Cell Reports, Volume 36

Supplemental information

Actinin BioID reveals sarcomere

crosstalk with oxidative metabolism

through interactions with IGF2BP2

Feria A. Ladha, Ketan Thakar, Anthony M. Pettinato, Nicholas Legere, Shahnaz Ghahremani, Rachel Cohn, Robert Romano, Emily Meredith, Yu-Sheng Chen, and J. Travis Hinson

Figure S1. BioID to identify actinin proximity partners through sarcomere assembly. (Related to Figure 1)

(A) Overview of gene-targeting strategy to generate an in-frame knock-in of BirA*-HA at the *ACTN2* locus in iPSCs. CRISPR/Cas9 and homology-directed repair from a donor vector containing BirA*-HA and 800bp *ACTN2* homology arms was utilized.

(B) Confocal micrograph of Actinin-BirA* iPSC-CMs decorated with antibodies to HA (red), streptavidin-AF488 (green), and DAPI DNA co-stain (blue) showing overlap (scale $bar=10\mu m$).

(C) To validate localization, iPSC-CM lysates were immunoprecipitated using an anti-HA antibody and probed with antibodies to known sarcomere components at the Z-disk (anti-TCAP) and M-line (anti-myomesin), as well as anti-HA and anti-actinin controls.

(**D**) Representative immunoblot probed with streptavidin-HRP to optimize biotin labeling after 24 hours of biotin supplementation up to 50 μ M.

(E) Representative immunoblot of cTnT-KO and cTnT-WT iPSC-CMs lysates probed for cTnT, actinin and GAPDH control.

(F) Confocal micrograph of cTnT-KO and cTnT-WT Actinin-BirA* iPSC-CMs decorated with antibodies to actinin (red), streptavidin-AF488 (green), and DAPI DNA co-stain (blue) (scale bars: main image=10µm; inset=5µm). In contrast to the Z-disks observed in cTnT-WT iPSC-CMs (bottom), cTnT-KO iPSC-CMs have punctate Z-bodies (top).

(**G**) Representative immunoblot of cTnT-KO and cTnT-WT Actinin-BirA* lysates probed with streptavidin-HRP.

(H) Significant hits from TMT experiment 2 using hierarchical clustering and heatmap of Log2-transformed intensity values for the 294 Actinin-BirA*-enriched proteins compared to control non-BirA* (L2FC \geq 1 and FDR <0.05). **I)** 24 actinin neighborhood proteins that were exclusive to the Z-disk stage assembly were analyzed by GO and enrichment terms are listed (L2FC \geq 1 and FDR <0.05 in cTnT-WT relative to control non-BirA*).

(J) 47 proteins enriched with cTnT-dependent sarcomere assembly were analyzed by GO and enrichment terms are listed (L2FC \geq 1 and FDR <0.05 in cTnT-WT relative to cTnT-KO).

(K) -Log₁₀FDR (y-axis) plotted against the L2FC of cTnT-WT samples relative to cTnT-KO (x-axis) using the 294 Actinin-BirA*-enriched proteins, which identified 47 proteins (pink) that are further enriched with cTnT-dependent sarcomere assembly (L2FC \geq 1 and FDR <0.05).

Figure S2. Identification of transcripts bound to RNA-binding proteins in actinin neighborhoods. (Related to Figure 2)

(A) Heatmap displaying relative expression of ETC Complexes (I-V) genes in control non-BirA* and Actinin-BirA* RIP-seq samples.

(B) Heatmap displaying relative expression of glycolysis genes in control non-BirA* vs. Actinin-BirA* RIP-seq samples.

(C) Heatmap displaying relative expression of sarcomere thin and thick filament genes in control non-BirA* vs. Actinin-BirA* RIP-seq samples.

(D) Representative image from Imaris utilizing distance transformation tool to determine distance between actinin puncta (red) and mRNA puncta (multi-colored).

(E) Representative control confocal micrograph of iPSC-CMs decorated with antibodies to actinin (red) and DAPI DNA co-stain (blue) without RNA FISH probe (scale $bar=10\mu m$).

(F) qPCR analysis of transcript levels of NDUFA1 after NDUFA1 knockdown.

(G) Representative confocal micrographs of iPSC-CMs transduced with either shScramble or shNDUFA1 and decorated with antibodies to actinin (red), DAPI DNA costain (blue), and RNA FISH probes against *NDUFA1* (green) (scale bar=10µm).

(H) Quantification of *NDUFA1* mRNA puncta per cell comparing iPSC-CMs transduced with either shScramble or shNDUFA1 (n=20).

(I) RNA FISH of ETC Complex I components *NDUFA1* and *NDUFA8* that are both in proximity to actinin but not overlapped (scale bars: main image=10µm; inset-5µm).

(J) Representative confocal micrograph of iPSC-CMs decorated with antibodies to actinin (red), DAPI DNA co-stain (blue), and RNA FISH probe against *TTN* (purple) (scale bars: main image=10µm; inset=5µm).

(K) Representative confocal micrograph of iPSC-CMs decorated with antibodies to actinin (red), DAPI DNA co-stain (blue), and RNA FISH probe against *HIST1H1E* (yellow) (scale bars: main image=10µm; inset=5µm).

(L) Representative confocal micrograph of iPSC-CMs decorated with antibodies to actinin (red), DAPI DNA co-stain (blue), and RNA FISH probe against *HRC* (gray) (scale bars: main image=10µm; inset=5µm).

Data are n≥3; mean ± SEM; significance assessed by Student's t-test (F, H) and defined by P < 0.05 (*), $P \le 0.01$ (**).

В

SERBP1

RNA Binding Protein	Method		
	TMT	SP-IP	HA-IP
IGF2BP2	+	+	+
PCBP1	+	+	+
PCBP2	+	+	+

+

-

+

M2H

+

-

-

-

Figure S3. Fine mapping actinin interactions with the RNA-binding protein IGF2BP2. (Related to Figure 3)

A) Purified recombinant 6xHis, 6xHis-Actinin-WT, and 6xHis-Actinin-E445A were incubated with iPSC-CM lysate in resin (diagram), and precipitates were analyzed (left) and quantified (right) by immunoblotting with anti-Actinin antibody. Equal amounts of each recombinant protein were loaded onto resin.

B) Summary overview of RBP and actinin interaction data.

Data are n=3; mean ± SEM; significance assessed by Student's t-test (A) and defined by $P \le 0.01$ (**).

Figure S4. Actinin-IGF2BP2 interactions regulate ETC transcript localization to actinin neighborhoods and metabolic adaptation to hypercontractility in an HCM model. (Related to Figure 4)

(A) Overview of tandem-IP process (left) and qPCR results of IgG vs. IGF2BP2 IP (right) for candidate ETC transcripts.

(B) Representative confocal micrographs of iPSC-CMs transduced with shScramble or shIGF2BP2 and decorated with antibodies to actinin (red), DAPI DNA co-stain (blue), and RNA FISH probes against *NDUFA1* (green) (scale bar=10µm).

(C) Quantification of *NDUFA1* RNA proximity to actinin protein in iPSC-CMs treated with shScramble or shIGF2BP2 (n=25 cells).

(D) Representative immunoblots (left) and quantification (right) of MOI testing for lenti-Actinin-3x-FLAG to assess proportion of endogenous and overexpressed actinin levels.

(E) Representative confocal micrograph of iPSC-CMs decorated with antibodies to actinin (red), FLAG (green), and DAPI DNA co-stain (blue) showing appropriate localization of overexpression lenti-Actinin-3x-FLAG (scale bar=10µm).

(F) Quantification of *NDUFA1* RNA proximity to actinin protein in iPSC-CMs treated with overexpression of lenti-Actinin-WT or lenti-Actinin-E445A (n=40 cells).

(G) Quantification of Z-disk length by actinin stain of iPSC-CMs overexpressing lenti-Actinin-WT or lenti-Actinin-E445A (n=20) (scale bar=10µm).

(H) Cardiac microtissues with overexpression of lenti-Actinin-WT vs. lenti-Actinin-E445A have similar twitch force compared to controls (n=15-18).

(I) LDH activity of media supernatant collected from iPSC-CMs expressing either lenti-Actinin-WT or lenti-Actinin-E445A with lenti-cTnT-WT or lenti-cTnT-R92Q in glucoserich media for 5 days.

Data are n≥3; mean ± SEM; significance assessed by Student's t-test (A, C, F-H) or by ANOVA using Holm-Sidak correction for multiple comparisons (I) and defined by P > 0.05 (ns), P < 0.05 (*), P ≤ 0.01 (**).