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Materials and Methods 

Dye characterization. BDP-TMR-alkyne (A24B0, Lumiprobe) was prepared as an 1 mM stock solution in DMSO, 
and diluted to 0.2-1.0 µM in different solvents for absorbance and fluorescence quantum-yield measurements 
(Figure S1), and 3.3 nM in ethanol or the cell imaging buffer (below) for fluorescence measurements under 
conditions comparable to the single-molecule experiments (Figure 1b). For measurement of quantum yield, 
Rhodamine 6G (252433, Sigma-Aldrich) was diluted to 0.2-1.0 µM in ethanol as the standard, for its well-
characterized quantum yield of 95% under 530-nm excitation (Brouwer 2011). Fluorescence emission was recorded 
using a Duetta spectrometer (HORIBA Instruments), with excitation at 530 nm (Figure S1bd) or 560 nm (Figure 
1b). Absorption spectra were recorded using the same cuvettes on a NanoDrop 2000c spectrometer (Thermo Fisher) 
in the cuvette mode, with background subtraction at 750 nm. 

Cell culture. COS-7 cells (University of California Berkeley Cell Culture Facility) were maintained in Dulbecco's 
Modified Eagle Medium supplemented with 10% fetal bovine serum and 1% non-essential amino acids. Two days 
prior to imaging, cells were plated onto 18-mm diameter glass coverslips that were pretreated with hot piranha 
solutions (H2SO4:H2O2 at 3:1). Transfection of GRAMD1a-AcGFP and GRAMD2a-AcGFP [kind gifts from Prof. 
Jodi Nunnari (Besprozvannaya et al. 2018)] was performed one day after plating. 300-500 ng plasmid was used per 
sample with the standard Lipofectamine 3000 protocol (Thermo Fisher). Before imaging, the coverslip was 
transferred to a holder (CSC-18, Bioscience Tools) compatible with the microscope stage. Imaging medium was 
Leibovitz’s L-15 or a MOPS-based buffer (Hibernate A Low Fluorescence, BrainBits), with similar results 
observed. BDP-TMR-alkyne or Nile Red (Acros Organics) was diluted into the imaging medium to a final 
concentration of 3.3 nM. The dye-added imaging medium was added to the sample and remained unchanged 
throughout imaging. For CTB treatment, cells were incubated with 1 μg/mL Alexa Fluor 488-conjugated CTB 
(C34775, Invitrogen) in the culture medium for ~5 min, and then washed twice with the imaging medium before 
imaging. 

Concurrent SMdM and 3D-SMLM. Concurrent SMdM and 3D-SMLM of BDP-TMR-alkyne was achieved via 
modifications to a homebuilt system (Wojcik et al. 2015) based on a Nikon Eclipse Ti-E inverted optical 
microscope. Lasers at 488, 560, and 647 nm were independently modulated by an acousto-optic tunable filter (97-
03151-01, Gooch & Housego) that was driven by an 8-channel RF synthesizer (97-03926-12, Gooch & Housego). 
The modulated laser beams were focused onto the back focal plane of an oil-immersion objective lens (Nikon CFI 
Plan Apochromat λ 100x, numerical aperture: 1.45) toward the edge, thus entering the sample slightly below the 
critical angle to illuminate a ~1 µm depth. For 3D localization, a cylindrical lens was used to induce elongations of 
single-molecule images in the vertical and horizontal directions for molecules below and above the focal plane, 
respectively (Huang et al. 2008). The focal plane was set ~200 nm into the sample, so that depth (z) values of 
~−200 nm corresponded to the substrate. Single-molecule images due to the transient entrance of individual BDP-
TMR-alkyne molecules into the membrane phase (Sharonov and Hochstrasser 2006) were continuously recorded in 
the wide-field using an EM-CCD camera (iXon Ultra 897, Andor) at a fixed frame rate of 110 fps. A multifunction 
I/O board (PCI-6733, National Instruments) read the camera exposure timing signal, and accordingly modulated the 
RF synthesizer to achieve frame-synchronized stroboscopic excitation for the 560 nm laser in two modes. In the 
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first mode, paired pulses of τ = ~1 ms duration and Δt = 2.5 ms center-to-center separation were repeatedly applied 
across tandem camera frames (Figure 1g inset), so that single-molecule images from the paired odd-even frames 
captured transient displacements in the Δt time window (Xiang et al. 2020). In the second mode, pulses of τ = 0.5-2 
ms duration were applied at the middle of each frame (Figure 1h inset). Single-molecule displacements were thus 
assessed between consecutive frames for Δt = 9.1 ms displacement time. The estimated peak and average power 
densities of the excitation laser at the sample were ~10 and ~1 kW/cm2, respectively. 90,000-160,000 frames of 
single-molecule images were recorded under the above stroboscopic excitation schemes, from which 106−107 
molecules were accumulated across the view. The 488 nm laser was separately applied before and/or after the 
above stroboscopic single-molecule experiments for epifluorescence imaging of AF488-tagged CTB and GFP-
tagged GRAMD1a and GRAMD2a. 

Concurrent SMdM and SR-SMLM. Concurrent SMdM and SR-SMLM of Nile Red were achieved on another 
homebuilt system as described previously (Moon et al. 2017; Xiang et al. 2020). Briefly, frame-synchronized 
stroboscopic excitation was achieved through direct power modulation of the 561 nm laser (OBIS 561 LS, Coherent) 
using a multifunction I/O board (PCI-6733, National Instruments) (Xiang et al. 2020). Paired pulses of τ = 2 ms 
duration and Δt = 2.5 ms center-to-center separation were repeatedly applied across tandem camera frames for 
evaluation of single-molecule displacements from the paired odd-even frames. The estimated peak and average 
power densities of the excitation lasers at the sample were ~6 and ~1 kW/cm2, respectively. Single-molecule 
emission due to the transient entrance of individual Nile Red molecules into the membrane phase (Sharonov and 
Hochstrasser 2006) was split 50:50 for the concurrent recording of the unmodified images and the dispersed 
emission spectra in the wide-field (Moon et al. 2017). An EM-CCD camera (iXon Ultra 897, Andor) recorded 
~120,000 frames at 110 fps.  

3D-SMLM of GRAMD1a and GRAMD2a. For 3D-SMLM of GRAMD1a-AcGFP and GRAMD2a-AcGFP, 
transfected cells were fixed by 3% paraformaldehyde and 0.1% glutaraldehyde in phosphate-buffered saline (PBS) 
for 20 min, followed by a 5-min wash with freshly prepared 0.1% NaBH4 in PBS. The sample was washed 3 times 
with PBS, and immunolabeled with a mouse anti-GFP primary antibody (Invitrogen A11120) and an Alexa Fluor 
647-labeled secondary antibody (Invitrogen A21236). The labeled samples were imaged in a photoswitching buffer 
(100 mM Tris-HCl pH 7.5, 100 mM cysteamine, 5% glucose, 0.8 mg/mL glucose oxidase, and 40 µg/mL catalase) 
on the 3D-SMLM setup described above. ~50,000 frames of single-molecule images were recorded at 110 fps 
under continuous 647-nm excitation. 

Data analysis. Single-molecule raw images were first localized and rendered into 3D-SMLM images as described 
in (Rust et al. 2006; Huang et al. 2008). SR-SMLM data were processed as described in (Moon et al. 2017; Zhang 
et al. 2015). SMdM analysis under the isotropic diffusion model was performed as described in (Xiang et al. 2020). 
Briefly, the accumulated single-molecule displacements were spatially binned into 100×100 nm2 bins. The 
displacements in each spatial bin were then separately fitted to a modified isotropic 2D random-walk model with 
the probability distribution 

22( ) exp( )r rP r br
a a

= − +     (eqn. 1) 
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where r is the single-molecule displacement in the fixed time interval Δt, a = 4DΔt, and b is a background term to 
account for molecules that randomly enter the view, as rationalized and validated in (Xiang et al. 2020) with 
experiments carried out at different single-molecule densities. For the pSMdM analysis, for each spatial bin, we 
first calculated the angular coordinate φ of each single-molecule displacement accumulated in the bin. As we 
consider molecules traveling in opposite directions to be diffusing along the same axis, we first flipped all 
displacements with φ in the range of (-180°, 0°) by adding 180°, so that all the resultant φ' values were in the range 
of [0°, 180°]. We then took the circular mean of 2φ' (in the range of [0°, 360°]) for all displacements in the spatial 
bin, and divided this value by 2 to obtain the average direction of diffusion θ (principal direction). Anisotropy α is 
also assessed in the process by dividing the modulus of the vector sum (in the 2φ' angle space) over the sum of the 
moduli of all the displacements, hence a value of 0 and 1 for fully isotropic and fully anisotropic (bidirectional 
along a line) diffusions, respectively. Results at each spatial bin were converted into a color for color-map 
presentation (e.g., Figure 3g and Figure S2) via the HSV (hue, saturation, value) color space, with hue, saturation, 
and value corresponding to θ, α, and single-molecule count, respectively. The single-molecule displacements in 
each bin were next separately projected along and perpendicular to the calculated θ direction (e.g., Figure 3bcef) for 

fitting to a modified 1D random-walk model with the probability distribution of 
21( ) exp( ) 'xP x b

aap
= − +

(Xiang et al. 2020), where a = 4DΔt. The larger resultant D value of the two was picked to generate pSMdM color 
maps. 
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Figure S1. Spectral properties of BDP-TMR-alkyne in different solvents. (a) Absorption spectra of 1 µM BDP-
TMR-alkyne in different solvents. Comparable results are found for three organic solvents of varying chemical 
polarities (ethanol, ethyl acetate, and 1,4-dioxane), yet the absorption in water is noticeably reduced and blue-
shifted. The solid and dashed vertical lines correspond to excitation wavelengths used to determine quantum yields 
below (530 nm), and used in our single-molecule experiments and Figure 1b (560 nm), respectively. (b) 
Fluorescence emission spectra of 1 µM BDP-TMR-alkyne in different solvents when excited at 530 nm, showing 
comparable results between the three organic solvents but much lower emission in water. (c) Absorbance of BDP-
TMR-alkyne at 530 nm as a function of concentration, in ethanol vs. in water. Lines: linear fits to data. (d) 
Emission as a function of absorbance at 530 nm, for BDP-TMR-alkyne of varied concentrations in ethanol vs. in 
water [same absorbance values as shown in (c)], in comparison to that of Rhodamine 6G (R6G) in ethanol. Line: a 
linear fit to the R6G data. Similar emission-absorbance trends are found for all three systems, indicating that the 
fluorescence quantum yields (QY) of BDP-TMR-alkyne in ethanol and in water are both comparable to that of R6G 
in ethanol, which has a known QY of 95% (Brouwer 2011). Thus, the substantially reduced fluorescence emission 
of BDP-TMR-alkyne in the aqueous phase under 560 nm excitation (Figure 1b) is due to reduced and blue-shifted 
absorption, rather than due to a significant change in QY. Meanwhile, the measured higher QY (~95%) and 
extinction coefficients [ε~80,000 M-1cm-1 from (a)] of BDP-TMR-alkyne in organic solvents when compared to 
Nile Red (QY~50-80% and ε~38,000 M-1cm-1) (Davis and Helzer 1966; Cser et al. 2002) justify its superior single-
molecule photon counts in cellular membranes. 
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Figure S2. Additional stroboscopic PAINT and SMdM results of BDP-TMR-alkyne on a COS-7 cell, acquired with 
tandem excitation pulses of τ = 1.5 ms duration and Δt = 2.5 ms center-to-center separation. (a) 3D-SMLM image 
constructed from the single-molecule positions. Color presents depth (color scale on the top). (b) SMdM diffusivity 
map constructed from the single-molecule displacements of the same data, based on an isotropic 2D fitting model. 
Color presents D value (color scale on the top). (c) Principal direction (θ) - anisotropy (α) color map of the 
diffusion data. Hue, saturation, and value present θ, α, and single-molecule count, respectively. (d) pSMdM 
diffusivity map after the principal-direction analysis. (e) Zoom-in of the white box in (a) (top), and its cross-
sectional view in the xz direction (bottom). (f) Isotropic SMdM (top) and pSMdM (bottom) diffusivity maps of the 
same region. White arrows point to possible ER-PM contact sites. (g) 2D plot of single-molecule displacements in 
2.5 ms for BDP-TMR-alkyne at an ER tubule [white arrows in (b-d)]. A principal direction θ of 72° is calculated 
with an anisotropy α of 0.38. (h) 1D distribution of the displacements in (g) projected along θ. Blue curve: MLE fit 
to a 1D diffusion model with resultant D = 2.6 µm2/s. (i) 2D plot of single-molecule displacements in 2.5 ms for 
BDP-TMR-alkyne at the plasma membrane [magenta arrows in (b-d)]. α = 0.04 and θ = 86°. (j) 1D distribution of 
the displacements in (i) projected along θ. Blue curve: MLE fit to a 1D diffusion model with resultant D = 2.1 
µm2/s. Scale bars: 2 µm (a-d); 500 nm (e,f). 
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Figure S3. Additional stroboscopic PAINT and SMdM results of BDP-TMR-alkyne on COS-7 cells, acquired with 
stroboscopic excitations at the middle of every frame (Δt = 9.1 ms), with excitation pulses of τ = 0.5 ms (top) and 2 
ms (bottom) durations, respectively. (a) 3D-SMLM image. Color presents depth (color scale on the top). (b,c) 
Isotropic SMdM (b) and pSMdM (c) diffusivity maps. Color presents D value (color scale on the top). 
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Figure S4. Side-by-side comparison of the SMdM results of BDP-TMR-alkyne in untreated and CTB-treated COS-
7 cells, presented on the original D color scale of 0-4 µm2/s as Figure 2ce (top row), and on a substantially reduced 
D scale of 0-1.4 µm2/s (bottom row). An increased appearance of nanoscale foci of very low diffusivity is found 
after the CTB treatment, and many of these foci colocalized with the CTB fluorescence (arrows; see also Figure 2d). 
Additional low-diffusivity foci are observed at potential ER-PM contact sites for both samples. Scale bars: 2 µm.  
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