Supporting Information for

Boosted solar light absorbance in PdS_2/PtS_2 vertical heterostructures for ultrathin photovoltaic devices

Lorenzo Bastonero^{*a,b*}, Giancarlo Cicero^{*c*}, Maurizia Palummo^{*d*} and Michele Re Fiorentin^{*e*,*}

^a Dipartimento di Fisica, Università degli studi Torino, via Giuria 1, 10125, Torino, Italy
^b U Bremen Excellence Chair "Materials design and discovery" and Hybrid Materials Interfaces Group,
Bremen Center for Computational Materials Science, University of Bremen, Am Fallturm 1, 28359 Bremen, Germany
^c Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino, Italy
^d Dipartimento di Fisica and INFN, Università di Roma "Tor Vergata", via della Ricerca Scientifica 1, 00133, Roma, Italy
^e Center for Sustainable Future Technologies, Istituto Italiano di Tecnologia, via Livorno 60, 10144 Torino, Italy

^{*}michele.refiorentin@iit.it

Figure S1: Convergence of GW calculations with respect to the k-point grid (a) and the dielectric screening (b). In (c) we show the extrapolation procedure to obtain the correction due to the number of included bands in Σ_c . Reported values are for PtS₂.

Figure S2: Convergence of BSE calculations with respect to the k-point grid (a), the static screening parameters (b) and the number of bands included in the kernel (c). Reported values are for PtS₂.

Figure S3: (a) DFT electronic bandstructure of relaxed monolayer Pd_2 (black lines) and monolayer Pd_2 under 1% biaxial strain (red lines). (b) DFT electronic bandstructure of the PdS_2/PtS_2 vdWH computed with (red lines) and without (black lines) dipole correction along the out-of-plane direction, as implemented in [1].

Figure S4: pDOS and kpDOS of PdS_2 (a) and PtS_2 (b) as obtained from DFT calculations. Contributions from metal *d*-orbitals and sulfur *p*-orbitals are reported in red and blue, respectively.

Figure S5: (a), (b) Square moduli of the wavefunctions of the tVB and bCB states, respectively, involved in the G exciton for PdS₂. (c), (d) Square moduli of the wavefunctions of the tVB and bCB states, respectively, involved in the G exciton for PdS₂.

Figure S6: (a) Top panel: QP bandstructures of PdS₂ (red lines) and PtS₂ (blue lines). Lower panel: gradient along the Brillouin zone path of the difference between the bCB and tVB energies. In correspondence with small values (<1) the band-nesting condition is realised (cf. Ref. [2]). (b) Joint density of states (jDOS) of PdS₂ (red line) and PtS₂ (blue line). (c) Square modulus of the electric dipole matrix elements $|d_{cvk}|^2$ for transitions $v \to c$, at point **k** in the irreducible Brillouin zone, contributing to the *G* (first column) and *R* (second column) excitons in PdS₂ (top row) and PtS₂ (bottom row).

References

- [1] T. Sohier, M. Calandra, F. Mauri, Phys. Rev. B 96, 075448 (2017).
- [2] A. Carvalho, R. M. Ribeiro, A. H. Castro Neto, Phys. Rev. B 88, 115205 (2013).