Appendix

Fungal phytochrome chromophore biosynthesis at mitochondria

Christian Streng¹, Jana Hartmann², Kai Leister¹, Norbert Krauß³, Tilman Lamparter³, Nicole Frankenberg-Dinkel², Franco Weth⁴, Martin Bastmeyer⁴, Zhenzhong Yu^{5*} and Reinhard Fischer^{1*}

running head: phytochrome chromophore biosynthesis in fungi

Address: ¹Karlsruhe Institute of Technology (KIT) - South Campus Institute for Applied Biosciences Dept. of Microbiology Fritz-Haber-Weg 4 D-76131 Karlsruhe, Germany Phone: +49-721-6084-4630 Fax: +49-721-6084-4509 E-mail: reinhard.fischer@KIT.edu Homepage: www.iab.kit.edu

> ²University of Kaiserslautern Dept. of Microbiology Paul-Ehrlich-Str. 23 67663 Kaiserslautern, Germany

³Karlsruhe Institute of Technology (KIT) - South Campus Botanical Institute
D-76131 Karlsruhe, Germany
Phone: +49-721-608-45441
Fax: +49-721-608-44193
E-mail: tilman.lamparter@kit.edu
Homepage: www.botanik.kit.edu

⁴Karlsruhe Institute of Technology (KIT) - South Campus Zoological Institute Fritz-Haber-Weg 4 D-76131 Karlsruhe, Germany

⁵ Nanjing Agricultural University The Key Laboratory of Plant Immunity Jiangsu Provincial Key Lab of Organic Solid Waste Utilization Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization National Engineering Research Center for Organic-based Fertilizers 210095 Nanjing, China E-mail: yuzhenzhong@njau.edu.cn Homepage: http://re.njau.edu.cn/

* corresponding authors

Appendix Figures

Appendix Fig. S1: Deletion of the heme oxygenase genes. A, Both genes were deleted using CRISPR/Cas9. We analyzed 20 transformants for each gene. PCR analysis of wild type and genomic DNA of the deletion mutants was performed to confirm the deletion event. The *hoxA* gene locus was amplified with HoxA_check_for and HoxA_check_rev and resulted in a 4.5 kb band. The same primer combination resulted in a 0.75 kb band in the deletion mutant. In the case of *hoxB*, the primer combination was: HoxB_check_for and HoxB_check rev. The band obtained with wild type was 5.5 kb and the one with the mutant DNA was 1.75 kb. **B**, The PCR fragments of the deletion mutants obtained in **A** were sequenced. The sequences show the deletion event for *hoxA* (left) and *hoxB* (right). The numbers refer to the distance from the start codon. The red sequences are the direct border sequences of the deletion.

Appendix Fig. S2: HO expression in *E. coli* and in *P. pastoris*. A, HoxA and HoxB were expressed in *E. coli* for 20h at 15°C. Purification was performed using the Strep-tag system. HoxA remained largely in the insoluble pellet, while HoxB was soluble. HoxB was inactive in biochemical assays. **B**, HoxA and HoxB were purified like in **a**, but the C-terminal anchor (CTA) was deleted from HoxA resulting in a soluble form (HoxA Δ CTA). **A**, **B**, Protein fractions were separated in an SDS PAGE analysis. Fractions are: Crude extract (CE), supernatant 1 (S), pellet (P), flow through (F), eluate (E). **C**, HoxB was expressed in *P. pastoris* for 2.5 days at 30°C. The SDS PAGE shows the fractions of the purification as in **A**, **B** and in addition factions A2-A11 from the Mono S cation exchanger.

Appendix Fig. S3: Biochemical analyses of HoxA and HoxB. A, A spectrum of a solution with 1 μ M hemin was recorded (lower blue line). Afterwards 10 μ M HoxA was added. Subsequently repeatedly 1 μ M hemin was added and the spectrum recorded each time. A peak at 408 nm appeared (dashed line). **B**, HoxB was expressed in *P. pastoris* for 2.5 days. Purification was performed using a Mono S column. Measurement like in **A**. **C**, HPLC analysis of the products obtained in the heme oxygenase assay. 25 μ M HoxA and HoxB were incubated with 10 μ M hemin, 1.5 mg/ml BSA, 4.6 μ M petF (spinach ferredoxin), 0.025 U/ml petH (spinach ferredoxin reductase), 10 μ M catalase, 5 mM Tiron, 1.05 mM glucose-6-phosphate, 0.105 μ M NADP+ and 0.15 U/ml glucose-6-phosphate-dehydroxygenase. The resulting peak in the HPLC profile (asterisk) was analyzed spectroscopically and resembled biliverdin **D**. **E**, To the heme oxygenase assay (from **C**) 300 μ g PGP was added. Spectra were recorded every 30 sec. for 10 min. The Soret band of hemin decreased, while the Q-band of the PGP Pr form (705 nm) increased (arrows). **F**, Calibration of the SEC column. Standards were alcohol dehydrogenase (150 kDa), albumin (66 kDa), carbonic anhydrase (29 kDa), and cytochrome C (12.4 kDa). (Ve = volume elution; Vo = void volume).

Appendix Fig. S4: Analysis of the calculated dissociation constant (Kd) for each concentration of the interaction of HO and the phytochrome photosensory domain *in vitro* from Fig. 6. Biolayer interferometry analysis with Apo-PGP (A) and holo-PGP (B). Each Kd was calculated for the indicated concentration separately to compare consistency over the range.

Appendix Table S1: Strains used in this study.

Strain	Genotype	Reference
A. nidulans		
SKV103	pyrG89; pyroA4; veA+	(Vienken & Fischer, 2006)
SKV103	pyrG89; pyroA4; veA+	(Vienken <i>et</i> <i>al</i> , 2005)
SChS27	alcA::GFP-hoxA ::pyr4 in SKV103	This study
SChS28	alcA::GFP-hoxB ::pyr4 in SKV103	This study
SChS29	alcA::NYFP-hoxA ::pyro and alcA::CYFP- hoxA::pyr4 in SKV103	This study
SChS30	alcA::NYFP-hoxA ::pyro and alcA::CYFP- fphA::pyr4 in SKV103	This study
SChS31	alcA::NYFP-hoxB ::pyro and alcA::CYFP- fphA::pyr4 in SKV103	This study
SChS32	alcA::NYFP-hoxB ::pyro and alcA::CYFP- hoxA::pyr4 in SKV103	This study
SChS33	alcA::NYFP-hoxB ::pyro and alcA::CYFP- hoxB::pyr4 in SKV103	This study
SChS37	alcA::mEOS-hoxA ::pyr4 in SKV103	This study
SChS38	alcA::mEOS-hoxB ::pyr4 in SKV103	This study
SChS40	alcA(p)::GFP-HoxA∆CTA::pyroA in SKV103	This study
SChS41	alcA(p)::GFP-CTA::pyroA in SKV103	This study
SChS43	alcA(p)::GFP-HoxA∆CTA::pyroA in SKV103	This study
SChS44	alcA(p)::GFP-CTA::pyroA in SKV103	This study

A. alternata

ATCC 66981	A. alternata wild type	Christopher
		Lawrence
		(Blacksburg,

		VA)
SChS25	Δ hoxA in SMW24	This study
SChS26	Δ hoxB in SMW24	This study
SOI1	fphA mutant ∆fphA528	This study
	528 nucleotides deleted by CRISPR Cas9	
SMW24	∆pyrG in ATCC66981	(Wenderoth et al. 2019)
		, 2010/

E. coli		
Top10	F- <i>mcrA</i> cr <i>mrr-hsd</i> RMS- <i>mcr</i> BC) Φ 0 <i>lac</i> Zac hsd <i>lac</i> X74 recA1 araD139 sd araleu)7697 galU galK rpsL (StrR) endA1 nupG	Invitrogen, Leek, NL
BL21	$F^- ompT hsdS_B (r_B^- m_B^-) gal dcm (DE3)$	Novagen, Darmstadt

P. pastoris		
G115	His-	Invitrogen
SChS39	Aox1::HoxB-Strep::His in GS115	This study

Appendix Table S2: Oligonucleotides used in this study.

Name	Sequence (from 5' to 3')	Description
AlccgA-RT-F	GTCAACTCTGTCAAGAACGC	
AlccgA-RT-R	TTGATCTTGTCACCAGCAGC	RT-qPCR
Alh2b-RT-F	ACAAGAAGAAGCGCACCAAG	primers for A.
Alh2b-RT-R	CGTTGACGAAAGAGTTGAGAA	
Alt_HemeO1_pro to1_for	GTC CGT GAG GAC GAA ACG AGT AAG CTC GTC AGG GCA GAG ACG CTG TGC CGG TTT TAG AGC TAG AAA TAG CAA GTT AAA	
Alt_HemeO1_pro to1_HH_rev	GAC GAG CTT ACT CGT TTC GTC CTC ACG GAC TCA TCA GAG GGC ACG GTG ATG TCT GCT CAA GCG	-
Alt_HemeO1_pro to2_for	GTC CGT GAG GAC GAA ACG AGT AAG CTC GTC GAC ATT TCT CAG GAG GCC AGG TTT TAG AGC TAG AAA TAG CAA GTT AAA	_
Alt_HemeO1_pro to2_HH_rev	GAC GAG CTT ACT CGT TTC GTC CTC ACG GAC TCA TCA GGA CAT TCG GTG ATG TCT GCT CAA GCG	Deletion of hoxA and hoxB
Alt_HemeO2_pro to1_for	GTC CGT GAG GAC GAA ACG AGT AAG CTC GTC GGC ATG CCA ACC CTG ACA TAG TTT TAG AGC TAG AAA TAG CAA GTT AAA	-
Alt_HemeO2_pro to1_HH_rev	GAC GAG CTT ACT CGT TTC GTC CTC ACG GAC TCA TCA GGG CAT GCG GTG ATG TCT GCT CAA GCG	
Alt_HemeO2_pro to2_for	GTC CGT GAG GAC GAA ACG AGT AAG CTC GTC AAC GAT AAC CGG AAT CCA TTG TTT TAG AGC TAG AAA TAG CAA GTT AAA	

Alt_HemeO2_pro to2_HH_rev	GAC GAG CTT ACT CGT TTC GTC CTC ACG GAC TCA TCA GAA CGA TCG GTG ATG TCT GCT CAA GCG		
HoxA_check_for	ACG AGG AGG AGA CCA AGT ACC		
HoxA_check_rev	GCT TGC ACA TGA TAG TCA CAT CAC	Sequencing of the deletion	
HoxB_check_for	GGC GAT GAT GTG GGG ATC G		
HoxB_check_rev	CCG ATG CAT CAC TCG CTT G		
pASK_AltHOXAs yn fwd	GTG AAA TGA ATA GTT CGA CAA AAA TCT AGA TGC TTG AGA AGC AAC AAC A	Expression of	
pASK_AltHOXAs yn rev	GGT GGC TCC AAG CGC TGA GAC CAT GTT GAA TCT TGA AAA GGG TTA	HoxA	
HoxA_Anchordel _for	CAT GGT CTC AGC GCT TGG AG	Construction of HoxA∆CTA for Expression	
HoxA_Anchordel _rev	CGG GCG GCG TAA AAA CGT C		
pASK_AltHOXBs yn fwd	GTG AAA TGA ATA GTT CGA CAA AAA TCT AGA TGG GTC GTC ACG CTA ACC C	Expression of codon optimized HoxB in <i>E. coli</i>	
pASK_AltHOXBs yn rev	GGT GGC TCC AAG CGC TGA GAC CAT GTG AGC CCT GCC CAA CGG ATT		
HoxB_unopt_Sal I_for	GAG GTC GAC ATG GGC AGG CAT GCC AAC	Expression of	
HoxB_unopt_Pst I_rev	CTC CTG CAG CGA GCC CTG GCC CAC ACT C	native HoxB in <i>E. coli</i>	
pPIC_HoxB_uno pt_for	AAA AAC AAC TAA TTA TTC GAA GGA TCC GCC ACC ATG GGC AGG CAT GCC A	Expression of HoxB in <i>P.</i> <i>pastoris</i>	
pPIC_HoxB_uno pt_rev	CTA AGG CGA ATT AAT TCG CGG CCG CCT TAT TAT TTT TCG AAC TGC GGG TGG		
pACYC_AltHoxA	TTA AGT ATA AGA AGG AGA TAT ACA	Coexpression	

syn fwd	TAT GCT TGA GAA GCA ACA ACA	of HoxA, HoxB
pACYC_AltHoxA syn rev	GGT GGC AGC AGC CTA GGT TAA TTA ACG ATG ATG GTG ATG GTG GTG GTG ATG GTG GTG GTG TT	or HoxA and HoxB with PGP
pACYC_AltHoxB syn fwd	GGT GGC AGC AGC CTA GGT TAA TTA ACG ATG ATG GTG ATG GTG GTG ATG ATG GTG ATG ATG TG	
pACYC_AltHoxB syn rev	TTA AGT ATA AGA AGG AGA TAT ACA TAT GGG TCG TCA CGC TAA CCC	
HoxB_dualexpre ssion_for	GAT CCG AAT TCG AGC TCG GCG CGC CGG ATG GGT CGT CAC GCT AAC C	
HoxB_dualexpre ssion_rev	GTT CGA CTT AAG CAT TAT GCG GCC GCT TAT GAG CCC TGC CCA ACG GAT TCC	
HoxB_unopt_pA CYC_for	TTA AGT ATA AGA AGG AGA TAT ACA TAT GGG CAG GCA TGC CAA CCC	
HoxB_unopt_pA CYC_rev	GGT GGC AGC AGC CTA GGT TAA TTA ATT AAT GAT GGT GAT GAT GGT GCG AGC CCT GGC CCA CAC TC	
pET_AltHoxAsyn fwd	CTG GTG CCG CGC GGC AGC CAT ATG CTT GAG AAG C	
pET_AltHoxAsyn rev	CAG TGG TGG TGG TGG TGG TGC TCG AGT TGA ATC TTG AAA AG	
pET_AltHoxBsyn fwd	CTG GTG CCG CGC GGC AGC CAT ATG GGT CGT CAC	
pET_AltHoxBsyn rev	CAG TGG TGG TGG TGG TGG TGC TCG AGT GAG CCC TGC C	
HoxA_Ascl_for	GTA GGC GCG CCG ATG CTG GAG AAG CAG CAG C	
HoxA_Pacl_rev	CAA TTA ATT AAT CAC TGG ATC TTG AAC AGC GTG	VFP and GFP
HoxB_Ascl_for	GTA GGC GCG CCG ATG GGC AGG CAT	

	GCC AAC
HoxB_Pacl_rev	CAA TTA ATT AAC TAC GAG CCC TGG CCC AC
HoxA_GFP_anchor del_rev	TGG CCT CCT GAG AAA TGT C
HoxA_GFP_anchor del_for	TGA TTA ATT AAG GAT CCT CTA GAG TCG
HoxA_onlyCTA_T4 _rev	GCA TTA ATT AAT CAC TGG ATC TTG AAC AGC GTG AC
HoxA_onlyCTA_T4	GTA GGC GCG CCG ATG AGT GAC CCG TTC AAG

Appendix Table S3: Plasmids used in this study.

Plasmid	Insert	Source
pFC330	tef1(p)::cas9::tef1(t); AfpyrG; ampR; AMA1	(Nodvig <i>et al</i> , 2015)
pFC332	tef1(p)::cas9::tef1(t); hph; ampR; AMA1	(Nodvig <i>et al.</i> , 2015)
pFC334	tef1(p)::cas9::tef1(t); gpdA(p)::sgRNA- AnyA::trpC(t); Afpyr4; ampR; AMA1	(Nodvig <i>et al</i> ., 2015)
pASK-IBA3_FphAsyn	FphA in pASK-IBA3+	This study
BphO_pACYCDuet	Bpho in pACYC-DUET1	(Brandt <i>et al</i> , 2008)
pChS11	Protospacer1 for ΔhoxA in 332 with Pacl	This study
pChS12	Protospacer2 for <i>∆hoxA</i> in 330 with <i>Pac</i> I	This study
pChS13	Protospacer1 for <i>∆hoxB</i> in 330 with <i>Pac</i> I	This study
pChS14	Protospacer2 for <i>∆hoxB</i> in 332 with <i>Pac</i> I	This study
pChS15	HoxAsyn in pASK- IBA3+ with <i>Xba</i> l and <i>Nco</i> l	This study
pChS16	HoxA∆CTAsyn in pASK-IBA3+ with <i>Xba</i> l and <i>Nco</i> I	This study
pChS18	HoxAsyn in pACYC- DUET1 with <i>Nd</i> el and <i>Pac</i> l	This study

pChS19	HoxBsyn in pACYC-	This study
	DUET1+ with Ndel and	
	Pacl	
		This study
pCnS20	HoxAsyn in pET-28a	i nis study
	with Ndel and Xhol	
pChS21	HoxBsyn in pET-28a	This study
	with <i>Nde</i> I and <i>Xho</i> I	
pChS22	alcA::GFP-HoxA, pyr4	This study
	with Ascl and Pacl	
pChS23	alcA::GFP-HoxB, pyr4	This study
	with Ascl and Pacl	
pChS23	alcA::NYFP-HoxA,	This study
	pyroA with Ascl and	
	Pacl	
pChS22	alcA::CYFP-HoxA, pyr4	This study
	with Ascl and Pacl	
pChS23	alcA::NYFP-HoxB,	This study
	pyroA with Ascl and	
	Pacl	
pChS22	alcA::CYFP-HoxB, pyr4	This study
	with Ascl and Pacl	
pChS35	alcA::mEOS-HoxA, pyr4	This study
	with Ascl and Pacl	
pChS36	alcA::mEOS-HoxB, pyr4	This study
	with Ascl and Pacl	

pChS37	HoxB-Strep in	This study
	PPIC3.5K with BamHI	
	and <i>Not</i> l	
pKL6	HoxB in pACYC-DUET1	This study
	with <i>Nde</i> I and <i>Pac</i> I	
pKL7	HoxAsyn and HoxB in	This study
	pACYC-DUET1 with	
	HindIII and Ncol	
PChS43	alcA(p)::GFP-	This study
	HoxA∆CTA::pyr4; ampR	
PChS44	alcA(p)::GFP-CTA::pyr4;	This study
	unpr	

References

- Brandt S, von Stetten D, Günther M, Hildebrandt P, Frankenberg-Dinkel N (2008) The fungal phytochrome FphA from *Aspergillus nidulans*. *J Biol Chem* 283: 34605-34614
- Nodvig CS, Nielsen JB, Kogle ME, Mortensen UH (2015) A CRISPR-Cas9 system for genetic engineering of filamentous fungi. *PLoS One* 10: e0133085
- Vienken K, Fischer R (2006) The Zn(II)₂Cys₆ putative transcription factor NosA controls fruiting body formation in *Aspergillus nidulans*. *Mol Microbiol* 61: 544-554
- Vienken K, Scherer M, Fischer R (2005) The Zn(II)₂Cys₆ transcription factor RosA (repressor of sexual development) triggers early developmental decisions in the filamentous fungus *Aspergillus nidulans*. *Genetics* 169: 619-630
- Wenderoth M, Garganese F, Schmidt-Heydt M, Soukup ST, Ippolito A, Sanzani SM, Fischer R (2019) Alternariol as virulence and colonization factor of *Alternaria alternata* during plant infection. *Mol Microbiol* 112: 131-146