represent the relationships between them, and the features F 

encode visual patterns in the neighborhoods of the vertices. For a specific input image, the graph vertices 

are first initialized in the image using the mean shape of the anatomy, and a neural network is used to 



displace the vertices from the initial position to the target anatomy in the image. By formulating the 

anatomical landmarks as a graph and modeling their displacements by the convolutional neural network–

graph convolutional network (GCN), DAG can effectively exploit the structural information and shape prior 

to the anatomical landmarks. Therefore, DAG provides robust and accurate anatomical landmark detection 

on both hip and spine radiographs. 

The neural network consists of a convolutional neural network to encode the input image to produce graph 

features F, and a GCN to process the graph to locate its vertices. Specifically, the GCN consists of two parts: 

a global transformation GCN and multiple local refinement GCNs. The global transformation GCN produces 

an affine transformation matrix, M, which brings the initial graph vertices closer to the target. The 

transformed vertices are written as follows: 

Equation (4):  V1  =  {vi
1}  =  {Mvi

0}, 

where V0  =  {vi
0} and V1  =  {vi

1} denote the initial graph vertices before and after the estimated affine 

transformation, respectively. The local refinement GCNs then iteratively estimate the displacements of the 

graph vertices V1. In each iteration, the vertices are displaced as follows: 

Equation (5): vi
t+1  =  vi

t + Δvi
t, 

where Δvi
t is the displacement estimated by the local refinement GCN at the t-th step.  

The training loss is calculated for both the global transformation GCN and the local refinement GCNs. 

Because the goal of global transformation GCN is to locate the anatomy coarsely, the following margin loss 

is used: 



Equation (6): Lglobal  =  [
1

N
∑|vi

1 − vi| − m

i∈N

]

+

, 

where [u]+  =  max(0, u); vi
1 and vi  Denote the globally transformed and ground truth vertices, 

respectively; and m is a hyperparameter representing a margin that aims to achieve high robustness for 

coarse landmark detection and forgive small errors. To encourage the local refinement GCNs to learn a 

precise localization, the L1 loss is directly applied to all vertices after the refinements, written as follows: 

Equation (7): Llocal  =  
1

N
∑ |vi

T − vi|

i∈N

, 

where vi
T denotes the vertices after the last local refinement GCN. The graph edge weights are treated as 

learnable parameters, which are initialized randomly at the beginning of training and updated via back-

propagation during training. 

Implementation details 

Deep learning models were developed on a workstation with a single Intel Xeon E5-2650 v4 CPU @ 2.2 

GHz, 128 GB RAM, and 4 NVIDIA TITAN V GPUs running Ubuntu 18.04 LTS. All code used in this study was 

developed in Python v3.6, and deep learning models were implemented using PyTorch v1.3. Image 

preprocessing was performed using the Python Imaging Library. ImageNet pre-trained weights were used 

to initialize the backbone network VGG-16 block. The Adam optimizer was used to train the model for 200 

epochs with a batch size of 8, a starting learning rate of 1e−4, and a weight decay of 1e−4. The learning rate 

was reduced to 1e−5 after the first 100 training epochs. The following augmentations are performed during 

training: 1) color jittering on both the brightness (+-0.2) and contrast (+-0.2). 2) random up-down and left-

right flipping, 3) random affine transformation (rotation +-30, shear +- 0.2, translation +- 25 pixels, scaling 



+-10%). The trained model was evaluated on the validation set after each training epoch, and the model 

with the highest validation correlation coefficient r-value was selected as the best model. 

  



Supplementary Figure 1. Flowchart of the study population. 

  



Supplementary Figure 2 Comparison of the receiver-operator curve between FRAX-AI (Navy blue line) and 

FRAX-NB tools (Maroon line) to classify high 10-year risk groups for (a) major fracture (>=20%) and (b) hip 

fracture (>=3%) 

(a) 

 
  



(b) 

  



Supplementary Figure 3 Comparison of the precision-recall curve between FRAX-AI (Navy blue line) and 

FRAX-NB tools (Maroon line) to classify high 10-year risk groups for (a) major fracture (>=20%) and (b) hip 

fracture (>=3%) 

(a) 

 

 

(b) 



 
  



Supplementary Figure 4 The calibration plots for predicted-measured BMD. (a) 2060 pairs of predicted-

measured hip BMD (2060 patients) and (b) 11027 pairs of predicted-measured lumbar vertebral BMD (3346 

patients). The DXA BMD was based on the measurement by the GE Lunar iDXA. Each point represents a 

data pair of predicted and measure BMD. The points close to the diagonal line suggests good calibration.  

(a) 

 

(b) 



  



Supplementary Figure 5 Data flow chart for the real-world clinical test. (a) hip BMD predictions and (b) 

spine BMD prediction. In this real-world test, we collected all patients receiving plain film for the hip and 

lateral plain film of the lumbar spine during January–May 2021. These images were fed into our tool and 

estimate the number (%) of images that can pass quality check, the distribution of predicted BMD, and the 

categorization based on the threshold reported in table 4. 

(a) 

 
  



(b) 

 

 

 

  



Supplementary tables 

Supplementary Table 1 Network performance across age and sex subsets  

Discriminator

y measures 

Hip osteoporosis 10-year risk of major 

osteoporotic fracture 

>=20% 

10-year risk of hip 

fracture >=3% 

Lumbar vertebral 

osteoporosis 

Hologic 

 AUROC/AUPR

C 

OR 

(95% 

CI) 

AUROC/AUPRC OR 

(95% 

CI) 

AUROC/AUPRC OR 

(95% 

CI) 

AUROC/AUPRC OR 

(95% 

CI) 

Female 0.96/0.90  64.84 

(52.23–

80.48) 

0.97/0.84 82.44 

(62.49–

108.75) 

0.97/0.97 82.79 

(67.15–

102.07) 

0.91/0.91 35.23 

(32.10–

38.64) 

Male 0.97/0.78 103.23 

(55.98–

109.35

) 

NA* NA* 0.95/0.86 46.01 

(31.13–

68.00) 

0.92/0.76 37.74 

(30.55–

46.63) 

Age: <60 years 0.98/0.78 106.99 

(46.98–

243.69

) 

NA* NA* 0.98/0.80 205.33 

(74.08–

569.14) 

0.92/0.81 43.23 

(35.17–

53.15) 

Age: 60-74 

years 

0.97/0.86 95.75 

(63.59–

144.19

) 

0.98/0.82 154.61 

(87.01–

274.73) 

0.95/0.89 42.37 

(31.43–

57.11) 

0.91/0.89 36.09 

(31.92–

40.82) 

Age: 75-90 

years 

0.95/0.91 52.66 

(41.18–

67.34) 

0.96 /0.84 69.22 

(50.52–

94.86) 

0.97/0.97 59.93 

(46.56–

77.12) 

0.91/0.92 31.93 

(27.54–

37.03) 

* The number of patients with a 10-year risk of major osteoporotic fracture >=20% is less than 3.  

 

  



Supplementary Table 2. Patient characteristics of the GE dataset for testing* 

 Hip testing set Spine testing set 

Number 2060 3346 

Female, n (%) 1554 (75.4) 2244 (67.1) 

Mean age (sd), years 71.5 (12.1) 64.8 (11.7) 

Median time (IQR) between DXA and radiographs 24 (6, 75) 28 (4, 95) 

Mean BMI (sd), kg/m2 * 23.7 (3.8) 24.5 (3.7) 

Mean BMD (sd) g/cm2 ** 0.689 (0.160) 0.831 (0.183)** 

Median T-score (IQR) -1.5 (-2.3, -0.6) -1.5 (-2.6, -0.3)** 

Osteoporosis, n (%) 427(20.7) 975 (29.1)** 

* Converted to the Hologic equivalent 

** Calculated based on vertebrae with the lowest BMD. 

 

  



Supplementary Table 3 BMD value conversion equations for GE Lunar to Hologic DXA scanners. 

Measurement Site Conversion Equation 

Lumbar Spine Hologic BMD= 0.918 x Lunar BMD – 0.038 

Total Hip Hologic BMD= 0.971 x Lunar BMD – 0.037 

 

  



Supplementary Table 4. Summary of performance metrics of the predictive model for BMD* (GE DXA scanner) 

Patient 

strata 

Number 

of ROIs 

Predicted vs. measured mean BMD (sd, 

g/cm2); p 

Correlation 

coefficient 

Linear regression 

R2, RMSE 

Calibration slop, 

CITL 

Bland-Altman bias 

(g/cm2; sd) 

The hip testing set (GE)* 

Overall 2060 0.690 (0.151) vs. 0.689 (0.160); p=477 0.90 0.81, 0.071 0.955, -0.001 -0.001 (0.071) 

Female 1554 0.667 (0.143) vs. 0.670 (0.156); p<0.108 0.89 0.79, 0.071 0.968, 0.003 0.003 (0.068) 

Male 506 0.762 (0.152) vs. 0.749 (0.161); p<0.001 0.91 0.82, 0.068 0.957, -0.013 -0.013 (0.069) 

40-59 years 358 0.811 (0.158) vs 0.803 (0.135); p=0.076 0.85 0.72, 0.084 0.992, 0.008 0.008 (0.084) 

60-74 years 685 0.726 (0.139) vs. 0.722 (0.147); p<0.03 0.91 0.82, 0.062 0.961, -0.005 -0.005 (0.062) 

75-90 years 1017 0.626 (0.131) vs. 0.625 (0.137); p<0.001 0.86 0.74, 0.070 0.895, -0.002 -0.002 (0.072) 

The spine testing set (GE)**  

Overall 11027 0.899 (0.172) vs. 1.036 (0.196); p<0.001 0.89 0.79, 0.090 1.011, 0.015 0.015 (0.090) 

Female 7404 0.859 (0.1164) vs. 0.867 (0.187); p<0.001 0.88 0.788, 0.089 1.005, 0.008 0.008 (0.089) 

Male 3623 0.978 (0.159) vs. 1.007 (0.179); p<0.001 0.86 0.73, 0.093 0.964, 0.028 0.028 (0.093) 

40-59 years 3884 0.970 (0.155) vs. 0.991 (0.175); p<0.001 0.88 0.78, 0.083 0.993, 0.022 0.022 (0.083) 

60-74 years 4598 0.878 (0.165) vs. 0.889 (0.188); p<0.001 0.88 0.77, 0.091 1.001, 0.011 0.011 (0.091) 

75-90 years 2545 0.827 (0.168) vs. 0.838 (0.198); p<0.001 0.86 0.74, 0.100 1.015, 0.010 0.010 (0.100) 

L1 2476 0.807 (0.153) vs. 0.821 (0.169); p<0.001 0.86 0.74, 0.085 0.946, 0.014 0.014 (0.085) 

L2 3027 0.879 (0.164) vs. 0.887 (0.188); p<0.001 0.89 0.79, 0.087 1.020, 0.007 0.007 (0.087) 

L3 2967 0.934 (0.163) vs. 0.959 (0.193); p<0.001 0.88 0.78, 0.091 1.046, 0.025 0.025 (0.091) 

L4 2557 0.968 (0.165) vs. 0.980 (0.192); p <0.001 0.86 0.74, 0.097 1.005, 0.012 0.012 (0.097) 

* GE BMD were converted to the Hologic equivalent. 

** Calculated per eligible vertebrae. 

  



Supplementary Table 5 Discriminatory performance (%) of the predicted BMD to classify hip/lumbar vertebral osteoporosis and high-risk groups for major 

osteoporotic or hip fractures (GE DXA scanner). 

Discriminatory measures Hip osteoporosis (T-score <= -

2.5 

Lumbar vertebral 

osteoporosis (vertebrae with 

the lowest T-score<= 2.5) 

10-year risk of major 

osteoporotic fracture >=20% 

10-year risk of hip fracture 

>=3% 

Number of patients, % 427 20.7 975, 29.1 208, 10.4 922, 46.2 

OR (95% CI) 66.38 (48.32–91.18) 39.47 (32.00–48.68) 101.10 (66.40–153.92) 102.20 (75.15–138.98) 

AUROC/AUPRC 0.96/0.87 0.92/0.89 0.94/0.79 0.96/0.93 

Accuracy (%; 95% CI) 91.4 (90.1–92.6) 87.6 (86.4–88.7) 94.8 (93.8–95.8) 91.0 (89.7–92.2) 

Sensitivity (%; 95% CI) 78.9 (74.7–82.7) 80.6 (78.0–83.1) 74.0 (67.5–78.0) 89.9 (87.8–91.8) 

Specificity (%; 95% CI) 94.7 (93.5–95.7) 90.5 (89.2–91.6) 97.3 (96.4–98.0) 92.0 (90.2–93.5) 

PPV (%; 95% CI) 79.4 (75.8–82.7) 77.7 (75.4–79.8) 75.9 (70.2–80.7) 90.6 (88.7–92.2) 

NPV (%; 95% CI) 93.5 (94.1–95.4) 87.6 (86.4–88.7) 97.0 (93.8–95.8) 91.4 (89.7–92.8) 

 

  



Supplementary Table 6 Model performance in different x-ray machines and tanges of peak kilovolt (kV) for hip and lumbar radiographs. 

Hip radiographs Spine radiographs 

kVp 

distribution 

n % Correlation 

coefficient 

kVp 

distribution 

n % Correlation 

coefficient 

60-69 kV 1245 24.11 0.909 70-80 kV 5157 28.37 0.896 

70-74 kV 995 19.27 0.921 90 kV 4637 25.51 0.889 

75 kV 1394 26.99 0.917 95 kV 4747 26.12 0.898 

Other 1530 29.63 0.922 Other 3634 19.99 0.889 

Machine type n % Correlation 

coefficient 

Machine type n % Correlation 

coefficient 

Canon CDXI 

710C 

2576 49.88 0.919 Canon CDXI 

710C 

12337 67.88 0.896 

Shimadzu MUX-

100H 

1161 22.48 0.914 Shimadzu MUX-

100H 

3501 19.26 0.885 

Other 1427 27,63 0.917 Other 2337 12.86 0.887 

  



Supplementary Table 7. Summary of performances using different backbone networks for hip BMD prediction (Hologic DXA). 

 Models R-value RMSE R squared Calib. slope Calib. intercept Mean diff Std diff Mean GT Mean Pred p-value 

VGG-11 0.910 0.064 0.828 0.984 -0.002 0.002 0.064 0.689 0.690 0.034 

VGG-16 0.906 0.065 0.821 0.966 0.013 -0.013 0.065 0.689 0.676 0.000 

ResNet-18 0.917 0.062 0.839 0.985 -0.002 0.002 0.062 0.689 0.691 0.007 

ResNet-34 0.917 0.062 0.841 0.984 -0.004 0.004 0.062 0.689 0.693 0.000 

VGG-11 with age/gender 0.912 0.063 0.832 0.988 0.004 -0.004 0.063 0.689 0.684 0.000 

VGG-16 with age/gender 0.909 0.064 0.827 0.973 -0.007 0.007 0.064 0.689 0.696 0.000 

ResNet-34-retrain 0.917 0.062 0.841 0.982 -0.003 0.003 0.062 0.689 0.692 0.000 

* Means were compared using student t test. Two-sided p values were reported. 

  



Supplementary Table 8. Summary of performances using different backbone networks for spine BMD prediction (Hologic DXA). 

Models 
R-

value 
RMSE 

Linear Regression R 

squared 

Calibration 

slope 

Calibration intercept 

(CITL) 

Mean of 

difference 

Std of 

difference 

Mean GT 

BMD 

Mean Pred 

BMD 

p-

value 

VGG11 0.899 0.082 0.807 1.007 0.012 -0.012 0.082 0.839 0.827 0.000 

VGG16 0.900 0.081 0.811 0.978 0.003 -0.012 0.082 0.839 0.837 0.000 

ResNet18 0.893 0.084 0.798 0.971 -0.004 -0.003 0.081 0.839 0.843 0.000 

ResNet34 0.896 0.083 0.803 0.980 0.000 0.003 0.084 0.839 0.839 0.168 

VGG11 with 

age/gender 
0.900 0.081 0.810 0.983 -0.001 0.001 0.081 0.839 0.840 0.002 

VGG16 with 

age/gender 
0.902 0.080 0.814 0.977 -0.007 0.006 0.081 0.839 0.846 0.000 

* Means were compared using student t test. Two-sided p values were reported. 

 

 

 

  



Supplementary Table 9. Pseudo code for hip BMD estimation in python style. 

Input: hip X-ray image, I 

def hip_bmd(I): 

    """ 

    Estimate hip BMD from pelvic X-ray images 

    """ 

    lmks = DagModel(I)              # Apply the DAG model  

    score_fx = FranctureModel(I)    # Apply the fracture detection model  

    score_implant = ImplantModel(I) # Apply the implant detection model  

 

    box_l, box_r = roi_bounding_box(lmks) # Generate bounding boxes 

 

    fx_l = roi_pooling(score_fx, box_l) > 0.5 # Fracture classification  

    fx_r = roi_pooling(score_fx, box_r) > 0.5  

 

    impl_l = roi_pooling(score_impl, box_l) > 0.5 # Implant classification  

    impl_r = roi_pooling(score_impl, box_r) > 0.5 

 

    if not fx_l and not impl_l:          # if no fracture and implant 

        roi_l = roi_extraction(I, box_l) # extract ROI of the left hip 

        bmd_l = BmdModel(roi_l)          # Apply the BMD model 

    else: 

        bmd_l = None 

 

    in not fx_r and not impl_r: 

        roi_r = roi_extraction(I, box_r) 

        bmd_r = BmdModel(roi_r) 



    else: 

        bmd_r = None 

 

    return bmd_l, bmd_r # return left and right hip BMDs 

 

 

  



Supplementary Table 10. Pseudo code for spine BMD estimation in python style. 

Input: Spine X-ray image, I 

def spine_bmd(I): 

    """ 

    Estimate spine BMD from lateral spine X-ray images 

    """ 

    lmks = DagModel(I)              # Apply the DAG model  

    score_fx = FractureModel(I)     # Apply the fracture detection model  

    score_implant = ImplantModel(I) # Apply the implant detection model  

 

    boxes = roi_bounding_box(lmks) # Generate bounding boxes as a dictionary 

 

    bmd = {} 

    for vert in ['L1', 'L2', 'L3', 'L4']: 

        fx = roi_pooling(score_fx, boxes[vert]) > 0.5 # Fracture classification 

        impl = roi_pooling(score_impl, boxes[vert]) > 0.5 # Implant classification 

        ap_ratio, mid_ratio, height_ratio = \ 

            six_point_morph(boxes[vert]) # Calculate 6-point morphology metrics 

 

        if not fx and not impl and \ 

            ap_ratio > 0.8 and mid_raio > 0.6 and height_ratio > 0.55: # If there is no fracture or implant and the morphology 

is normal 

            roi = roi_extraction(I, boxes[vert]) 

            bmd[vert] = BmdModel(roi) 

        else: 

            bmd[vert] = None 

 



    return bmd['L1'], bmd['L2'], bmd['L3'], bmd['L4'] # Return 4 L-spine BMDs 

 

 

 

 

 



Step 1: Open the project page https://gigantum.com/xraybmd/nc-bmd-cpu

Step 2: Click “Launch Project in JupyterLab”



Step 3: Wait Gigantum to build the docker image and launch the container.
It will take quite some time, but it will load eventually.



Step 4: Once JupyterLab is opened, click “Open Client”.



Step 5: Stop the container by clicking “Running”

Step 6: Go to “Input Data” tab



Step 7: Click “Download All” for both bmd-model and bmd-data datasets. It
will take a while to download the datasets to the client. Please note that this 
action downloads the dataset to the client running on Gigantum’s cloud (so 
that it can be used in JupyterLab), not your local machine.



After downloading, you might see message saying that some files failed to 
download. This maybe caused by Gigantum’s system stability. If this happens, 
you need to refresh the page and open the dataset folders to check which 
files failed. The next page shows how to do it.



Step 8: Download the files that failed to
download by clicking the “Download” button. 
Files that are already downloaded shows 
“Downloaded”



If all files are downloaded, you should see 
“Downloaded” in the dataset box.

Step 9: After confirming that all 
datasets are downloaded, click 
“Launch jupyterlab”. 



Step 10: Now you can run the notebooks for hip and 
spine BMD estimation in the client. We provide 100
test images for hip and spine. You can change the 
variable “idx” to select the image for testing. After 
running, a visualization of the landmark detection, 
quality assessment and estimated BMD will be display 
in the notebook.

Please note that the code runs on Gigantum clients 
without GPU support. So the speed is slow. It runs 
much faster with GPU. 
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